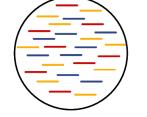


Standards, Precautions & Advances in Ancient Metagenomics

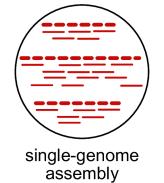

Practical 4C: Genome assembly

Alexander Hübner and Nikolay Oskolkov

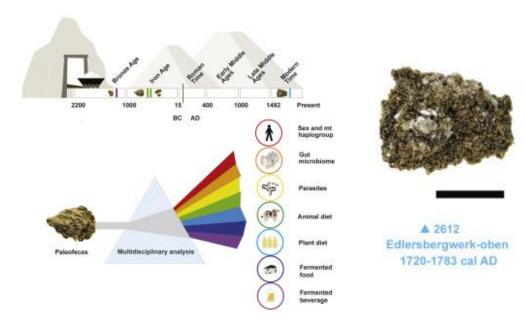
De novo assembly of metagenomic data

pool of metagenomic sequencing data

reference alignment based analyses will miss taxons that are not represented in the database \rightarrow possible solutions:


- cultivation and assembly of isolates → not available for ancient DNA samples
- *de novo* assembly of the metagenomic data

reference-based alignment



metagenome assembly

Sample overview

test sample: a **300-year old palaeofaeces sample**, 2612, excavated from the **Hallstatt salt mine** in Austria

In total, sequenced to a depth of 253 million paired-end DNA reads \rightarrow **sub-sample** for this practical

Maixner *et al.* (Current Biology, 2021): Hallstatt miners consumed blue cheese and beer during the Iron Age and retained a non-Westernized gut microbiome until the Baroque period (DOI: 10.1016/j.cub.2021.09.031)

Download the sequencing data

Download the sub-sampled short-read data of 2612 from a local server:

wget https://share.eva.mpg.de/index.php/s/CtLq2R9iqEcAFyg/download/2612_R1.fastq.gz wget https://share.eva.mpg.de/index.php/s/mc5JrpDWdL4rC24/download/2612_R2.fastq.gz

or access them from the local folder

cd /vol/volume/4c-genome-assembly ls 2612_R1.fastq.gz 2612_R2.fastq.gz

Activate the conda environment: conda activate microbial-genomics

TASK: How many sequences are in the FastQ files? HINT: Run bioawk -c fastx 'END{print NR}' <FastQ file> to figure out.

Interactive questions

Please visit the website to submit your answers to the questions:

partici.fi/39619826

Time-consuming and memory-intensive steps

There are a couple of steps with either a long runtime or require more memory than can be provided on this cluster.

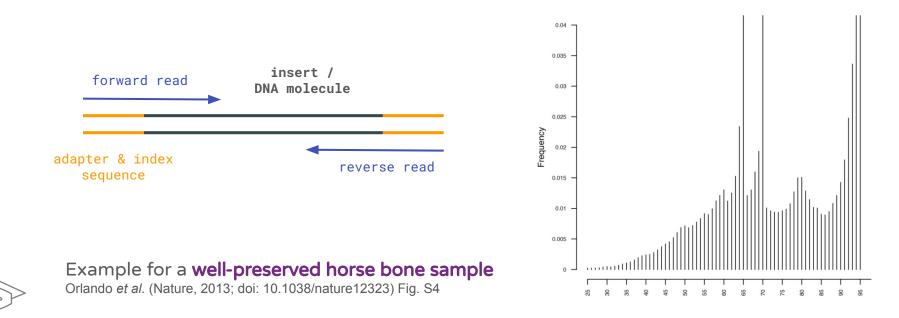
 \rightarrow skip the execution of these steps and provide the results

Locally available: /vol/volume/4c-genome-assembly

Or via download:

https://share.eva.mpg.de/index.php/s/y9xyjFfFwK6Xz4P

Download the commands files

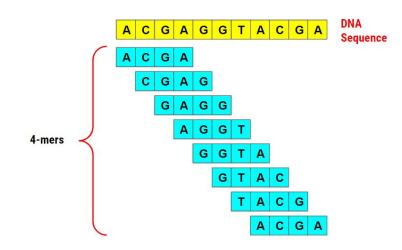

To have all commands readily available:

wget https://share.eva.mpg.de/index.php/s/ZTRkanepP8mymca/download/commands.txt

Preparing sequencing data for assembly

De novo assembly algorithms use the insert size or **DNA molecule length distribution** as information for improving the assembly quality \rightarrow **paired-end sequencing data** is highly recommended

Preparing sequencing data for assembly


TASK: Infer the insert size distribution of the sequencing dataHINT: Use fastp to merge overlapping read pairs using the command and inspect the HTML report

```
fastp --in1 2612_R1.fastq.gz \
    --in2 2612_R2.fastq.gz \
    --stdout --merge -A -G -Q -L --json /dev/null --html overlaps.html \
    /dev/null
```


De novo assembly using MEGAHIT

MEGAHIT: de Bruijn-graph assembler using a distribution of different k-mer lengths inferred from the length of the sequencing data

reasons for using MEGAHIT:

- **low-memory** footprint
- has little issues with the presence of ancient DNA damage
- works with **single-end data**

BUT: lower assembly quality than other assemblers for modern sequencing data (see CAMI II challenge; DOI: 10.1038/s41592-022-01431-4)

https://medium.com/swlh/bioinformatics-1-k-mer-c ounting-8c1283a07e29

De novo assembly using MEGAHIT

TASK: *De novo* assemble the short-read sequencing data using MEGAHIT. Which k-mer lengths did MEGAHIT select?

```
megahit -1 2612_R1.fastq.gz \
    -2 2612_R2.fastq.gz \
    -t 14 --min-contig-len 500 \
    --out-dir megahit
```

Ancient DNA damage and *de novo* assembly

MEGAHIT can assemble ancient DNA sequencing data with a high amount of damage but **might introduce damage alleles** into the contig sequences

whole **pipeline** to correct these damage alleles in the contig sequences included in **nf-core/mag**:

- alignment of short-read data against the contigs
- genotyping with freeBayes
- → replace alleles with strong support for an alternative allele

De Bruijn graph with a bubble caused by an 2nd allele Leggett *et al.* (PLoS One, 2013; doi: 10.1371/journal.pone.0060058) Fig. 1A

CGATTCTAAGT

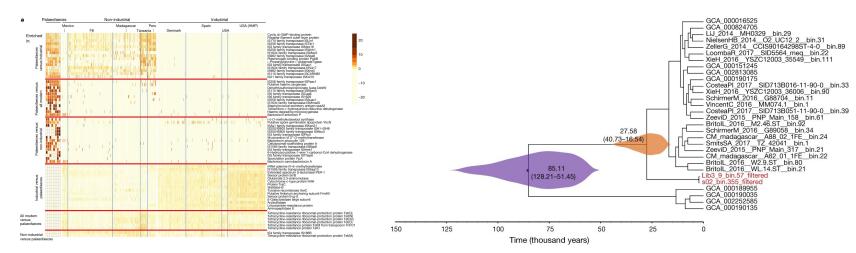
CGATTCTAAGT

CGATTGTAAGT

C

Accessing the assembly quality

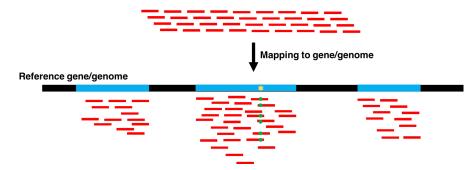
TASK: Summarise the number of contigs, the total contig length, and the maximum (N0), the median (N50), and the minimum contig length (N100) of the assembly produced by MEGAHIT.


HINT: Download the script calN50 and run it on the FastA file

wget https://raw.githubusercontent.com/lh3/calN50/master/calN50.js
k8 ./calN50.js megahit/final.contigs.fa

Investigating biological diversity in the sample

There are two major approaches to study the biological diversity in a sample after having *de novo* assembled it:



reconstructing a **non-redundant gene catalogue** for studying the functional diversity reconstructing metagenome-assembled genomes for studying the species diversity

Alignment against the contigs

Many of the following steps require the alignment of the short-read data against the de novo assembled contigs, e.g.

- correction of the contig sequences
- binning of the contigs into MAGs (coverage along the contigs)
- quantification of the presence of ancient DNA damage

https://training.galaxyproject.org/training-material/topics/proteomics/images/variant_calling.png

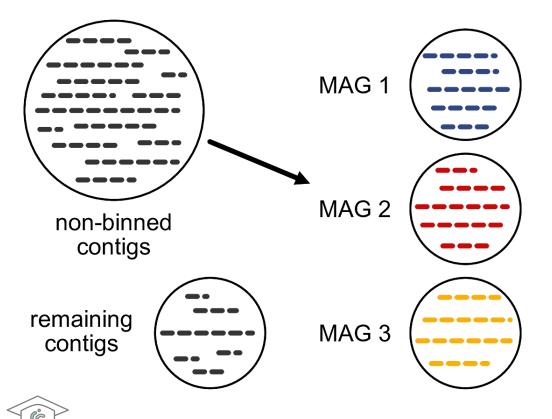
Alignment against the contigs

TASK: Align the short-read data against the contigs using **BowTie2**, sort the resulting alignment file using **samtools sort** and add the MD field using **samtools calmd**

```
mkdir alignment
bowtie2-build -f megahit/final.contigs.fa alignment/2612
bowtie2 -p 14 --very-sensitive -N 1 -x alignment/2612 \
    -1 2612_R1.fastq.gz -2 2612_R2.fastq.gz | \
samtools view -Sb - | \
samtools calmd -u /dev/stdin megahit/final.contigs.fa | \
samtools sort -o alignment/2612.sorted.calmd.bam -
samtools index alignment/2612.sorted.calmd.bam
```


Alignment against the contigs

Link these files from the local server


```
mkdir alignment
ln -s /vol/volume/4c-genome-assembly/2612.sorted.calmd.bam alignment/
ln -s /vol/volume/4c-genome-assembly/2612.sorted.calmd.bam.bai alignment/
ln -s /vol/volume/4c-genome-assembly/2612.fa alignment/
```

or download them:

```
mkdir alignment
wget -0 alignment/2612.sorted.calmd.bam \
    https://share.eva.mpg.de/index.php/s/bDKgFLj9GpRFdPg/download/2612.sorted.calmd.bam
wget -0 alignment/2612.sorted.calmd.bam.bai \
    https://share.eva.mpg.de/index.php/s/HWqg6fJj6ZEEBAL/download/2612.sorted.calmd.bam.bai
wget -0 alignment/2612.fa \
    https://share.eva.mpg.de/index.php/s/z6ZAai42RPribX5/download/final.contigs.fa
```


Construction of metagenome-assembled genomes

non-reference binning of all contigs by

- nucleotide frequency (%A, %C, %G, %T)
- mean coverage

into metagenome-assembled genomes (MAGs)

Initial binning using metaWRAP

MetaWRAP allows convenient binning of the contigs using three binners at the same time:

- metaBAT2 (DOI: 10.7717/peerj.7359)
- MaxBin2 (DOI: 10.1002/cpz1.128)
- CONCOCT (DOI: 10.1038/nmeth.3103)

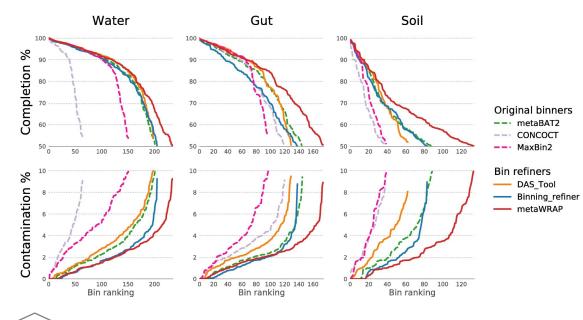
There are many more binners available (see CAMI II challenge; DOI: 10.1038/s41592-022-01431-4)

Initial binning using metaWRAP

MetaWRAP is a full pipeline that can also run the assembly automatically \rightarrow requires some **minor tweaking to skip some steps** such as the alignment

mkdir -p metawrap/INITIAL_BINNING/2612/work_files
ln -s \$PWD/alignment/2612.sorted.calmd.bam \
 metawrap/INITIAL_BINNING/2612/work_files/2612.bam
mkdir -p metawrap/faux_reads
echo "@" > metawrap/faux_reads/2612_1.fastq
echo "@" > metawrap/faux_reads/2612_2.fastq

Initial binning using metaWRAP


TASK: Bin the contigs with the two binners metaBAT2 and MaxBin2 using the **binning module of metaWRAP**. Check the results of each binner and compare the **number of bins** and the **bin sizes** to each other!

```
conda activate metawrap-env
metawrap binning -o metawrap/INITIAL_BINNING/2612 \
    -t 14 \
    -a alignment/2612.fa \
    --metabat2 --maxbin2 --universal \
    metawrap/faux_reads/2612_1.fastq metawrap/faux_reads/2612_2.fastq
conda deactivate
```

HINT: You can use the previously introduced script k8 ./calN50.js to analyse the bins!

Bin refinement using metaWRAP

MetaWRAP has a module that uses its own algorithm to **refine the bins** obtained from the three different binning tools

use a **single-copy marker gene database** from the program checkM to **split bins** with contigs from more than one lineages

→ outperforms the individual binners

Uritskiy *et al.* (Microbiome, 2018; doi: 10.1186/s40168-018-0541-1) Fig. 4

Minimum information for MAG (MIMAG)

MIMAG provides a **standardised checklist** for reporting MAGs and their quality (**completeness** and **contamination**):

Criterion	Description
	Finished (SAG/MAG)
Assembly quality ^a	Single contiguous sequence without gaps or ambiguities with a consensus error rate equivalent to Q50 or better
	High-quality draft (SAG/MAG)
Assembly quality ^a	Multiple fragments where gaps span repetitive regions. Presence of the 23S, 16S, and 5S rRNA genes and at least 18 tRNAs.
Completion ^b	>90%
Contamination ^c	<5%
	Medium-quality draft (SAG/MAG)
Assembly quality ^a	Many fragments with little to no review of assembly other than reporting of standard assembly statistics.
Completion ^b	≥50%
Contamination ^c	<10%
	Low-quality draft (SAG/MAG)
Assembly quality ^a	Many fragments with little to no review of assembly other than reporting of standard assembly statistics.
Completion ^b	<50%
Contamination ^c	<10%

Bowers et al. (Nat. Biotech., 2017; doi: 10.1038/nbt.3893)

full version of Table 1: https://www.nature.com/articles /nbt.3893/tables/1

de-facto for estimating the MAG quality: **checkM** (Parks *et al.* (2015: doi:

(Parks *et al.* (2015; doi: 10.1101/gr.186072.114)

^aAssembly statistics include but are not limited to: N50, L50, largest contig, number of contigs, assembly size, percentage of reads that map back to the assembly, and number of predicted genes per genome.

^bCompletion: ratio of observed single-copy marker genes to total single-copy marker genes in chosen marker gene set.

 c Contamination: ratio of observed single-copy marker genes in ≥ 2 copies to total single-copy marker genes in chosen marker gene set.

Preparing checkM for metaWRAP

MetaWRAP requires a working installation of checkM including its database.

mkdir checkM
wget -0 checkM/checkm_data_2015_01_16.tar.gz \
 https://data.ace.uq.edu.au/public/CheckM_databases/checkm_data_2015_01_16.tar.gz
tar xvf checkM/checkm_data_2015_01_16.tar.gz -C checkM

echo checkM | checkm data setRoot checkM

Bin refinement using metaWRAP

TASK: Refine the bins obtained from CONCOCT, metaBAT2, and MaxBin2 using the **refinement module of metaWRAP**. How many bins were kept after the refinement step? How well do the score regarding the MIMAG criteria?

```
mkdir -p metawrap/BIN_REFINEMENT/2612
metawrap bin_refinement -o metawrap/BIN_REFINEMENT/2612 \
    -t 14 \
    -c 50 \
    -x 10 \
    -A metawrap/INITIAL_BINNING/2612/maxbin2_bins \
    -B metawrap/INITIAL_BINNING/2612/metabat2_bins \
    -C metawrap/INITIAL_BINNING/2612/concoct_bins
```

HINT: Check the table metawrap_50_10_bins.stats

Visualising tables on the terminal - visidata

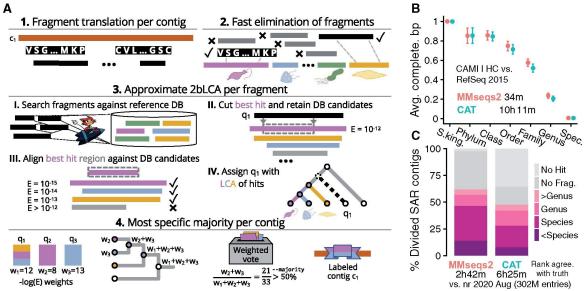
visidata provides a **table calculation program** that can be used to visualise, sort, search, or manipulate tabular data **on the terminal** \rightarrow Excel for the command line

Install visidata: pip install visidata

Open a table on the command line: vd -f tsv metawrap_50_10_bins.stats

A lot of functionality \rightarrow check the documentation: <u>https://www.visidata.org/docs/</u>

Taxonomic classification - on contig level


The likely taxonomic origin of contigs can be determined by aligning them against a reference database.

available aligners:

- BLAST/DIAMOND
- Kraken2
- Centrifuge
- MMSeqs2

available databases:

- NCBI NT/RefSeq
- GTDB

Mirdita et al. (Bioinformatics, 2021; doi: bioinformatics/btab184) Fig. 1

Taxonomic classification - MMSeqs2

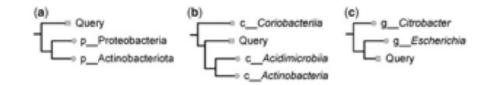
mkdir -p refdbs/mmseqs2/gtdb
mmseqs databases GTDB \
 refdbs/mmseqs2/gtdb /tmp --threads 14

MMSeqs2 requires a large amount of disk space for storing the database (~ 78 GB) and requires a lot of memory to run (~ 500 GB)

→ alternative for less powerful computers: **KrakenUniq** (https://github.com/fbreitwieser/krakenuniq)

Taxonomic classification - MMSeqs2

TASK: Run the **MMSeqs2 classify workflow** using the **GTDB** to assign the contigs! What is the proportion of contigs that can be assign to the rank species, genus etc.? What are the dominant taxa?


```
mkdir mmseqs2
mmseqs createdb alignment/2612.fa mmseqs2/2612.contigs
mmseqs taxonomy mmseqs2/2612.contigs \
    refdbs/mmseqs2/gtdb/mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    /tmp \
    -a --tax-lineage 1 \
    --lca-ranks kingdom,phylum,class,order,family,genus,species \
    --orf-filter 1 \
    --remove-tmp-files 1 \
    --threads 14
mmseqs createtsv mmseqs2/2612.contigs \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.contigs \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.contigs \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb \
    mmseqs2/2612.mmseqs2_gtdb.tsv
```

HINT: Check the TSV file 2612.mmseqs2_gtdb.tsv

Taxonomic classification - on MAG level

The exact taxonomic classification of MAGs is more complicated than just aligning all contigs against a reference database. **GTDBTK** provides a more sophisticated approach:

- 1. Lineage identification based on single-copy marker genes using Hidden Markov models (HMMs)
- 2. **Multi-sequence alignment** for these marker genes
- 3. Placement of MAG genome into a **fixed reference tree** at class-level

Chaumeil et al. (Bioinformatics, 2019; doi: bioinformatics/btz848) Fig. 1

Taxonomic classification - GTDBTK

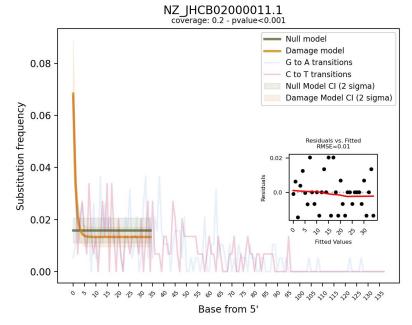
Installation of the precompiled GTDB database for GTDBTK:

mkdir -p refdbs/gtdbtk
wget -0 refdbs/gtdbtk/gtdbtk_v2_data.tar.gz \
 https://data.gtdb.ecogenomic.org/releases/latest/auxillary_files/gtdbtk_v2_data.tar.gz
tar xvf refdbs/gtdbtk/gtdbtk_v2_data.tar.gz -C refdbs/gtdbtk

requires about ~ 70 GB of hard drive storage space

Taxonomic classification - GTDBTK

TASK: Classify the MAGs refined with metaWRAP to the **GTDB taxonomy** using GTDBTK. Do these classifications match the assignments obtained from MMSeqs2? Would you expect these taxa given the **archaeological context of the sample**?


mkdir gtdbtk
GTDBTK_DATA_PATH="\$PWD/refdbs/gtdbtk/gtdbtk_r207_v2" \
gtdbtk classify_wf --cpu 14 --extension fa \
 --genome_dir metawrap/BIN_REFINEMENT/2612/metawrap_50_10_bins \
 --out_dir gtdbtk

HINT: Check the TSV files 2612.gtdbtk_archaea.tsv and 2612.gtdbtk_bacteria.tsv

Evaluating the amount of aDNA damage

PyDamage evaluates the **amount of aDNA damage** and **tests the hypothesis** whether a model assuming the presence of aDNA damage better explains the data than the null model

Evaluating the amount of aDNA damage

TASK: Evaluate the pyDamage results with the respect of the **amount of C-to-T substitutions** observed on the contigs, the **number of contigs** considered as being "ancient", and how much power there was for these decisions ("**prediction accuracy**")! Are their MAGs that are strongly "ancient" or "modern"?

HINT: Run pyDamage on the sorted BAM file and check the CSV file

pydamage analyze -w 30 -p 14 alignment/2612.sorted.calmd.bam

Download table:

wget https://share.eva.mpg.de/index.php/s/awaE9Ss4WsRm6wm/download/pydamage_results.csv

Annotating genomes

So far, we only have the nucleotide sequences and their likely origin. **Functional elements** that require annotation:

- coding sequences
- transfer or ribosomal RNAs
- CRISPR sequences

can be conveniently achieved using Prokka

Annotating genomes using Prokka

TASK: Annotate the genome of the MAG bin.3.fa using Prokka. What type of files does Prokka return? How many genes/tRNAs/rRNAs were detected?

```
prokka --outdir prokka \
    --prefix 2612_003 \
    --compliant --metagenome --cpus 14 \
    metawrap_50_10_bins/bin.3.fa
```

HINT: Check the file prokka/2612_003.txt

Summary

- *de novo* assembly of ancient short-read sequencing data
- non-reference binning of the contigs based on nucleotide frequency and mean coverage
- bin refinement and quality evaluation using single-copy marker genes
- taxonomic classification against the GTDB
- analysis of aDNA damage on contig level
- genome annotation

Cautionary note - sequencing depth

This sample was non-randomly **subsampled** from the original sequencing data of sample 2612:

- the tutorial sample: < 5 million reads
- the original sample: 196.25 million reads
- → genome assembly need **a lot of sequencing data** than reference-based profiling **BUT** also dependent on **the complexity of sample**

GIVE IT A TRY!

Useful resources

- <u>https://nf-co.re/mag</u>: Nextflow nf-core pipeline for the *de novo* assembly and non-reference binning of short-read sequencing data that is suitable for ancient DNA
- <u>anvi'o</u>: tool suite for the analysis and visualisation of 'omics data that allows for the manual curation of MAGs

