

Standards, Precautions & Advances in Ancient Metagenomics

Practical 4B: Genome mapping

Alexander Herbig & Alina Hiss

Intro: What is mapping?

- Alignment of DNA sequencing reads to a reference genome
- Suitable for comparing closely related genomes
- Identification of variation/differences between genomes
- Identified variants serve as input for down-stream analyses (such as phylogenomics or functional analyses)

Intro: Alignment Basics

Sequence 1: ACGAAGTAGCAGACGATATAGC

Sequence 2: ACGCAGTAGAGGATAGCGTACC

Alignment:

ACGAAGTAGCAGACGATA---TAGC ||| |||| || |||| |||| ACGCAGTA---GAGGATAGCGTACC

9 Modifications (Edit Distance)

ACATCGACGA

GACGACATAC GCTAGACAT

AGGCTACGCTA

ATACCTAGGC

GCTAGCTAGCGTAG

... GCTAGACATCGACGACATACCTAGGCTACGCTAGCTAGCGTAG...

...GCTAGACATCGACGACATACCTAGGCTACGCTAGCTAGCGTAG... GCTAGACAT

GCTAGACATCGACGACATACCTAGGCTACGCTAGCTAGCGTAG... GCTAGACAT ATACCTAGGC

AGGCTACGCTA

GCTAGCTAGCGTAG

...GCTAGACATCGACGACATACCTAGGCTACGCTAGCTAGCGTAG.. GCTAGACAT ATACCTAGGC ACATCGATGA AGGCTACGCTA GATGACATAC GCTAGCTAGCGTAG SNP Single Nucleotide Dehumernhism

Single Nucleotide Polymorphism

...GCTAGACATCGACGACATACCTAGGCTACGCTAGCTAGCGTAG... GCTAGACAT ATACCTAGGC ACATCGATGA AGGCTACGCTA GATGACATAC GCTAG----GTAG

Intro: Input Format

• FASTQ (Sequence and Quality)

@SEQ_ID GATTTGGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT +

!''*(((((***+)))%%%++)(%%%%).1***-+*''))**55CCF>>>>CCCCCC65

Intro: FASTQ - Quality Encoding

555555555555555555555555555555555555555	555555555555555555555555555555555555555	555555555	SSSSSS		
				~~~~~~	
			IIIIIIIIIIIIIIIIII		
· · · · · · · · · · · · · · · · ·		· · · · · JJ.	1111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • • • • • • • •
· · LLLLLLLLL	LLLLLLLLLLLL	LLLLLLLL	LLLLLL		
!"#\$%&'()*+,-	./0123456789:;	<=>?@ABC[	DEFGHIJKLMNOPQRST	JVWXYZ[\]^_`abcdefghijklmnopqr	<pre>stuvwxyz{ }~</pre>
1	1	1	[		
33	59	64	73	104	126
0		31	40		
	-9				
				40	
0.2			41		
S - Sanger	Phred+33,	raw read	ds typically (0,	40)	
X - Solexa	Solexa+64,	raw read	ds typically (-5,	40)	
			ds typically (0,		
			ds typically (3,		
				ontrol Indicator (bold)	
			segment quality c	Sitiot Indicator (bold)	
	discussion ab				
L - Illumina 1	.8+ Phred+33,	raw read	ds typically (0,	41)	

#### Intro: FASTQ - Quality Encoding





#### Practical part: Preparation

"Your directory" in this case is "4b-genome-mapping"

S

Your directory

• Recover data (everyone)

curl -s https://share.eva.mpg.de/index.php/s/gfeY84DHWFJGW7T/download | bash

Go into directory for this session
 cd /vol/volume/4b-genome-mapping

• Get the most recent file with the commands...

wget https://share.eva.mpg.de/index.php/s/p9HY4W2aiGD5xk5/download -0 commands_UPDATED.txt



#### Practical part: Preparation

 Now you're all set, just one more thing: activate conda environment

conda activate microbial-genomics



# Intro: Burrows-Wheeler Alignment

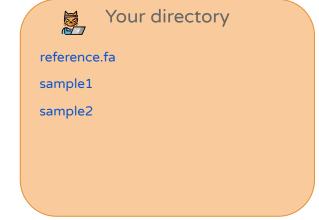
- We will be using the **Burrows-Wheeler Aligner**
- Li et al. 2009 http://bio-bwa.sourceforge.net/
- Different algorithms implemented for different types of data (diff. read lengths)
  - $\circ$  Here: BWA backtrack (bwa aln)  $\rightarrow$  suitable for Illumina sequences up to 100bp
  - Others: bwa mem and bwa sw for longer reads



### Intro: prior mapping: Reference genome

- We need a reference genome in FASTA format
- Ideally of the organism we want to map to, if not available, closely related species
- Download reference from database, e.g. NCBI




# Practical part: Reference genome - Indexing

- In your directory, you can find 2 samples and your reference (and the commands file).
- First step: index reference genome (make sure you are inside your directory)

bwa index YpestisC092.fa

samtools faidx YpestisC092.fa

picard CreateSequenceDictionary R=YpestisC092.fa





#### Intro: Parameters

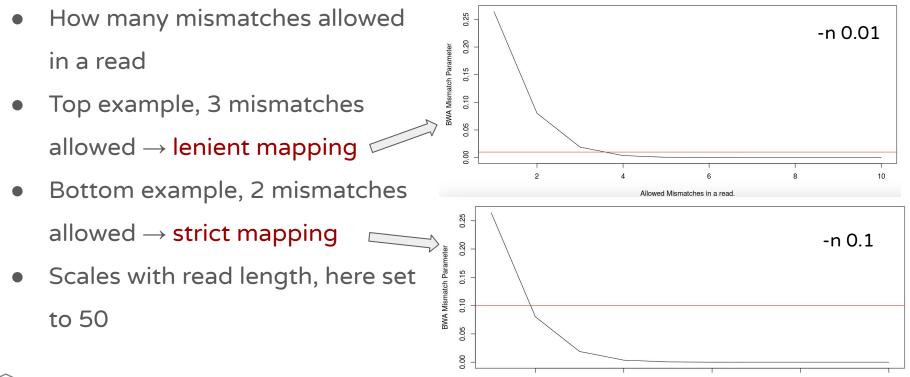
- We will be using bwa aln, but which parameters are specifically relevant?
  - Seed length
  - Maximum edit distance

- Rest can be set to default for now
- Parameters settings depend on the type of data, we generally differentiate between strict and lenient mapping parameters



#### Intro: Parameters - Seed length

- "Seed-and-Extend" algorithm
- Sequence of first N bases used to find hit in ref. genome
- Seeding speeds up alignment
- Can be disabled by setting a long seed (e.g. -l 1024  $\rightarrow$  longer than reads)




#### Intro: Parameters - Seed length

- Short seed:
  - maps to more possible positions in ref genome
  - less accurate, allows for more differences
  - longer run time
- Long seed:
  - maps to less positions
  - more accurate but chance of missing less "perfect" mapping positions in genome
  - faster



#### Intro: Parameters - Maximum Edit Distance



(In the second s

https://apeltzer.shinvapps.io/bwa-mismatches/

#### Intro: Parameters - lenient vs. strict mapping

- Lenient
  - $\circ$  Allow for more mismatches  $\rightarrow$  -n 0.01
  - Short seed length  $\rightarrow$  -l 16

- Strict
  - $\circ$  ~ Allow for less mismatches  $\rightarrow$  -n 0.1 ~
  - $\circ$  Long seed length  $\rightarrow$  -I 32



- We will be working with pre-processed files: quality-filtered and adapters are already removed
- 2 input files
  - sample1
  - sample2
- One is an ancient genome, one is modern
- Following parameters (2 alignments for each sample)
  - Lenient: -n 0.01 -l 16
  - Strict: -n 0.1 -l 32



#### Practical part: preparation


- We will be doing 4 mappings:
  - Genome 1 lenient
  - Genome 2 lenient
  - Genome 1 strict
  - Genome 2 strict

For this, we will make 4 separate directories, to avoid mixing up files. This is not necessary if you always name the output files in an informative way, however, there is also an advantage to having different directories for a later step.



#### Practical part: preparation

- Make the following 4 directories (you can use other names, just make sure they are informative):
  - sample1_lenient
  - o sample2_lenient
  - sample1_strict
  - sample2_strict



mkdir sample1_lenient sample2_lenient sample1_strict sample2_strict



- Let's begin with a lenient mapping of sample1:
- Go into the corresponding folder

cd sample1_lenient

	Your directo	ry
reference	.fa	
sample1	sample1	sample1
sample2	_lenient	_strict
\ \	sample2 _lenient	sample2 _strict

• Create file for bwa alignment, here sample1, specify lenient mapping parameters

bwa aln -n 0.01 -l 16 ../YpestisC092.fa ../sample1.fastq.gz > reads_file.sai



• Proceed with the actual mapping, using the created file

```
bwa samse -r '@RG\tID:all\tLB:NA\tPL:illumina\tPU:NA\tSM:NA' ../YpestisC092.fa
reads_file.sai ../sample1.fastq.gz > reads_mapped.sam
```

- Explanation:
  - -r specifies read group in a certain format



• Convert SAM file to binary format (BAM file)

samtools view -b -S reads_mapped.sam > reads_mapped.bam

- Background: SAMtools Exploration, handling and post-processing of SAM files (Li et al. 2009 – http://samtools.sourceforge.net/)
  - -b specifies to output in BAM format
  - (-S to specify input is SAM, can be omitted in recent versions)



### Practical part: After mapping - Sorting

• Sort bam file  $\rightarrow$  Sort alignments by leftmost coordinates

samtools sort reads_mapped.bam > reads_mapped_sorted.bam

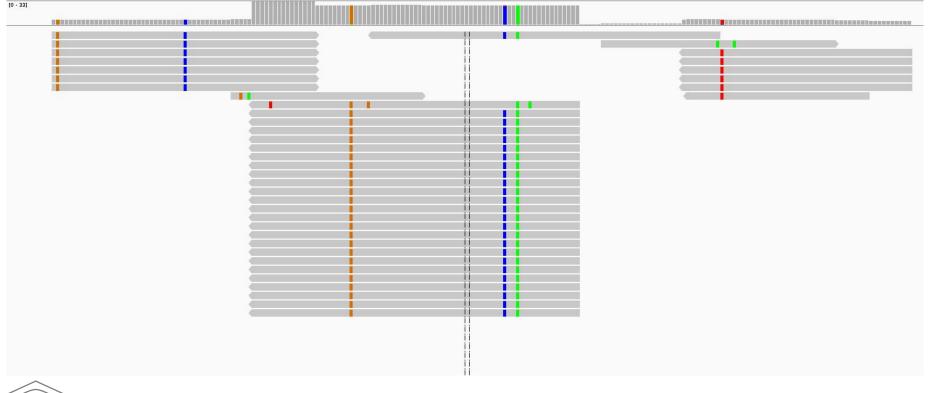
• Sorted bam file can be indexed  $\rightarrow$  more efficient for further processing

samtools index reads_mapped_sorted.bam



### Practical part: After mapping - Deduplication

• Deduplication: Removal of reads from duplicated fragments


samtools rmdup -s reads_mapped_sorted.bam reads_mapped_sorted_dedup.bam

samtools index reads_mapped_sorted_dedup.bam

- Explanation:
  - $\circ$  -s  $\rightarrow$  remove duplicates for single-end reads. By default, the command works for paired-end reads only.
  - Duplicated reads are usually a consequence of amplification of the DNA fragments in the lab, therefore not biologically meaningful



#### Practical part: After mapping





# Practical part: After mapping

• Deduplication: Removal of reads from duplicated fragments

samtools rmdup -s reads_mapped_sorted.bam reads_mapped_sorted_dedup.bam
samtools index reads_mapped_sorted_dedup.bam

• Let's have a look...

samtools view reads_mapped_sorted_dedup.bam | less -S (exit with Q)
samtools idxstats reads_mapped_sorted_dedup.bam



# Intro: Genotyping

- Identification of all SNPs that differentiate a genome from the reference
- Based on read mapping
- GATK Genome Analysis Toolkit
- DePristo et al. 2011 <u>http://www.broadinstitute.org/gatk/</u>
- Input: reference genome (fasta); mapping (bam)
- Output: Variant Call Format (vcf)



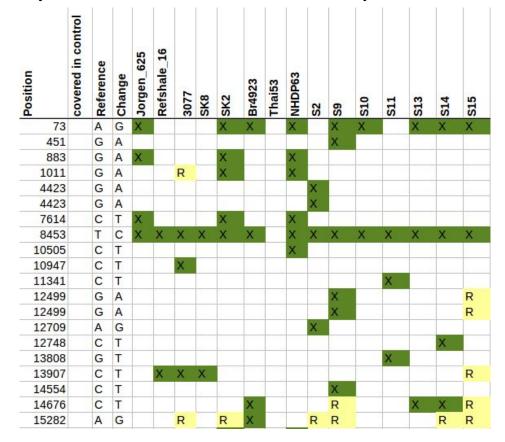
#### Intro: VCF Format

[HEADER	LINES]								
#CHROM	POS ID	REF ALT	QUAI	L	FILTER	INFO	FORMAT	NA12878	
chr1	873762	. т	G	523	1.78 PAS	S [ANI	NOTATIONS] GT:A	D:DP:GQ:PL 0/1	:173,141:282:99:255,0,255
chr1	877664	rs3828047	Α	G	3931.66	PASS	[ANNOTATIONS]	GT:AD:DP:GQ:PL	1/1:0,105:94:99:255,255,0
chr1	899282	rs28548431	С	т	71.77	PASS	[ANNOTATIONS]	GT:AD:DP:GQ:PL	0/1:1,3:4:25.92:103,0,26
chr1	974165	rs9442391	т	С	29.84	LowQual	[ANNOTATIONS]	GT:AD:DP:GQ:PL	0/1:14,4:14:60.91:61,0,255

# Practical part: Genotyping

• Perform genotyping on mapping file

```
gatk3 -T UnifiedGenotyper -R ../YpestisC092.fa -I reads_mapped_sorted_dedup.bam
--output_mode EMIT_ALL_SITES -o mysnps.vcf
```


• Let's have a look...

cat mysnps.vcf | less -S

(exit with Q)



#### Intro: Comparative SNP Analysis



Schuenemann et al. 2013

# Intro: Comparative SNP Analysis

- MultiVCFAnalyzer (<u>https://github.com/alexherbig/MultiVCFAnalyzer</u>)
- Gathering SNPs from multiple VCFs for comparative analysis
- Various output formats and summary statistics
- Can integrate gene annotation for SNP effect analysis
- SnpEff Genetic variant annotation and effect prediction toolbox Cingolani et al. 2012 – http://snpeff.sourceforge.net/



#### Intro: Comparative SNP Analysis

Position	covered in control	Reference	Change	Jorgen_625	Refshale_16	3077	SK8	SK2	Br4923	Thai53	NHDP63	S2	S9	S10	S11	S13	S14	S15	SNP Effect	Gene ID	Gene name
73		Α	G	X				X	X		Х		X	X		X	X	X	NON_SYNONYMOUS_CODING	ML0001	dnaA
451		G	A										Х				10	-	NON_SYNONYMOUS_CODING	ML0001	dnaA
883		G	A	Х				Х			Х								NON_SYNONYMOUS_CODING	ML0001	dnaA
1011		G	A			R		Х			Х						- 20 		SYNONYMOUS_CODING	ML0001	dnaA
4423		G	Α									X							SYNONYMOUS_CODING	ML0003	recF
4423		G	Α					-				Х							UPSTREAM: 12 bases	ML0004	ML0004
7614		С	Т	X				X			Х								SYNONYMOUS_CODING	ML0006	gyrA
8453		Т	С	Х	Х	X	Х	Х	X		X	X	X	Х	X	X	Х	X	NON_SYNONYMOUS_CODING	ML0006	gyrA
10505		С	Т								Х		1				0	1	NON_SYNONYMOUS_CODING	ML0006	gyrA
10947		С	Т			X													SYNONYMOUS_CODING	ML0006	gyrA
11341		С	Т												Х				SYNONYMOUS_CODING	ML0007	ML0007
12499		G	Α										Х				1	R	DOWNSTREAM: 20 bases	MLt02	alaT
12499		G	Α										X					R	INTERGENIC		
12709		A	G									Х							INTERGENIC		
12748		С	Т														X		INTERGENIC		
13808		G	Т												X				NON_SYNONYMOUS_CODING	ML0009	ML0009
13907		С	Т		X	X	Х						-					R	NON_SYNONYMOUS_CODING	ML0009	ML0009
14554		С	Т				1						х						INTERGENIC	1.1.1.1	
14676		С	Т						X				R			X	X	R	INTERGENIC		
15282		A	G			R		R	X			R	R			2	R	R	INTERGENIC		



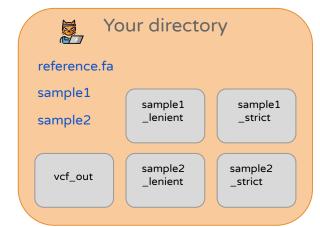
dor

#### Intro: Comparative SNP Analysis

SNP Effect	Gene ID	Gene name	Gene function	old_AA/new_AA	Old_codon/New_cod	Codon_Num(CDS)	cDS_size
NON_SYNONYMOUS_CODING	ML0001	dnaA	chromosome replication initiator DnaA	S/G	Agt/Ggt	25	1566
NON_SYNONYMOUS_CODING	ML0001	dnaA	chromosome replication initiator DnaA	G/R	Ggg/Agg	151	1566
NON_SYNONYMOUS_CODING	ML0001	dnaA	chromosome replication initiator DnaA	G/S	Ggt/Agt	295	1566
SYNONYMOUS_CODING	ML0001	dnaA	chromosome replication initiator DnaA	E/E	gaG/gaA	337	1566
SYNONYMOUS_CODING	ML0003	recF	recombination protein F	S/S	tcG/tcA	381	1158
UPSTREAM: 12 bases	ML0004	ML0004	hypothetical protein				570
SYNONYMOUS_CODING	ML0006	gyrA	DNA gyrase subunit A	R/R	cgC/cgT	99	3750
NON_SYNONYMOUS_CODING	ML0006	gyrA	DNA gyrase subunit A	L/P	cTt/cCt	379	3750
NON_SYNONYMOUS_CODING	ML0006	gyrA	DNA gyrase subunit A	S/F	tCt/tTt	1063	3750
SYNONYMOUS_CODING	ML0006	gyrA	DNA gyrase subunit A	R/R	cgC/cgT	1210	3750
SYNONYMOUS_CODING	ML0007	ML0007	hypothetical protein	P/P	ccC/ccT	49	912
DOWNSTREAM: 20 bases	MLt02	alaT	tRNA-Ala				76
INTERGENIC							
INTERGENIC							
INTERGENIC							
NON_SYNONYMOUS_CODING	ML0009	ML0009	hypothetical protein	A/S	Gct/Tct	12	192
NON_SYNONYMOUS_CODING	ML0009	ML0009	hypothetical protein	P/S	Cca/Tca	45	192
INTERGENIC							
INTERGENIC							
INTERGENIC							



#### Practical part: MultiVCFAnalyzer


- Run MultiVCFAnalyzer on all 4 files at once
  - First cd one level up (if you type 1s you should see your 4 directories, reference, etc.)

cd ..

• Then make a new directory...

mkdir vcf_out

• ...and run the programme



multivcfanalyzer NA YpestisCO92.fa NA vcf_out F 30 3 0.9 0.9 NA sample1_lenient/mysnps.vcf sample1_strict/mysnps.vcf sample2_lenient/mysnps.vcf sample2_strict/mysnps.vcf

#### Practical part: MultiVCFAnalyzer

- Let's have a look in the 'vcf_out' directory (cd into it)
  - Check the parameters we set earlier:

less -S info.txt (exit with Q)

• Check results:

less -S snpStatistics.tsv (exit with Q)

 Your directory

 reference.fa

 sample1

 sample2

 _lenient

 vcf_out

 _lenient

 sample2

 _sample2

 _sample2

 _sample2

 _sample2

 _sample2

 _sample2

 _sample2

 _sample2

 _sample2



# Practical part: IGV

- Let's have a look at our bam files with IGV (Integrative Genomics Viewer)
  - To open IGV, simply type the following command and the app will open:

File Genomes View

Load from File...

igv #(beware that you cannot use the terminal while IGV is open. If you want to use it anyways, open a second terminal via the bar on the bottom)

- Load your reference (YpestisCO92.fa)
  - $\circ \quad \rightarrow \text{Genomes Load Genome from File}$

Ē	ile	Genomes	View	Trac <u>k</u> s	R	egions	Tools	Hel	р
	Ype	Load Gen	ome fro	m F <u>i</u> le		C 00314	13.1	-	

- Load your vcf files (do this 4 times, for all 4 mappings)
  - $\circ \longrightarrow$  File Load from File

### Practical part: Assignments

- What differences do you observe between the samples and parameters?
  - Differences in number of mapped reads, coverage, number of SNPs
  - Do you see any global patterns?
  - Which sample is more affected by changing the parameters?
  - Which of the two samples might be ancient, which is modern?
- Let's examine some SNPs
  - Have a look at snpTable.tsv
  - Can you identify SNPs that were called with lenient but not with strict parameters?
  - Let's check out some of these in IGV.
  - Do you observe certain patterns in these genomic regions?



#### Practical part: Clean up

• Deconnect from your conda environment

conda deactivate

