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Data recovery

Run the following script to recover the relevant section of your data directory

curl -s https://share.eva.mpg.de/index.php/s/dQJe7TKB8iBG6Wc/download | bash

If this does not work, please download the content of the following Git repository:
https://github.com/nevrome/spaam_r_tidyverse_intro_2h
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Getting started for this workshop

Activate the relevant conda environment (don’t forget to deactivate it later!)

conda activate r-python

Navigate to

/vol/volume/3b-1-introduction-to-r-and-the-tidyverse/spaam_r_tidyverse_intro_2h

Pull the latest changes in this Git repository

git pull

Open RStudio
Load the project with File > Open Project...
Open the file presentation.Rmd in RStudio
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A crash course on R for data analysis
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The working environment
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R, RStudio and the tidyverse

R is a fully featured programming language, but it excels as an environment for (statistical) data
analysis (https://www.r-project.org)

RStudio is an integrated development environment (IDE) for R (and other languages):
(https://www.rstudio.com/products/rstudio)

The tidyverse is a collection of R packages with well-designed and consistent interfaces for the main
steps of data analysis: loading, transforming and plotting data (https://www.tidyverse.org)

This introduction works with tidyverse ~v1.3.0
We will learn about readr, tibble, ggplot2, dplyr, magrittr and tidyr
forcats will be briefly mentioned
purrr and stringr are left out
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Loading data into tibbles
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Reading data with readr

With R we usually operate on data in our computer’s memory
The tidyverse provides the package readr to read data from text files into the memory
readr can read from our file system or the internet
It provides functions to read data in almost any (text) format:

readr::read_csv() # .csv files
readr::read_tsv() # .tsv files
readr::read_delim() # tabular files with an arbitrary separator
readr::read_fwf() # fixed width files
readr::read_lines() # read linewise to parse yourself

readr automatically detects column types – but you can also define them manually
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How does the interface of read_csv work?

We can learn more about a function with ?. To open a help file: ?readr::read_csv
readr::read_csv has many options to specify how to read a text file

read_csv(
file, # The path to the file we want to read
col_names = TRUE, # Are there column names?
col_types = NULL, # Which types do the columns have? NULL -> auto
locale = default_locale(), # How is information encoded in this file?
na = c("", "NA"), # Which values mean "no data"
trim_ws = TRUE, # Should superfluous white-spaces be removed?
skip = 0, # Skip X lines at the beginning of the file
n_max = Inf, # Only read X lines
skip_empty_rows = TRUE, # Should empty lines be ignored?
comment = "", # Should comment lines be ignored?
name_repair = "unique", # How should "broken" column names be fixed
...

)
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What does readr produce? The tibble!

samples <- readr::read_tsv(sample_table_url)

The tibble is a “data frame”, a tabular data structure with rows and columns
Unlike a simple array, each column can have another data type

print(samples, n = 3)

## # A tibble: 1,060 x 16
## project_name publication_year publication_doi site_name latitude longitude
## <chr> <dbl> <chr> <chr> <dbl> <dbl>
## 1 Warinner2014 2014 10.1038/ng.2906 Dalheim 51.6 8.84
## 2 Warinner2014 2014 10.1038/ng.2906 Dalheim 51.6 8.84
## 3 Weyrich2017 2017 10.1038/nature21674 Gola For~ 7.66 -10.8
## # ... with 1,057 more rows, and 10 more variables: geo_loc_name <chr>,
## # sample_name <chr>, sample_host <chr>, sample_age <dbl>,
## # sample_age_doi <chr>, community_type <chr>, material <chr>, archive <chr>,
## # archive_project <chr>, archive_accession <chr>
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How to look at a tibble?

samples # Typing the name of an object will print it to the console
str(samples) # A structural overview of an object
summary(samples) # A human-readable summary of an object
View(samples) # RStudio's interactive data browser

R provides a very flexible indexing operation for data.frames and tibbles
samples[1,1] # Access the first row and column
samples[1,] # Access the first row
samples[,1] # Access the first column
samples[c(1,2,3),c(2,3,4)] # Access values from rows and columns
samples[,-c(1,2)] # Remove the first two columns
samples[,c("site_name", "material")] # Columns can be selected by name

tibbles are mutable data structures, so their content can be overwritten
samples[1,1] <- "Cheesecake2015" # replace the first value in the first column
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Plotting data in tibbles
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ggplot2 and the “grammar of graphics”

ggplot2 offers an unusual, but powerful and logical interface
The following example describes a stacked bar chart

library(ggplot2) # Loading a library to use its functions without ::

ggplot( # Every plot starts with a call to the ggplot() function
data = samples # This function can also take the input tibble

) + # The plot consists of functions linked with +
geom_bar( # "geoms" define the plot layers we want to draw

mapping = aes( # The aes() function maps variables to visual properties
x = publication_year, # publication_year -> x-axis
fill = community_type # community_type -> fill color

)
)

geom_*: data + geometry (bars) + statistical transformation (sum)
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ggplot2 and the “grammar of graphics”

This is the plot described above: number of samples per community type through time
ggplot(samples) +
geom_bar(aes(x = publication_year, fill = community_type))
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ggplot2 features many geoms

RStudio shares helpful cheatsheets for the tidyverse and beyond:
https://www.rstudio.com/resources/cheatsheets 16
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scales control the behaviour of visual elements
Another plot: Boxplots of sample age through time

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age))
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scales control the behaviour of visual elements
We can change the scale of different visual elements - e.g. the y-axis

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age)) +
scale_y_log10()
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scales control the behaviour of visual elements
(Fill) color is a visual element of the plot and its scaling can be adjusted

ggplot(samples) +
geom_boxplot(aes(x = as.factor(publication_year), y = sample_age,

fill = as.factor(publication_year))) +
scale_y_log10() + scale_fill_viridis_d(option = "C")
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Defining plot matrices via facets
Splitting up the plot by categories into facets is another way to visualize more variables at once

ggplot(samples) +
geom_count(aes(x = as.factor(publication_year), y = material)) +
facet_wrap(~archive)
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Setting purely aesthetic settings with theme
Aesthetic changes like this can be applied as part of the theme

ggplot(samples) +
geom_count(aes(x = as.factor(publication_year), y = material)) +
facet_wrap(~archive) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
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Exercise 1

1 Look at the mtcars dataset and read up on the meaning of its variables

2 Visualize the relationship between Gross horsepower and 1/4 mile time

3 Integrate the Number of cylinders into your plot
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Possible solutions 1

1 Look at the mtcars dataset and read up on the meaning of its variables
?mtcars

2 Visualize the relationship between Gross horsepower and 1/4 mile time
ggplot(mtcars) + geom_point(aes(x = hp, y = qsec))

3 Integrate the Number of cylinders into your plot
ggplot(mtcars) + geom_point(aes(x = hp, y = qsec, color = as.factor(cyl)))
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Conditional queries on tibbles
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Selecting columns and filtering rows with select and filter

The dplyr package includes powerful functions to subset data in tibbles based on conditions
dplyr::select allows to select columns

dplyr::select(samples, project_name, sample_age) # reduce to two columns
dplyr::select(samples, -project_name, -sample_age) # remove two columns

dplyr::filter allows for conditional filtering of rows
dplyr::filter(samples, publication_year == 2014) # samples published in 2014
dplyr::filter(samples, publication_year == 2014 |

publication_year == 2018) # samples from 2015 OR 2018
dplyr::filter(samples, publication_year %in% c(2014, 2018)) # match operator: %in%
dplyr::filter(samples, sample_host == "Homo sapiens" &

community_type == "oral") # oral samples from modern humans
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Chaining functions together with the pipe %>%

The pipe %>% in the magrittr package is a clever infix operator to chain data and operations
library(magrittr)
samples %>% dplyr::filter(publication_year == 2014)

It forwards the LHS as the first argument of the function appearing on the RHS
That allows for sequences of functions (“tidyverse style”)

samples %>%
dplyr::select(sample_host, community_type) %>%
dplyr::filter(sample_host == "Homo sapiens" & community_type == "oral") %>%
nrow() # count the rows

magrittr also offers some more operators, among which the extraction %$% is particularly useful
samples %>%

dplyr::filter(material == "tooth") %$%
sample_age %>% # extract the sample_age column as a vector
max() # get the maximum of said vector
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Summary statistics in base R

Summarising and counting data is indispensable and R offers all operations you would expect in its
base package

nrow(samples) # number of rows in a tibble
length(samples$site_name) # length/size of a vector
unique(samples$material) # unique elements of a vector

min(samples$sample_age) # minimum
max(samples$sample_age) # maximum

mean(samples$sample_age) # mean
median(samples$sample_age) # median

var(samples$sample_age) # variance
sd(samples$sample_age) # standard deviation
quantile(samples$sample_age, probs = 0.75) # sample quantiles for the given probs

many of these functions can ignore missing values with an option na.rm = TRUE
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Group-wise summaries with group_by and summarise

These summary statistics are particular useful when applied to conditional subsets of a dataset
dplyr allows such summary operations with a combination of group_by and summarise

samples %>%
dplyr::group_by(material) %>% # group the tibble by the material column
dplyr::summarise(

min_age = min(sample_age), # a new column: min age for each group
median_age = median(sample_age), # a new column: median age for each group
max_age = max(sample_age) # a new column: max age for each group

)

grouping can be applied across multiple columns
samples %>%

dplyr::group_by(material, sample_host) %>% # group by material and host
dplyr::summarise(

n = dplyr::n(), # a new column: number of samples for each group
.groups = "drop" # drop the grouping after this summary operation

)
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Sorting and slicing tibbles with arrange and slice

dplyr allows to arrange tibbles by one or multiple columns
samples %>% dplyr::arrange(publication_year) # sort by publication year
samples %>% dplyr::arrange(publication_year,

sample_age) # ... and sample age
samples %>% dplyr::arrange(dplyr::desc(sample_age)) # sort descending on sample age

Sorting also works within groups and can be paired with slice to extract extreme values per group
samples %>%

dplyr::group_by(publication_year) %>% # group by publication year
dplyr::arrange(dplyr::desc(sample_age)) %>% # sort by age within (!) groups
dplyr::slice_head(n = 2) %>% # keep the first two samples per group
dplyr::ungroup() # remove the still lingering grouping

Slicing is also the relevant operation to take random samples from the observations in a tibble
samples %>% dplyr::slice_sample(n = 20)
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Exercise 2

1 Determine the number of cars with four forward gears (gear) in the mtcars dataset

2 Determine the mean 1/4 mile time (qsec) per Number of cylinders (cyl) group

3 Identify the least efficient cars for both transmission types (am)
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Possible solutions 2

1 Determine the number of cars with four forward gears (gear) in the mtcars dataset
mtcars %>% dplyr::filter(gear == 4) %>% nrow()

2 Determine the mean 1/4 mile time (qsec) per Number of cylinders (cyl) group
mtcars %>% dplyr::group_by(cyl) %>% dplyr::summarise(qsec_mean = mean(qsec))

3 Identify the least efficient cars for both transmission types (am)
#mtcars3 <- tibble::rownames_to_column(mtcars, var = "car") %>% tibble::as_tibble()
mtcars %>% dplyr::group_by(am) %>% dplyr::arrange(mpg) %>% dplyr::slice_head()
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Transforming and manipulating tibbles
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Renaming and reordering columns and values with rename, relocate and
recode

Columns in tibbles can be renamed with dplyr::rename and reordered with dplyr::relocate
samples %>% dplyr::rename(country = geo_loc_name) # rename a column
samples %>% dplyr::relocate(site_name, .before = project_name) # reorder columns

Values in columns can also be changed with dplyr::recode
samples$sample_host %>% dplyr::recode(`Homo sapiens` = "modern human")

R supports explicitly ordinal data with factors, which can be reordered as well
factors can be handeld more easily with the forcats package

ggplot(samples) + geom_bar(aes(x = community_type)) # bars are alphabetically ordered

sa2 <- samples
sa2$cto <- forcats::fct_reorder(sa2$community_type, sa2$community_type, length)
# fct_reorder: reorder the input factor by a summary statistic on an other vector
ggplot(sa2) + geom_bar(aes(x = community_type)) # bars are ordered by size
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Adding columns to tibbles with mutate and transmute

A common application of data manipulation is adding derived columns. dplyr offers that with
mutate

samples %>%
dplyr::mutate( # add a column that

archive_summary = paste0(archive, ": ", archive_accession) # combines two other
) %$% archive_summary # columns

dplyr::transmute removes all columns but the newly created ones
samples %>%

dplyr::transmute(
sample_name = tolower(sample_name), # overwrite this columns
publication_doi # select this column

)

tibble::add_column behaves as dplyr::mutate, but gives more control over column position
samples %>% tibble::add_column(., id = 1:nrow(.), .before = "project_name")
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Conditional operations with ifelse and case_when

ifelse allows to implement conditional mutate operations, that consider information from other
columns, but that gets cumbersome easily

samples %>% dplyr::mutate(hemi = ifelse(latitude >= 0, "North", "South")) %$% hemi

samples %>% dplyr::mutate(
hemi = ifelse(is.na(latitude), "unknown", ifelse(latitude >= 0, "North", "South"))

) %$% hemi

dplyr::case_when is a much more readable solution for this application
samples %>% dplyr::mutate(

hemi = dplyr::case_when(
latitude >= 0 ~ "North",
latitude < 0 ~ "South",
TRUE ~ "unknown" # TRUE catches all remaining cases

)
) %$% hemi
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Long and wide data formats

For different applications or to simplify certain analysis or plotting operations data often has to be
transformed from a wide to a long format or vice versa

A table in wide format has N key columns and N value columns
A table in long format has N key columns, one descriptor column and one value column
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A wide dataset

carsales <- tibble::tribble(
~brand, ~`2014`, ~`2015`, ~`2016`, ~`2017`,
"BMW", 20, 25, 30, 45,
"VW", 67, 40, 120, 55

)

## # A tibble: 2 x 5
## brand `2014` `2015` `2016` `2017`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 BMW 20 25 30 45
## 2 VW 67 40 120 55

Wide format becomes a problem, when the columns are semantically identical. This dataset is in
wide format and we can not easily plot it
We generally prefer data in long format, although it is more verbose with more duplication. “Long”
format data is more “tidy”
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Making a wide dataset long with pivot_longer

carsales_long <- carsales %>% tidyr::pivot_longer(
cols = tidyselect::num_range("", range = 2014:2017), # set of columns to transform
names_to = "year", # the name of the descriptor column we want
names_transform = as.integer, # a transformation function to apply to the names
values_to = "sales" # the name of the value column we want

)

## # A tibble: 8 x 3
## brand year sales
## <chr> <int> <dbl>
## 1 BMW 2014 20
## 2 BMW 2015 25
## 3 BMW 2016 30
## 4 BMW 2017 45
## 5 VW 2014 67
## 6 VW 2015 40
## 7 VW 2016 120
## 8 VW 2017 55

38



SPAAM Summer School: A crash course on R for data analysis | 2022 | Clemens Schmid | CC BY 4.0

Making a long dataset wide with pivot_wider

carsales_wide <- carsales_long %>% tidyr::pivot_wider(
id_cols = "brand", # the set of id columns that should not be changed
names_from = year, # the descriptor column with the names of the new columns
values_from = sales # the value column from which the values should be extracted

)

## # A tibble: 2 x 5
## brand `2014` `2015` `2016` `2017`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 BMW 20 25 30 45
## 2 VW 67 40 120 55

Applications of wide datasets are adjacency matrices to represent graphs, covariance matrices or
other pairwise statistics
When data gets big, then wide formats can be significantly more efficient (e.g. for spatial data)
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Exercise 3

1 Move the column gear to the first position of the mtcars dataset

2 Make a new dataset mtcars2 with the column mpg and an additional column am_v, which encodes
the transmission type (am) as either "manual" or "automatic"

3 Count the number of cars per transmission type (am_v) and number of gears (gear). Then
transform the result to a wide format, with one column per transmission type.
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Possible solutions 3

1 Move the column gear to the first position of the mtcars dataset
mtcars %>% dplyr::relocate(gear, .before = mpg)

2 Make a new dataset mtcars2 with the column gear and an additional column am_v, which encodes
the transmission type (am) as either "manual" or "automatic"

mtcars2 <- mtcars %>% dplyr::mutate(
gear, am_v = dplyr::case_when(am == 0 ~ "automatic", am == 1 ~ "manual")

)

3 Count the number of cars in mtcars2 per transmission type (am_v) and number of gears (gear).
Then transform the result to a wide format, with one column per transmission type.

mtcars2 %>% dplyr::group_by(am_v, gear) %>% dplyr::tally() %>%
tidyr::pivot_wider(names_from = am_v, values_from = n)
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Combining tibbles with join operations
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Types of joins

Joins combine two datasets x and y based on key columns

Mutating joins add columns from one dataset to the other
Left join: Take observations from x and add fitting information from y
Right join: Take observations from y and add fitting information from x
Inner join: Join the overlapping observations from x and y
Full join: Join all observations from x and y, even if information is missing

Filtering joins remove observations from x based on their presence in y
Semi join: Keep every observation in x that is in y
Anti join: Keep every observation in x that is not in y
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A second dataset

libraries <- readr::read_tsv(library_table_url)
print(libraries, n = 3)

## # A tibble: 1,657 x 20
## project_name publication_year data_publication_doi sample_name archive
## <chr> <dbl> <chr> <chr> <chr>
## 1 Warinner2014 2014 10.1038/ng.2906 B61 SRA
## 2 Warinner2014 2014 10.1038/ng.2906 B61 SRA
## 3 Warinner2014 2014 10.1038/ng.2906 B61 SRA
## # ... with 1,654 more rows, and 15 more variables: archive_project <chr>,
## # archive_sample_accession <chr>, library_name <chr>, strand_type <chr>,
## # library_polymerase <chr>, library_treatment <chr>,
## # library_concentration <dbl>, instrument_model <chr>, library_layout <chr>,
## # library_strategy <chr>, read_count <dbl>, archive_data_accession <chr>,
## # download_links <chr>, download_md5s <chr>, download_sizes <chr>
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Meaningful subsets
print(samsub, n = 3)

## # A tibble: 1,060 x 3
## project_name sample_name sample_age
## <chr> <chr> <dbl>
## 1 Warinner2014 B61 900
## 2 Warinner2014 G12 900
## 3 Weyrich2017 Chimp 100
## # ... with 1,057 more rows
print(libsub, n = 3)

## # A tibble: 1,657 x 4
## project_name sample_name library_name read_count
## <chr> <chr> <chr> <dbl>
## 1 Warinner2014 B61 S1-Shot-B61-calc 13228381
## 2 Warinner2014 B61 S2-Shot-B61-calc 13260566
## 3 Warinner2014 B61 S3-Shot-B61-calc 8869866
## # ... with 1,654 more rows
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Left join
Take observations from x and add fitting information from y

left <- dplyr::left_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name") # the key columns by which to join

)

## # A tibble: 1,881 x 5
## project_name sample_name sample_age library_name read_count
## <chr> <chr> <dbl> <chr> <dbl>
## 1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
## # ... with 1,880 more rows

Left joins are the most common join operation: Add information from another dataset 46
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Right join
Take observations from y and add fitting information from x

right <- dplyr::right_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

## # A tibble: 1,820 x 5
## project_name sample_name sample_age library_name read_count
## <chr> <chr> <dbl> <chr> <dbl>
## 1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
## # ... with 1,819 more rows

Right joins are almost identical to left joins – only x and y have reversed roles 47
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Inner join
Join the overlapping observations from x and y

inner <- dplyr::inner_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

## # A tibble: 1,787 x 5
## project_name sample_name sample_age library_name read_count
## <chr> <chr> <dbl> <chr> <dbl>
## 1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
## # ... with 1,786 more rows

Inner joins are a fast and easy way to check, to which degree two dataset overlap 48
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Full join
Join all observations from x and y, even if information is missing

full <- dplyr::full_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

## # A tibble: 1,914 x 5
## project_name sample_name sample_age library_name read_count
## <chr> <chr> <dbl> <chr> <dbl>
## 1 Warinner2014 B61 900 S1-Shot-B61-calc 13228381
## # ... with 1,913 more rows

Full joins allow to preserve every bit of information 49
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Semi join
Keep every observation in x that is in y

semi <- dplyr::semi_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

## # A tibble: 966 x 3
## project_name sample_name sample_age
## <chr> <chr> <dbl>
## 1 Warinner2014 B61 900
## # ... with 965 more rows

Semi joins are underused operations to filter datasets 50
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Anti join
Keep every observation in x that is not in y

anti <- dplyr::anti_join(
x = samsub, # 1060 observations
y = libsub, # 1657 observations
by = c("project_name", "sample_name")

)

## # A tibble: 94 x 3
## project_name sample_name sample_age
## <chr> <chr> <dbl>
## 1 Willman2018 213 200
## # ... with 93 more rows

Anti joins allow to quickly specify incomplete datasets and missing information 51
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Exercise 4

Consider the following additional dataset:
gear_opinions <- tibble::tibble(gear = c(3, 5), opinion = c("boring", "wow"))

1 Add my opinions about gears to the mtcars dataset

2 Remove all cars from the dataset for which I don’t have an opinion
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Possible Solutions 4

1 Add my opinions about gears to the mtcars dataset
dplyr::left_join(mtcars, gear_opinions, by = "gear")

2 Remove all cars from the dataset for which I don’t have an opinion
dplyr::anti_join(mtcars, gear_opinions, by = "gear")
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