
A crash course on R for data analysis
Clemens Schmid

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Data recovery

Run the following script to recover the relevant section of your data directory

curl -s https://share.eva.mpg.de/index.php/s/dQJe7TKB8iBG6Wc/download | bash

If this does not work, please download the content of the following Git repository:
https://github.com/nevrome/spaam_r_tidyverse_intro_2h

2

https://github.com/nevrome/spaam_r_tidyverse_intro_2h

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Getting started for this workshop

Activate the relevant conda environment (don’t forget to deactivate it later!)

conda activate r-python

Navigate to

/vol/volume/3b-1-introduction-to-r-and-the-tidyverse/spaam_r_tidyverse_intro_2h

Pull the latest changes in this Git repository

git pull

Open RStudio
Load the project with File > Open Project...
Open the file presentation.Rmd in RStudio

3

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

A crash course on R for data analysis

4

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

TOC

The working environment
Loading data into tibbles
Plotting data in tibbles
Conditional queries on tibbles
Transforming and manipulating tibbles
Combining tibbles with join operations

5

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

The working environment

6

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

R, RStudio and the tidyverse

R is a fully featured programming language, but it excels as an environment for (statistical) data
analysis (https://www.r-project.org)

RStudio is an integrated development environment (IDE) for R (and other languages):
(https://www.rstudio.com/products/rstudio)

The tidyverse is a collection of R packages with well-designed and consistent interfaces for the main
steps of data analysis: loading, transforming and plotting data (https://www.tidyverse.org)

This introduction works with tidyverse ~v1.3.0
We will learn about readr, tibble, ggplot2, dplyr, magrittr and tidyr
forcats will be briefly mentioned
purrr and stringr are left out

7

https://www.r-project.org
https://www.rstudio.com/products/rstudio
https://www.tidyverse.org

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Loading data into tibbles

8

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Reading data with readr

With R we usually operate on data in our computer’s memory
The tidyverse provides the package readr to read data from text files into the memory
readr can read from our file system or the internet
It provides functions to read data in almost any (text) format:

readr::read_csv() # .csv files
readr::read_tsv() # .tsv files
readr::read_delim() # tabular files with an arbitrary separator
readr::read_fwf() # fixed width files
readr::read_lines() # read linewise to parse yourself

readr automatically detects column types – but you can also define them manually

9

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

How does the interface of read_csv work?

We can learn more about a function with ?. To open a help file: ?readr::read_csv
readr::read_csv has many options to specify how to read a text file

read_csv(
file, # The path to the file we want to read
col_names = TRUE, # Are there column names?
col_types = NULL, # Which types do the columns have? NULL -> auto
locale = default_locale(), # How is information encoded in this file?
na = c("", "NA"), # Which values mean "no data"
trim_ws = TRUE, # Should superfluous white-spaces be removed?
skip = 0, # Skip X lines at the beginning of the file
n_max = Inf, # Only read X lines
skip_empty_rows = TRUE, # Should empty lines be ignored?
comment = "", # Should comment lines be ignored?
name_repair = "unique", # How should "broken" column names be fixed
...

)

10

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

What does readr produce? The tibble!

samples <- readr::read_tsv(sample_table_url)

The tibble is a “data frame”, a tabular data structure with rows and columns
Unlike a simple array, each column can have another data type

print(samples, n = 3)

A tibble: 1,060 x 16
project_name publication_year publication_doi site_name latitude longitude
<chr> <dbl> <chr> <chr> <dbl> <dbl>
1 Warinner2014 2014 10.1038/ng.2906 Dalheim 51.6 8.84
2 Warinner2014 2014 10.1038/ng.2906 Dalheim 51.6 8.84
3 Weyrich2017 2017 10.1038/nature21674 Gola For~ 7.66 -10.8
... with 1,057 more rows, and 10 more variables: geo_loc_name <chr>,
sample_name <chr>, sample_host <chr>, sample_age <dbl>,
sample_age_doi <chr>, community_type <chr>, material <chr>, archive <chr>,
archive_project <chr>, archive_accession <chr>

11

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

How to look at a tibble?

samples # Typing the name of an object will print it to the console
str(samples) # A structural overview of an object
summary(samples) # A human-readable summary of an object
View(samples) # RStudio's interactive data browser

R provides a very flexible indexing operation for data.frames and tibbles
samples[1,1] # Access the first row and column
samples[1,] # Access the first row
samples[,1] # Access the first column
samples[c(1,2,3),c(2,3,4)] # Access values from rows and columns
samples[,-c(1,2)] # Remove the first two columns
samples[,c("site_name", "material")] # Columns can be selected by name

tibbles are mutable data structures, so their content can be overwritten
samples[1,1] <- "Cheesecake2015" # replace the first value in the first column

12

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Plotting data in tibbles

13

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

ggplot2 and the “grammar of graphics”

ggplot2 offers an unusual, but powerful and logical interface
The following example describes a stacked bar chart

library(ggplot2) # Loading a library to use its functions without ::

ggplot(# Every plot starts with a call to the ggplot() function
data = samples # This function can also take the input tibble

) + # The plot consists of functions linked with +
geom_bar(# "geoms" define the plot layers we want to draw

mapping = aes(# The aes() function maps variables to visual properties
x = publication_year, # publication_year -> x-axis
fill = community_type # community_type -> fill color

)
)

geom_*: data + geometry (bars) + statistical transformation (sum)

14

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

ggplot2 and the “grammar of graphics”

This is the plot described above: number of samples per community type through time
ggplot(samples) +
geom_bar(aes(x = publication_year, fill = community_type))

0

100

200

300

2014 2016 2018 2020
publication_year

co
un

t

community_type

gut

oral

plant tissue

skeletal tissue

soft tissue

15

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

ggplot2 features many geoms

RStudio shares helpful cheatsheets for the tidyverse and beyond:
https://www.rstudio.com/resources/cheatsheets 16

https://www.rstudio.com/resources/cheatsheets

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

scales control the behaviour of visual elements
Another plot: Boxplots of sample age through time

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age))

0

25000

50000

75000

100000

2014 2016 2017 2018 2019 2020 2021
as.factor(publication_year)

sa
m

pl
e_

ag
e

This is not well readable, because extreme outliers dictate the scale
17

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

scales control the behaviour of visual elements
We can change the scale of different visual elements - e.g. the y-axis

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age)) +
scale_y_log10()

1e+02

1e+03

1e+04

1e+05

2014 2016 2017 2018 2019 2020 2021
as.factor(publication_year)

sa
m

pl
e_

ag
e

The log-scale improves readability 18

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

scales control the behaviour of visual elements
(Fill) color is a visual element of the plot and its scaling can be adjusted

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age,

fill = as.factor(publication_year))) +
scale_y_log10() + scale_fill_viridis_d(option = "C")

1e+02

1e+03

1e+04

1e+05

2014 2016 2017 2018 2019 2020 2021
as.factor(publication_year)

sa
m

pl
e_

ag
e

as.factor(publication_year)

2014

2016

2017

2018

2019

2020

2021

19

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Defining plot matrices via facets
Splitting up the plot by categories into facets is another way to visualize more variables at once

ggplot(samples) +
geom_count(aes(x = as.factor(publication_year), y = material)) +
facet_wrap(~archive)

ENA SRA UCPH ERDA

2014201620172018201920202021 2014201620172018201920202021 2014201620172018201920202021

birch pitch
bone

buccal fat pad
caecum

dental calculus
digestive tract contents

intestine
keratinous claw

large intestine
latrine

leaf
muscle tissue

omentum
palaeofaeces

peritoneum
sediment

skin
tooth

unknown

as.factor(publication_year)

m
at

er
ia

l

n

50

100

150

200

250

Unfortunately the x-axis became unreadable 20

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Setting purely aesthetic settings with theme
Aesthetic changes like this can be applied as part of the theme

ggplot(samples) +
geom_count(aes(x = as.factor(publication_year), y = material)) +
facet_wrap(~archive) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))

ENA SRA UCPH ERDA

20
14

20
16

20
17

20
18

20
19

20
20

20
21

20
14

20
16

20
17

20
18

20
19

20
20

20
21

20
14

20
16

20
17

20
18

20
19

20
20

20
21

birch pitch
bone

buccal fat pad
caecum

dental calculus
digestive tract contents

intestine
keratinous claw

large intestine
latrine

leaf
muscle tissue

omentum
palaeofaeces

peritoneum
sediment

skin
tooth

unknown

as.factor(publication_year)

m
at

er
ia

l

n

50

100

150

200

250

21

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Exercise 1

1 Look at the mtcars dataset and read up on the meaning of its variables

2 Visualize the relationship between Gross horsepower and 1/4 mile time

3 Integrate the Number of cylinders into your plot

22

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Possible solutions 1

1 Look at the mtcars dataset and read up on the meaning of its variables
?mtcars

2 Visualize the relationship between Gross horsepower and 1/4 mile time
ggplot(mtcars) + geom_point(aes(x = hp, y = qsec))

3 Integrate the Number of cylinders into your plot
ggplot(mtcars) + geom_point(aes(x = hp, y = qsec, color = as.factor(cyl)))

23

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Conditional queries on tibbles

24

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Selecting columns and filtering rows with select and filter

The dplyr package includes powerful functions to subset data in tibbles based on conditions
dplyr::select allows to select columns

dplyr::select(samples, project_name, sample_age) # reduce to two columns
dplyr::select(samples, -project_name, -sample_age) # remove two columns

dplyr::filter allows for conditional filtering of rows
dplyr::filter(samples, publication_year == 2014) # samples published in 2014
dplyr::filter(samples, publication_year == 2014 |

publication_year == 2018) # samples from 2015 OR 2018
dplyr::filter(samples, publication_year %in% c(2014, 2018)) # match operator: %in%
dplyr::filter(samples, sample_host == "Homo sapiens" &

community_type == "oral") # oral samples from modern humans

25

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Chaining functions together with the pipe %>%

The pipe %>% in the magrittr package is a clever infix operator to chain data and operations
library(magrittr)
samples %>% dplyr::filter(publication_year == 2014)

It forwards the LHS as the first argument of the function appearing on the RHS
That allows for sequences of functions (“tidyverse style”)

samples %>%
dplyr::select(sample_host, community_type) %>%
dplyr::filter(sample_host == "Homo sapiens" & community_type == "oral") %>%
nrow() # count the rows

magrittr also offers some more operators, among which the extraction %$% is particularly useful
samples %>%

dplyr::filter(material == "tooth") %$%
sample_age %>% # extract the sample_age column as a vector
max() # get the maximum of said vector

26

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Summary statistics in base R

Summarising and counting data is indispensable and R offers all operations you would expect in its
base package

nrow(samples) # number of rows in a tibble
length(samples$site_name) # length/size of a vector
unique(samples$material) # unique elements of a vector

min(samples$sample_age) # minimum
max(samples$sample_age) # maximum

mean(samples$sample_age) # mean
median(samples$sample_age) # median

var(samples$sample_age) # variance
sd(samples$sample_age) # standard deviation
quantile(samples$sample_age, probs = 0.75) # sample quantiles for the given probs

many of these functions can ignore missing values with an option na.rm = TRUE

27

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Group-wise summaries with group_by and summarise

These summary statistics are particular useful when applied to conditional subsets of a dataset
dplyr allows such summary operations with a combination of group_by and summarise

samples %>%
dplyr::group_by(material) %>% # group the tibble by the material column
dplyr::summarise(

min_age = min(sample_age), # a new column: min age for each group
median_age = median(sample_age), # a new column: median age for each group
max_age = max(sample_age) # a new column: max age for each group

)

grouping can be applied across multiple columns
samples %>%

dplyr::group_by(material, sample_host) %>% # group by material and host
dplyr::summarise(

n = dplyr::n(), # a new column: number of samples for each group
.groups = "drop" # drop the grouping after this summary operation

)

28

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Sorting and slicing tibbles with arrange and slice

dplyr allows to arrange tibbles by one or multiple columns
samples %>% dplyr::arrange(publication_year) # sort by publication year
samples %>% dplyr::arrange(publication_year,

sample_age) # ... and sample age
samples %>% dplyr::arrange(dplyr::desc(sample_age)) # sort descending on sample age

Sorting also works within groups and can be paired with slice to extract extreme values per group
samples %>%

dplyr::group_by(publication_year) %>% # group by publication year
dplyr::arrange(dplyr::desc(sample_age)) %>% # sort by age within (!) groups
dplyr::slice_head(n = 2) %>% # keep the first two samples per group
dplyr::ungroup() # remove the still lingering grouping

Slicing is also the relevant operation to take random samples from the observations in a tibble
samples %>% dplyr::slice_sample(n = 20)

29

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Exercise 2

1 Determine the number of cars with four forward gears (gear) in the mtcars dataset

2 Determine the mean 1/4 mile time (qsec) per Number of cylinders (cyl) group

3 Identify the least efficient cars for both transmission types (am)

30

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Possible solutions 2

1 Determine the number of cars with four forward gears (gear) in the mtcars dataset
mtcars %>% dplyr::filter(gear == 4) %>% nrow()

2 Determine the mean 1/4 mile time (qsec) per Number of cylinders (cyl) group
mtcars %>% dplyr::group_by(cyl) %>% dplyr::summarise(qsec_mean = mean(qsec))

3 Identify the least efficient cars for both transmission types (am)
#mtcars3 <- tibble::rownames_to_column(mtcars, var = "car") %>% tibble::as_tibble()
mtcars %>% dplyr::group_by(am) %>% dplyr::arrange(mpg) %>% dplyr::slice_head()

31

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Transforming and manipulating tibbles

32

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Renaming and reordering columns and values with rename, relocate and
recode

Columns in tibbles can be renamed with dplyr::rename and reordered with dplyr::relocate
samples %>% dplyr::rename(country = geo_loc_name) # rename a column
samples %>% dplyr::relocate(site_name, .before = project_name) # reorder columns

Values in columns can also be changed with dplyr::recode
samples$sample_host %>% dplyr::recode(`Homo sapiens` = "modern human")

R supports explicitly ordinal data with factors, which can be reordered as well
factors can be handeld more easily with the forcats package

ggplot(samples) + geom_bar(aes(x = community_type)) # bars are alphabetically ordered

sa2 <- samples
sa2$cto <- forcats::fct_reorder(sa2$community_type, sa2$community_type, length)
fct_reorder: reorder the input factor by a summary statistic on an other vector
ggplot(sa2) + geom_bar(aes(x = community_type)) # bars are ordered by size

33

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Adding columns to tibbles with mutate and transmute

A common application of data manipulation is adding derived columns. dplyr offers that with
mutate

samples %>%
dplyr::mutate(# add a column that

archive_summary = paste0(archive, ": ", archive_accession) # combines two other
) %$% archive_summary # columns

dplyr::transmute removes all columns but the newly created ones
samples %>%

dplyr::transmute(
sample_name = tolower(sample_name), # overwrite this columns
publication_doi # select this column

)

tibble::add_column behaves as dplyr::mutate, but gives more control over column position
samples %>% tibble::add_column(., id = 1:nrow(.), .before = "project_name")

34

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Conditional operations with ifelse and case_when

ifelse allows to implement conditional mutate operations, that consider information from other
columns, but that gets cumbersome easily

samples %>% dplyr::mutate(hemi = ifelse(latitude >= 0, "North", "South")) %$% hemi

samples %>% dplyr::mutate(
hemi = ifelse(is.na(latitude), "unknown", ifelse(latitude >= 0, "North", "South"))

) %$% hemi

dplyr::case_when is a much more readable solution for this application
samples %>% dplyr::mutate(

hemi = dplyr::case_when(
latitude >= 0 ~ "North",
latitude < 0 ~ "South",
TRUE ~ "unknown" # TRUE catches all remaining cases

)
) %$% hemi

35

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Long and wide data formats

For different applications or to simplify certain analysis or plotting operations data often has to be
transformed from a wide to a long format or vice versa

A table in wide format has N key columns and N value columns
A table in long format has N key columns, one descriptor column and one value column

36

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

A wide dataset

carsales <- tibble::tribble(
~brand, ~`2014`, ~`2015`, ~`2016`, ~`2017`,
"BMW", 20, 25, 30, 45,
"VW", 67, 40, 120, 55

)

A tibble: 2 x 5
brand `2014` `2015` `2016` `2017`
<chr> <dbl> <dbl> <dbl> <dbl>
1 BMW 20 25 30 45
2 VW 67 40 120 55

Wide format becomes a problem, when the columns are semantically identical. This dataset is in
wide format and we can not easily plot it
We generally prefer data in long format, although it is more verbose with more duplication. “Long”
format data is more “tidy”

37

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Making a wide dataset long with pivot_longer

carsales_long <- carsales %>% tidyr::pivot_longer(
cols = tidyselect::num_range("", range = 2014:2017), # set of columns to transform
names_to = "year", # the name of the descriptor column we want
names_transform = as.integer, # a transformation function to apply to the names
values_to = "sales" # the name of the value column we want

)

A tibble: 8 x 3
brand year sales
<chr> <int> <dbl>
1 BMW 2014 20
2 BMW 2015 25
3 BMW 2016 30
4 BMW 2017 45
5 VW 2014 67
6 VW 2015 40
7 VW 2016 120
8 VW 2017 55

38

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Making a long dataset wide with pivot_wider

carsales_wide <- carsales_long %>% tidyr::pivot_wider(
id_cols = "brand", # the set of id columns that should not be changed
names_from = year, # the descriptor column with the names of the new columns
values_from = sales # the value column from which the values should be extracted

)

A tibble: 2 x 5
brand `2014` `2015` `2016` `2017`
<chr> <dbl> <dbl> <dbl> <dbl>
1 BMW 20 25 30 45
2 VW 67 40 120 55

Applications of wide datasets are adjacency matrices to represent graphs, covariance matrices or
other pairwise statistics
When data gets big, then wide formats can be significantly more efficient (e.g. for spatial data)

39

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Exercise 3

1 Move the column gear to the first position of the mtcars dataset

2 Make a new dataset mtcars2 with the column mpg and an additional column am_v, which encodes
the transmission type (am) as either "manual" or "automatic"

3 Count the number of cars per transmission type (am_v) and number of gears (gear). Then
transform the result to a wide format, with one column per transmission type.

40

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Possible solutions 3

1 Move the column gear to the first position of the mtcars dataset
mtcars %>% dplyr::relocate(gear, .before = mpg)

2 Make a new dataset mtcars2 with the column gear and an additional column am_v, which encodes
the transmission type (am) as either "manual" or "automatic"

mtcars2 <- mtcars %>% dplyr::mutate(
gear, am_v = dplyr::case_when(am == 0 ~ "automatic", am == 1 ~ "manual")

)

3 Count the number of cars in mtcars2 per transmission type (am_v) and number of gears (gear).
Then transform the result to a wide format, with one column per transmission type.

mtcars2 %>% dplyr::group_by(am_v, gear) %>% dplyr::tally() %>%
tidyr::pivot_wider(names_from = am_v, values_from = n)

41

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Combining tibbles with join operations

42

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Types of joins

Joins combine two datasets x and y based on key columns

Mutating joins add columns from one dataset to the other
Left join: Take observations from x and add fitting information from y
Right join: Take observations from y and add fitting information from x
Inner join: Join the overlapping observations from x and y
Full join: Join all observations from x and y, even if information is missing

Filtering joins remove observations from x based on their presence in y
Semi join: Keep every observation in x that is in y
Anti join: Keep every observation in x that is not in y

43

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

A second dataset

libraries <- readr::read_tsv(library_table_url)
print(libraries, n = 3)

A tibble: 1,657 x 20
project_name publication_year data_publication_doi sample_name archive
<chr> <dbl> <chr> <chr> <chr>
1 Warinner2014 2014 10.1038/ng.2906 B61 SRA
2 Warinner2014 2014 10.1038/ng.2906 B61 SRA
3 Warinner2014 2014 10.1038/ng.2906 B61 SRA
... with 1,654 more rows, and 15 more variables: archive_project <chr>,
archive_sample_accession <chr>, library_name <chr>, strand_type <chr>,
library_polymerase <chr>, library_treatment <chr>,
library_concentration <dbl>, instrument_model <chr>, library_layout <chr>,
library_strategy <chr>, read_count <dbl>, archive_data_accession <chr>,
download_links <chr>, download_md5s <chr>, download_sizes <chr>

44

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Meaningful subsets
print(samsub, n = 3)

A tibble: 1,060 x 3
project_name sample_name sample_age
<chr> <chr> <dbl>
1 Warinner2014 B61 900
2 Warinner2014 G12 900
3 Weyrich2017 Chimp 100
... with 1,057 more rows
print(libsub, n = 3)

A tibble: 1,657 x 4
project_name sample_name library_name read_count
<chr> <chr> <chr> <dbl>
1 Warinner2014 B61 S1-Shot-B61-calc 13228381
2 Warinner2014 B61 S2-Shot-B61-calc 13260566
3 Warinner2014 B61 S3-Shot-B61-calc 8869866
... with 1,654 more rows

45

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Left join
Take observations from x and add fitting information from y

left <- dplyr::left_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name") # the key columns by which to join

)

A tibble: 1,881 x 5
project_name sample_name sample_age library_name read_count
<chr> <chr> <dbl> <chr> <dbl>
1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
... with 1,880 more rows

Left joins are the most common join operation: Add information from another dataset 46

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Right join
Take observations from y and add fitting information from x

right <- dplyr::right_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

A tibble: 1,820 x 5
project_name sample_name sample_age library_name read_count
<chr> <chr> <dbl> <chr> <dbl>
1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
... with 1,819 more rows

Right joins are almost identical to left joins – only x and y have reversed roles 47

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Inner join
Join the overlapping observations from x and y

inner <- dplyr::inner_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

A tibble: 1,787 x 5
project_name sample_name sample_age library_name read_count
<chr> <chr> <dbl> <chr> <dbl>
1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
... with 1,786 more rows

Inner joins are a fast and easy way to check, to which degree two dataset overlap 48

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Full join
Join all observations from x and y, even if information is missing

full <- dplyr::full_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

A tibble: 1,914 x 5
project_name sample_name sample_age library_name read_count
<chr> <chr> <dbl> <chr> <dbl>
1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
... with 1,913 more rows

Full joins allow to preserve every bit of information 49

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Semi join
Keep every observation in x that is in y

semi <- dplyr::semi_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

A tibble: 966 x 3
project_name sample_name sample_age
<chr> <chr> <dbl>
1 Warinner2014 B61 900
... with 965 more rows

Semi joins are underused operations to filter datasets 50

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Anti join
Keep every observation in x that is not in y

anti <- dplyr::anti_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

A tibble: 94 x 3
project_name sample_name sample_age
<chr> <chr> <dbl>
1 Willman2018 213 200
... with 93 more rows

Anti joins allow to quickly specify incomplete datasets and missing information 51

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Exercise 4

Consider the following additional dataset:
gear_opinions <- tibble::tibble(gear = c(3, 5), opinion = c("boring", "wow"))

1 Add my opinions about gears to the mtcars dataset

2 Remove all cars from the dataset for which I don’t have an opinion

52

SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Possible Solutions 4

1 Add my opinions about gears to the mtcars dataset
dplyr::left_join(mtcars, gear_opinions, by = "gear")

2 Remove all cars from the dataset for which I don’t have an opinion
dplyr::anti_join(mtcars, gear_opinions, by = "gear")

53

	A crash course on R for data analysis
	The working environment
	Loading data into tibbles
	Plotting data in tibbles
	Conditional queries on tibbles
	Transforming and manipulating tibbles
	Combining tibbles with join operations

