
Boosted Bespoke

Bare Bones Bash

Brought By Blissfully Baffled Bioinformaticians

Thiseas C. Lamnidis

Aida Andrades Valtueña

This work is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Aims of this session

Aim:

Get more familiar with text modification with bash

Aims of this session

Aim:

Get more familiar with text modification with bash

Objectives:

How to find stuff?
Concept: for loop for and while loops?
Regular expressions (aka "Regex")
How to write a conditional statement (if/else)
Simple text modification with sed (i.e. witchcraft)
How to write a simple bash script

Aims of this session

Aim:

Get more familiar with text modification with bash

Objectives:

How to find stuff?
Concept: for loop for and while loops?
Regular expressions (aka "Regex")
How to write a conditional statement (if/else)
Simple text modification with sed (i.e. witchcraft)
How to write a simple bash script

Aims of this session

Aim:

Get more familiar with text modification with bash

Objectives:

How to find stuff?
Concept: for loop for and while loops?
Regular expressions (aka "Regex")
How to write a conditional statement (if/else)
Simple text modification with sed (i.e. witchcraft)
How to write a simple bash script

Preparation!

Preparation

You should have a folder and a metadata file from Session 1:

$ cd ~/BareBonesBash

Boosted-BBB-meta: what does this file contain?

Preparation

You should have a folder and a metadata file from Session 1:

$ cd ~/BareBonesBash

Boosted-BBB-meta: what does this file contain?

It contains metadata that will be use to sort the images in a nice structure in our
messy folder

Preparation

You should have a folder and a metadata file from Session 1:

$ cd ~/BareBonesBash

Boosted-BBB-meta: what does this file contain?

It contains metadata that will be use to sort the images in a nice structure in our
messy folder

Let's download the messy folder from our collaborator:

$ wget git.io/Boosted-BBB-images -O Boosted-BBB.zip

Preparation

You should have a folder and a metadata file from Session 1:

$ cd ~/BareBonesBash

Boosted-BBB-meta: what does this file contain?

It contains metadata that will be use to sort the images in a nice structure in our
messy folder

Let's download the messy folder from our collaborator:

$ wget git.io/Boosted-BBB-images -O Boosted-BBB.zip

Since it is a zip file we need to unzip it, which command should we use?

Preparation

You should have a folder and a metadata file from Session 1:

$ cd ~/BareBonesBash

Boosted-BBB-meta: what does this file contain?

It contains metadata that will be use to sort the images in a nice structure in our
messy folder

Let's download the messy folder from our collaborator:

$ wget git.io/Boosted-BBB-images -O Boosted-BBB.zip

Since it is a zip file we need to unzip it, which command should we use?

$ unzip Boosted-BBB.zip

Make sure to cd back to ~/BareBonesBash now!

Outline

Where is my stuff??
Concept: for loops
How to rename stuff
Concept: Regular expressions
While loop: to infinity and beyond!
Conditionals: IF/ELSE
Modifying files: SED, PASTE

Where is my stuff??

$ find # Don't run yet!

How can you search for files and directories hidden in layers and layers
(of your
very organised 😉) directories?

Where is my stuff??

$ find Boosted-BBB/ # Don't run yet!

First part of the find command: the place to look from

e.g. . to indicate 'here'

Where is my stuff??

$ find Boosted-BBB/ # Don't run yet!

First part of the find command: the place to look from

e.g. . to indicate 'here'
Could also use ~/

Where is my stuff??

$ find Boosted-BBB/ # Don't run yet!

First part of the find command: the place to look from

e.g. . to indicate 'here'
Could also use ~/
Could use absolute path e.g. /home/aida/

Question What is the difference between Boosted-BBB/ and /home/aida/Boosted-
BBB/?

Where is my stuff??

$ find Boosted-BBB/ -type f # Don't run yet!

First part of the find command: the place to look from

e.g. . to indicate 'here'
Could also use ~/
Could use absolute path e.g. /home/james/

Second part of the find command: what type of things to look for?

Use -type to define the filetype:
file
directory

Where is my stuff??

$ find Boosted-BBB/ -type f -name # Don't run yet!

First part of the find command: the place to look from

e.g. . to indicate 'here'
Could also use ~/
Could use absolute path e.g. /home/james/

Second part of the find command: what type of things to look for?

Use -type to define the filetype:
file
directory

Third part of the find command: what to look in?

Use -name to say 'look in names of things'

Where is my stuff??

$ find Boosted-BBB/ -type f -name '*JPG*' # Now GO!

First part of the find command: the place to look from

e.g. . to indicate 'here'
Could also use ~/
Could use absolute path e.g. /home/james/

Second part of the find command: what type of things to look for?

Use -type to define the filetype:
file
directory

Third part of the find command: what to look in?

Use -name to say 'look in names of things'

Finally after -name we give the the 'strings' to search for

Use wildcards (*) for maximum laziness!

Where is my stuff??

We are looking for all files with the suffix JPG.

Let's first set the suffix we want to a variable, so we can easily change it in the
future.

$ suffix="JPG"

Where is my stuff??

We are looking for all files with the suffix JPG.

Let's first set the suffix we want to a variable, so we can easily change it in the
future.

$ suffix="JPG"

We can now call on this variable in our search. Try the following command:

$ find Boosted-BBB/ -type f -name '*$suffix*'

Where is my stuff??

We are looking for all files with the suffix JPG.

Let's first set the suffix we want to a variable, so we can easily change it in the
future.

$ suffix="JPG"

We can now call on this variable in our search. Try the following command:

$ find Boosted-BBB/ -type f -name '*$suffix*'

That found no files!! Our original find command confirms that these files exist!

Now look at the command below:

$ find Boosted-BBB/ -type f -name "*$suffix*"

What has changed here? Run the second command.

Where is my stuff??

We are looking for all files with the suffix JPG.

Let's first set the suffix we want to a variable, so we can easily change it in the
future.

$ suffix="JPG"

We can now call on this variable in our search. Try the following command:

$ find Boosted-BBB/ -type f -name '*$suffix*'

That found no files!! Our original find command confirms that these files exist!

Now look at the command below:

$ find Boosted-BBB/ -type f -name "*$suffix*"

What has changed here? Run the second command.

Where is my stuff??

We are looking for all files with the suffix JPG.

Let's first set the suffix we want to a variable, so we can easily change it in the
future.

$ suffix="JPG"

We can now call on this variable in our search. Try the following command:

$ find Boosted-BBB/ -type f -name '*$suffix*'

That found no files!! Our original find command confirms that these files exist!

Cleaning up the filenames

It seems that wherever the files are from have completely mangled the file names
(.JPG.MP3.TXT... WHAT?!)

Lets clean up the filenames, and then we can sort the files into categories.

Cleaning up the filenames

It seems that wherever the files are from have completely mangled the file names
(.JPG.MP3.TXT... WHAT?!)

Lets clean up the filenames, and then we can sort the files into categories.

We will need to repeat the clean up for each of the file names...

Cleaning up the filenames

It seems that wherever the files are from have completely mangled the file names
(.JPG.MP3.TXT... WHAT?!)

Lets clean up the filenames, and then we can sort the files into categories.

We will need to repeat the clean up for each of the file names...

So, How do I repeat a command multiple times on a list of things?

Concept: for loops

for loops allow us to go through a list of things and perform some actions.
Let's see an example:

Concept: for loops

for loops allow us to go through a list of things and perform some actions.
Let's see an example:

$ Variable=Yes
$ for i in Greece Spain Britain; do
> echo "Does $i have lovely food? $Variable"
> done

Concept: for loops

for loops allow us to go through a list of things and perform some actions.
Let's see an example:

$ Variable=Yes
$ for i in Greece Spain Britain; do
> echo "Does $i have lovely food? $Variable"
> done

Does Greece have lovely food? Yes
Does Spain have lovely food? Yes
Does Britain have lovely food? Yes

Concept: for loops

for loops allow us to go through a list of things and perform some actions.
Let's see an example:

$ Variable=Yes
$ for i in Greece Spain Britain; do
> echo "Does $i have lovely food? $Variable"
> done

Does Greece have lovely food? Yes
Does Spain have lovely food? Yes
Does Britain have lovely food? Yes

The for loop went through the list Greece Spain Britain and printed a statement
with each item in the list

Concept: for loops

for loops allow us to go through a list of things and perform some actions.
Let's see an example:

$ Variable=Yes
$ for i in Greece Spain Britain; do
> echo "Does $i have lovely food? $Variable"
> done

Does Greece have lovely food? Yes
Does Spain have lovely food? Yes
Does Britain have lovely food? Yes

The for loop went through the list Greece Spain Britain and printed a statement
with each item in the list

Let's clean up the file names with a for loop!

Cleaning up the filenames

But how should we remove the weird endings???

Cleaning up the filenames

But how should we remove the weird endings???

We first show an example that uses cut and rev.

Any guesses what these commands might do?

Cleaning up the filenames

But how should we remove the weird endings???

We first show an example that uses cut and rev.

Any guesses what these commands might do?

rev: reverses a character string
cut: cuts a string into multiple pieces

Cleaning up filenames

Let's try this out!

$ echo "aBcDeF 654321" | rev

123456 FeDcBa

Cleaning up filenames

Let's try this out!

$ echo "aBcDeF 654321" | rev

123456 FeDcBa

cut needs some arguments.

-d specifies the field delimiter we are using. Here it is space (" ").
-f specifies which field we wish to cut out (the second one).

$ echo "aBcDeF 654321" | cut -d " " -f 2

654321

Cleaning up filenames

Using these tools, we can start cleaning up the desired filenames like this:

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> #mv $file $new_name
> done

Use echo to make a 'dry-run', and when you're happy with the proposed output
uncomment the mv command and re-run the for loop.

Cleaning up filenames

Using these tools, we can start cleaning up the desired filenames like this:

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> #mv $file $new_name
> done

Use echo to make a 'dry-run', and when you're happy with the proposed output
uncomment the mv command and re-run the for loop.

BUT WAIT! This code is cumbersome to write, read and understand.

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

We start out with a filepath:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3.TXT

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

We start out with a filepath:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3.TXT

We reverse the filename:

TXT.3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

We start out with a filepath:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3.TXT

We reverse the filename:

TXT.3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

We cut the string at each -delimiter (.), and keep everything after the first delimiter (-fields 2-
999):

 3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

We start out with a filepath:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3.TXT

We reverse the filename:

TXT.3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

We cut the string at each -delimiter (.), and keep everything after the first delimiter (-fields 2-
999):

 3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

We reverse what is left back to its original orientation:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3

Wait, what just happened?

$() tells bash to run the commands within parentheses and interpret the output as
a string, which is then assigned to the variable new_name

We start out with a filepath:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3.TXT

We reverse the filename:

TXT.3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

We cut the string at each -delimiter (.), and keep everything after the first delimiter (-fields 2-
999):

 3PM.GPJ.atnaf/wol/era/sthgil/eht/dna/thgin/yadirF/BBB-detsooB

We reverse what is left back to its original orientation:

Boosted-BBB/Friday/night/and/the/lights/are/low/fanta.JPG.MP3

We then rename the file to the new filename with mv.

Writing pretty code

It is a good idea to avoid clunky code like what you just saw.

How to make this code simpler? Do not run this code!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

Writing pretty code

It is a good idea to avoid clunky code like what you just saw.

How to make this code simpler? Do not run this code!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

We can make it shorter and better with parameter expansion (the magic).

Writing pretty code

It is a good idea to avoid clunky code like what you just saw.

How to make this code simpler? Do not run this code!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

We can make it shorter and better with parameter expansion (the magic).

Writing pretty code

We can now rewrite this code. DO NOT RUN THIS CODE!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

Writing pretty code

We can now rewrite this code. DO NOT RUN THIS CODE!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

To this:

$ for file in $(find Boosted-BBB/ -type f -name "*JPG*"); do
> echo ${file} ${file%.*}
> # mv ${file} ${file%.*}
> done

Try dry-running both and check the result is the same! Is there a difference in
runtime?

Result: 0.051s versus 0.003s when running echo!

Writing pretty code

We can now rewrite this code. DO NOT RUN THIS CODE!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

To this:

$ for file in $(find Boosted-BBB/ -type f -name "*JPG*"); do
> echo ${file} ${file%.*}
> # mv ${file} ${file%.*}
> done

Try dry-running both and check the result is the same! Is there a difference in
runtime?

Result: 0.051s versus 0.003s when running echo!

Writing pretty code

We can now rewrite this code. DO NOT RUN THIS CODE!

$ for file in $(find Boosted-BBB/ -type f -name "*$suffix*"); do
> new_name=$(echo $file | rev | cut -d "." -f 2-999 | rev)
> echo $file $new_name
> # mv $file $new_name
> done

To this:

$ for file in $(find Boosted-BBB/ -type f -name "*JPG*"); do
> echo ${file} ${file%.*}
> # mv ${file} ${file%.*}
> done

Try dry-running both and check the result is the same! Is there a difference in
runtime?

When sure it works, remove the comment in the 2nd
d bl k !

Almost done!

We now have all the files named similarly, but some things are still a bit off. The
file suffix JPG is conventionally written in lowercase characters (jpg).

Let's change all filename suffixes to be in lowercase letters!

Almost done!

We now have all the files named similarly, but some things are still a bit off. The
file suffix JPG is conventionally written in lowercase characters (jpg).

Let's change all filename suffixes to be in lowercase letters!

Can be done with parameter expansion, but we can use regular expressions to do
this without a for loop.

Almost done!

We now have all the files named similarly, but some things are still a bit off. The
file suffix JPG is conventionally written in lowercase characters (jpg).

Let's change all filename suffixes to be in lowercase letters!

Can be done with parameter expansion, but we can use regular expressions to do
this without a for loop.

Regex is an important concept. You will find them in most programming
languages.

Syntax can vary from language to language, but here's how they work in
bash.

Concept: Regular

expressions

Special strings and characters that define a 'search pattern'
Used in 'Search' or 'Search/Replace' functions e.g. in excel!
You have already used them!

Concept: Regular

expressions

Special strings and characters that define a 'search pattern'
Used in 'Search' or 'Search/Replace' functions e.g. in excel!
You have already used them!

To prepare, download the following file

$ wget git.io/Boosted-BBB-regex
$ mv Boosted-BBB-regex regex.txt

Concept: Regular

expressions

Special strings and characters that define a 'search pattern'
Used in 'Search' or 'Search/Replace' functions e.g. in excel!
You have already used them!

To prepare, download the following file

$ wget git.io/Boosted-BBB-regex
$ mv Boosted-BBB-regex regex.txt

Let's also look at the contents.

$ cat regex.txt

Three regex special character 'categories'

Regex Basics

Three regex special character 'categories'

., *, ^, $ (etc.): special characters that are
translated to regex function first ('escaped' with \
to find the literal symbol)

Regex Basics

Three regex special character 'categories'

., *, ^, $ (etc.): special characters that are
translated to regex function first ('escaped' with \
to find the literal symbol)

\t, \w, \D (etc.): letter-based special characters
that must have \ to be 'translated'

Regex Basics

Three regex special character 'categories'

., *, ^, $ (etc.): special characters that are
translated to regex function first ('escaped' with \
to find the literal symbol)

\t, \w, \D (etc.): letter-based special characters
that must have \ to be 'translated'

[], (), (etc.): range, grouping, or 'capturing'
matching regex within brackets

Regex Basics

Three regex special character 'categories'

., *, ^, $ (etc.): special characters that are
translated to regex function first ('escaped' with \
to find the literal symbol)

\t, \w, \D (etc.): letter-based special characters
that must have \ to be 'translated'

[], (), (etc.): range, grouping, or 'capturing'
matching regex within brackets

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep '.ear' regex.txt

Finds strings containing: any character + ear

. : match any character

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'p[iea]r' regex.txt

String starting with p+ one of i or e or a +r

. : match any character
[]: match range of characters within []

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'p[^iea]r' regex.txt

String starting with p+ any character except i, e
or a+r

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'be*r' regex.txt

String that starts with b+ zero or multiple 'e' +r

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'be*r' regex.txt

String 'be*r'

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items
\: do not interpret next character

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'be\+r' regex.txt

String starting with b+ one or multiple 'e'+r

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items
\: do not interpret next character
\+: match 1 or more of the preceding items

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'be\?r' regex.txt

String starting with b+ zero or one 'e'+r

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items
\: do not interpret next character
\+: match 1 or more of the preceding items
\?: match 0 or 1 of the preceding items

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep '^[rb]\+' regex.txt

Lines starting with one or multiple of: r or b

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items
\: do not interpret next character
\+: match 1 or more of the preceding items
\?: match 0 or 1 of the preceding items
^: the beginning of the line

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

$ grep 'r$' regex.txt

Lines ending with r

. : match any character
[]: match range of characters within []
[^]: match range of characters except the ones in
the bracket
*: match 0 or more of the preceding items
\: do not interpret next character
\+: match 1 or more of the preceding items
\?: match 0 or 1 of the preceding items
^: the beginning of the line
$: the end of the line

This can be intimidating, however there are lots
of resources on the internet
(reminder: Google
everything!) to help, such as:
https://regex101.com/.
Note that regex's can be
slightly different per shell and language!

pear
pier
pir
per
par
pur
bear
beer
br
ber
be*r
rear

Regex Basics

https://regex101.com/

Regex example

fanta.JPG
BydgoszczForest.JPG
snore.JPG
Bubobubo.JPG
giacomo.JPG
netsukeJapan.JPG
nomnom.JPG
pompeii.JPG
AlopochenaegyptiacaArnhem.JPG
exhibitRoyal.JPG
stretch.JPG
weimanarer.JPG
excited.JPG
licorne.JPG
angry.JPG

Which Regex would you use to find all the files ending with .JPG??

Regex example

fanta.JPG
BydgoszczForest.JPG
snore.JPG
Bubobubo.JPG
giacomo.JPG
netsukeJapan.JPG
nomnom.JPG
pompeii.JPG
AlopochenaegyptiacaArnhem.JPG
exhibitRoyal.JPG
stretch.JPG
weimanarer.JPG
excited.JPG
licorne.JPG
angry.JPG

Which Regex would you use to find all the files ending with .JPG??

$ find Boosted-BBB/ -type f -name '*.JPG'

rename
rename lets you apply a regex to the name of files to rename them.

To convert all suffixes in the directory to lowercase characters:

$ find Boosted-BBB/ -type f -name '*.JPG' | rename 's/\.JPG$/.jpg/'

Check with find whether the names are now as you expect!

No for loop needed (yay for pipes!)!

The expression given to rename has
three parts, separated by /

rename
rename lets you apply a regex to the name of files to rename them.

To convert all suffixes in the directory to lowercase characters:

$ find Boosted-BBB/ -type f -name '*.JPG' | rename 's/\.JPG$/.jpg/'

Check with find whether the names are now as you expect!

First, we define we want to substitute the regex matches for another string

No for loop needed (yay for pipes!)!

The expression given to rename has
three parts, separated by /

rename
rename lets you apply a regex to the name of files to rename them.

To convert all suffixes in the directory to lowercase characters:

$ find Boosted-BBB/ -type f -name '*.JPG' | rename 's/\.JPG$/.jpg/'

Check with find whether the names are now as you expect!

First, we define we want to substitute the regex matches for another string

Second, we define the regex to query. \.JPG$

No for loop needed (yay for pipes!)!

The expression given to rename has
three parts, separated by /

rename
rename lets you apply a regex to the name of files to rename them.

To convert all suffixes in the directory to lowercase characters:

$ find Boosted-BBB/ -type f -name '*.JPG' | rename 's/\.JPG$/.jpg/'

Check with find whether the names are now as you expect!

First, we define we want to substitute the regex matches for another string

Second, we define the regex to query. \.JPG$

Remember: to escape a character (so read as an actual character, not as a
regex), use \ before it

Finally, we specify what we want to substitute matches with, which is .jpg

Onwards!

Ok, so we can now use find to see all the new and pretty filepaths:

$ suffix="jpg"
$ find Boosted-BBB/ -type f -name "*${suffix}"

Onwards!

Ok, so we can now use find to see all the new and pretty filepaths:

$ suffix="jpg"
$ find Boosted-BBB/ -type f -name "*${suffix}"

We can finally start sorting the pictures into categories!

To do that, we need to keep track of all the file names. We can easily gather this
information using a redirect!

Let's redirect!

We can get a list of all the file names by redirecting the stdout of the find
command.

$ suffix="jpg"
$ find Boosted-BBB/ -type f -name "*${suffix}" > File_names.txt

Let's redirect!

We can get a list of all the file names by redirecting the stdout of the find
command.

$ suffix="jpg"
$ find Boosted-BBB/ -type f -name "*${suffix}" > File_names.txt

This time, nothing was printed on your screen, because you redirected that output
into a file.

You can cat the resulting file to see that everything worked.

Getting parts of a filepath

Before moving on, there are two useful commands you should know.

basename will tell you the file name, while stripping the path to the file.

$ basename Boosted-BBB//Having/the/time/of/your/life/bubobubo.JPG.MP3.TXT

bubobubo.JPG.MP3.TXT

Getting parts of a filepath

Before moving on, there are two useful commands you should know.

basename will tell you the file name, while stripping the path to the file.

$ basename Boosted-BBB//Having/the/time/of/your/life/bubobubo.JPG.MP3.TXT

bubobubo.JPG.MP3.TXT

dirname does the opposite. It will tell you the path to the directory that a file is in,
while omitting the name of the file.

$ dirname Boosted-BBB//Having/the/time/of/your/life/bubobubo.JPG.MP3.TXT

Boosted-BBB//Having/the/time/of/your/life

Reading from a file

Ok, so you now have a file with all the paths to the images we need. But the folder
structure is still a mess. It's time to read the contents of the file with a while loop!

Reading from a file

Ok, so you now have a file with all the paths to the images we need. But the folder
structure is still a mess. It's time to read the contents of the file with a while loop!

A while loop is a special type of repeating code that keeps going until it is
interrupted.

Reading from a file

Ok, so you now have a file with all the paths to the images we need. But the folder
structure is still a mess. It's time to read the contents of the file with a while loop!

A while loop is a special type of repeating code that keeps going until it is
interrupted.

We will also use read. This command takes the contents of the file and loads them
into a specified variable.

Reading from a file

Ok, so you now have a file with all the paths to the images we need. But the folder
structure is still a mess. It's time to read the contents of the file with a while loop!

A while loop is a special type of repeating code that keeps going until it is
interrupted.

We will also use read. This command takes the contents of the file and loads them
into a specified variable.

$ mkdir images
$ while read filepath; do
> echo "${filepath}" images/$(basename ${filepath})
> # mv ${filepath} images/$(basename ${filepath})
> done < File_names.txt

When you're ready, uncomment the mv command to move each file from the
original location into the new location!

Question: in this context, why do you have to use 'basename' for the target
directory?

Concept: While Loops

We have previously seen the concept of for loop:

$ for file in file1 file2 file3 file4; do
> echo "${file}"
> done

For loops repeat a set of code for a set of items, by changing the value of a
variable in each iteration.

Concept: While Loops

For loops are finite, they go through your list and stop when they run out of things.

Concept: While Loops

For loops are finite, they go through your list and stop when they run out of things.

Instead, a while loop keeps going until a statement is false.

$ while [statement]; do #means while statement is true do
> [whatever you want to do]
> done

Concept: While Loops

For loops are finite, they go through your list and stop when they run out of things.

Instead, a while loop keeps going until a statement is false.

$ while [statement]; do #means while statement is true do
> [whatever you want to do]
> done

An easy pseudocode example:

$ n=3
$ while n > 0; do
> echo $n
> n=$n - 1
> done

3
2
1

Concept: While Loops

For loops are finite, they go through your list and stop when they run out of things.

Instead, a while loop keeps going until a statement is false.

$ while [statement]; do #means while statement is true do
> [whatever you want to do]
> done

An easy pseudocode example:

$ n=3
$ while n < 5; do
> echo $n
> n=$n - 1
> done

Concept: While Loops

Didn't you say while loop are infinite? Pseudocode:

$ n=3
$ while n < 5; do
> echo $n
> n=$n - 1
> done

Always include a stop!
i.e. ensure your condition will
eventually become 'false'!

Emergencies: Ctrl + C (cancel the
loop)

Concept: While Loops

Didn't you say while loop are infinite? Pseudocode:

$ n=3
$ while n < 5; do
> echo $n
> n=$n - 1
> done

Always include a stop!
i.e. ensure your condition will
eventually become 'false'!

Emergencies: Ctrl + C (cancel the
loop)

Following our example from the beginning...

$ while read filepath; do
> echo "${filepath}" images/$(basename ${filepath})
> # mv ${filepath} images/$(basename ${filepath})
> done < File names txt

...the condition read filepath
becomes false when there
are no more lines in the file
File_names.txt (i.e. 'EOF')

Concept: While Loops

Didn't you say while loop are infinite? Pseudocode:

Pasting things side by side!

As you remember from the beginning, we downloaded a metadata file, which
includes different metadata categories for each file.

Lets look in the file!

$ cat Boosted-BBB-meta.tsv

Pasting things side by side!

As you remember from the beginning, we downloaded a metadata file, which
includes different metadata categories for each file.

Lets look in the file!

$ cat Boosted-BBB-meta.tsv

Now we can put together a list that states which category each image is part of.

Pasting things side by side!

As you remember from the beginning, we downloaded a metadata file, which
includes different metadata categories for each file.

Lets look in the file!

$ cat Boosted-BBB-meta.tsv

Now we can put together a list that states which category each image is part of.

You can use paste to paste the two lists together, and save the results!

$ ls -1 images/* | paste - Boosted-BBB-meta.tsv # > Annotations.txt

Pasting things side by side!

As you remember from the beginning, we downloaded a metadata file, which
includes different metadata categories for each file.

Lets look in the file!

$ cat Boosted-BBB-meta.tsv

Now we can put together a list that states which category each image is part of.

You can use paste to paste the two lists together, and save the results!

$ ls -1 images/* | paste - Boosted-BBB-meta.tsv # > Annotations.txt

images/alopochenaegyptiacaArnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B Artwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer A Normal

Disclaimer: literally pastes columns, no matching done. Only works if both
columns are in the corresponding order

Editing text with sed
To share these images with your internet friends, you need to properly specify the
category names.

Let's add the actual category names to the Annotations.txt.

Editing text with sed
To share these images with your internet friends, you need to properly specify the
category names.

Let's add the actual category names to the Annotations.txt.

You can use sed, short for stream editor, with a regex to edit the contents of a
datastream on-the-fly.

$ sed 's/A/dog/' Annotations.txt

images/alopochenaegyptiacadogrnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B dogrtwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer dog Normal

Uh-oh!

Editing text with sed
To share these images with your internet friends, you need to properly specify the
category names.

Let's add the actual category names to the Annotations.txt.

You can use sed, short for stream editor, with a regex to edit the contents of a
datastream on-the-fly.

$ sed 's/A/dog/' Annotations.txt

images/alopochenaegyptiacadogrnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B dogrtwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer dog Normal

Uh-oh!

Editing text with sed
To share these images with your internet friends, you need to properly specify the
category names.

Let's add the actual category names to the Annotations.txt.

You can use sed, short for stream editor, with a regex to edit the contents of a
datastream on-the-fly.

$ sed 's/A/dog/' Annotations.txt

Editing text with sed
$ sed 's/\tA\t/\tdog\t/' Annotations.txt

images/alopochenaegyptiacaArnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B Artwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer dog Normal

On Macs, sed does not recognise \t.You will need to type in a tab character.

Editing text with sed
$ sed 's/\tA\t/\tdog\t/' Annotations.txt

images/alopochenaegyptiacaArnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B Artwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer dog Normal

On Macs, sed does not recognise \t.You will need to type in a tab character.

Use -e to provide multiple regular expressions to sed.

$ sed -e 's/\tA\t/\tdog\t/' -e 's/\tB\t/\tcat\t/' -e 's/\tC\t/\tbird\t/' Annotations.txt

Editing text with sed
$ sed 's/\tA\t/\tdog\t/' Annotations.txt

images/alopochenaegyptiacaArnhem.jpg alopochenaegyptiacaArnhem C Funny
images/angry.jpg angry B Artwork
images/bubobubo.jpg bubobubo C Normal
...
images/snore.jpg snore B Normal
images/stretch.jpg stretch B Funny
images/weimanarer.jpg weimanarer dog Normal

On Macs, sed does not recognise \t.You will need to type in a tab character.

Use -e to provide multiple regular expressions to sed.

$ sed -e 's/\tA\t/\tdog\t/' -e 's/\tB\t/\tcat\t/' -e 's/\tC\t/\tbird\t/' Annotations.txt

When you are happy with the results, it is time to save the edits.

sed can edit a file in place, with the -i option.

$ sed -i -e 's/\tA\t/\tdog\t/' -e 's/\tB\t/\tcat\t/' -e 's/\tC\t/\tbird\t/' Annotations.txt

Lets actually organise our
into descriptive folders
based our metadata file!

For this, we need to use
conditionals. This is a
comparison of two things,
and if they are the same
something happens, if
different, something else
happens.

The most basic conditional
is an if else statement.

Cleanin' up my closet

Lets actually organise our
into descriptive folders
based our metadata file!

For this, we need to use
conditionals. This is a
comparison of two things,
and if they are the same
something happens, if
different, something else
happens.

The most basic conditional
is an if else statement.

The basic syntax is like this

$ if [[${my_variable} == "banana"]]; then
> echo "Monkey takes a banana and runs away happy."
> else
> echo "Monkey doesn't want that."
> fi

You can have sequential conditions too with elif, short
for else if.

$ if [[${my_variable} == "banana"]]; then
> echo "Monkey takes a banana and runs away happy."
> elif [[${my_variable} == "mango"]]; then
> echo "Monkey takes a mango and eats it while staring at you."
> else
> echo "Monkey doesn't want that."
> fi

Cleanin' up my closet

Conditions of conditionals

[[behaves different to [. Usually, [[is what you want. [Long story, trust us.]

Conditions of conditionals

[[behaves different to [. Usually, [[is what you want. [Long story, trust us.]

You can evaluate mathematical equations with ((

$ if ((5 - 2 == 3)); then
> echo "YES"
> fi

YES

Conditions of conditionals

[[behaves different to [. Usually, [[is what you want. [Long story, trust us.]

You can evaluate mathematical equations with ((

Conditions of conditionals

[[behaves different to [. Usually, [[is what you want. [Long story, trust us.]

You can evaluate mathematical equations with ((

! can be used as a "not".

$ if ((5 - 2 == 3)); then
> echo "YES"
> fi

YES

$ if ! ((5 - 2 == 3)); then
> echo "YES"
> else
> echo "NO"
> fi

NO

Conditions of conditionals

[[behaves different to [. Usually, [[is what you want. [Long story, trust us.]

You can evaluate mathematical equations with ((

! can be used as a "not".

Conditions of conditionals

Some options can be used to check if files exist, or is a variable has non-zero
length.

Conditions of conditionals

Some options can be used to check if files exist, or is a variable has non-zero
length.

$ if [[-f Annotations.txt]]; then
> echo "File exists."
> fi

$ if [[-n ${banana}]]; then
> echo "Variable is set."
> else
> echo "Variable is NOT set."
> fi

File exists.
Variable is NOT set.

Conditions of conditionals

You can even combine multiple conditionals
&&: 'AND' - both must evaluate true
||: 'OR' - at least one must evaluate true

Conditions of conditionals

You can even combine multiple conditionals
&&: 'AND' - both must evaluate true
||: 'OR' - at least one must evaluate true

$ LifeUniverseEverything=42
$ hitchhikers="awesome"
AND
$ if [[${LifeUniverseEverything} == 42 && ${hitchhikers} == "awesome"]]; then
> echo "Don't panic!"
> fi

Play around with the variables
to get a feel!

Conditions of conditionals

You can even combine multiple conditionals
&&: 'AND' - both must evaluate true
||: 'OR' - at least one must evaluate true

$ LifeUniverseEverything=42
$ hitchhikers="awesome"
AND
$ if [[${LifeUniverseEverything} == 42 && ${hitchhikers} == "awesome"]]; then
> echo "Don't panic!"
> fi

$ LifeUniverseEverything=41
$ hitchhikers="awesome"
OR
$ if [[${LifeUniverseEverything} == 42 || ${hitchhikers} == "awesome"]]; then
> echo "Still don't panic!"
> fi

Sorting the images by category

We now want to create a directory for each category, and move images into each.

Sorting the images by category

We now want to create a directory for each category, and move images into each.

Let's add some conditionals! Before running, remember to try a dry run with echo!

Sorting the images by category

We now want to create a directory for each category, and move images into each.

Let's add some conditionals! Before running, remember to try a dry run with echo!

$ cd ~/Boosted-BBB/

Parse the annotations file into variables
$ while read line; do
> image_name=$(echo "${line}" | cut -f1)
> animal=$(echo "${line}" | cut -f3)
>
> echo "${image_name} ${animal}"
>
> done < Annotations.txt

images/alopochenaegyptiacaArnhem.jpg bird
images/angry.jpg cat
images/bubobubo.jpg bird
images/bydgoszczForest.jpg bird
[...]
images/pompeii.jpg dog
images/snore.jpg cat
images/stretch.jpg cat
images/weimanarer.jpg dog

Sorting the images by category

We now want to create a directory for each category, and move images into each.

Let's add some conditionals! Before running, remember to try a dry run with echo!

$ cd ~/Boosted-BBB/

Parse the annotations file into variables
$ while read line; do
> image_name=$(echo "${line}" | cut -f1)
> animal=$(echo "${line}" | cut -f3)
>
> # echo "${image_name} ${animal}"
>
> ## Make a new directory for each animal, if one doesn't exist.
> mkdir -p images/${animal}
>
>
>
>
>
>
>
>
>
>

Sorting the images by category

We now want to create a directory for each category, and move images into each.

Let's add some conditionals! Before running, remember to try a dry run with echo!

$ cd ~/Boosted-BBB/

Parse the annotations file into variables
$ while read line; do
> image_name=$(echo "${line}" | cut -f1)
> animal=$(echo "${line}" | cut -f3)
>
> # echo "${image_name} ${animal}"
>
> ## Make a new directory for each animal, if one doesn't exist.
> mkdir -p images/${animal}
>
> ## If animal matches one of the three, move the image.
> if [[${animal} == "cat"]]; then
> mv ${image_name} images/cat/
> elif [[${animal} == "dog"]]; then
> mv ${image_name} images/dog/
> elif [[${animal} == "bird"]]; then
> mv ${image_name} images/bird/
> fi
>

Housekeeping

Let's see if everything moved where we wanted.

$ find ~/BareBonesBash/Boosted-BBB/images/ -type f -name "*jpg"

Housekeeping

Let's see if everything moved where we wanted.

$ find ~/BareBonesBash/Boosted-BBB/images/ -type f -name "*jpg"

~/BareBonesBash/Boosted-BBB/images/cat/snore.jpg
~/BareBonesBash/Boosted-BBB/images/cat/giacomo.jpg
~/BareBonesBash/Boosted-BBB/images/cat/excited.jpg
~/BareBonesBash/Boosted-BBB/images/cat/angry.jpg
~/BareBonesBash/Boosted-BBB/images/cat/stretch.jpg
~/BareBonesBash/Boosted-BBB/images/dog/licorne.jpg
~/BareBonesBash/Boosted-BBB/images/dog/fanta.jpg
~/BareBonesBash/Boosted-BBB/images/dog/weimanarer.jpg
~/BareBonesBash/Boosted-BBB/images/dog/pompeii.jpg
~/BareBonesBash/Boosted-BBB/images/dog/nomnom.jpg
~/BareBonesBash/Boosted-BBB/images/bird/alopochenaegyptiacaArnhem.jpg
~/BareBonesBash/Boosted-BBB/images/bird/bubobubo.jpg
~/BareBonesBash/Boosted-BBB/images/bird/netsukeJapan.jpg
~/BareBonesBash/Boosted-BBB/images/bird/bydgoszczForest.jpg
~/BareBonesBash/Boosted-BBB/images/bird/exhibitRoyal.jpg

Good! Everything moved into the correct subfolder!

I have to do this every day!

We are already being lazy by getting the computer to loop through each file.

But what do you do if you have to do the same thing EVERYDAY?

Do you really wanna write all the commands every time?!

I have to do this every day!

We are already being lazy by getting the computer to loop through each file.

But what do you do if you have to do the same thing EVERYDAY?

Do you really wanna write all the commands every time?!

The ultimate goal of anyone working on the command line is to make a program
which you can run with a single command and it does all the work for you.

That program is called a script.

What's a script?

Similar to a play/movie script that tells actors what to do and the sequence in
which they should do it, a computer script is a file containing all the commands
that you want the computer to perform in a given order.

So let's start writing your first script first_script.sh! Open a text editor, we will use
nano

$ nano first_script.sh

What's a script?

Similar to a play/movie script that tells actors what to do and the sequence in
which they should do it, a computer script is a file containing all the commands
that you want the computer to perform in a given order.

So let's start writing your first script first_script.sh! Open a text editor, we will use
nano

$ nano first_script.sh

Your first script!

The first thing you almost always need to do with any script is to specify which
language the script is using. This is done with a 'shebang'

It consists of a #! to indicate it's a shebang, then a path to a list that *unix stores
locations of all programs in.

On the first line of your text editor window, type:

#! /usr/bin/env bash

Your first script!

For your first script we want the program to print "Hello world!"

How did we told bash to print something in screen?

Your first script!

For your first script we want the program to print "Hello world!"

How did we told bash to print something in screen?

#! /usr/bin/env bash

echo "Hello world"

save the file by presing Ctrl+X, press "Y" to confimr you want to save and press
enter to save it as first_script.sh.

Your first script!

For your first script we want the program to print "Hello world!"

How did we told bash to print something in screen?

#! /usr/bin/env bash

echo "Hello world"

save the file by presing Ctrl+X, press "Y" to confimr you want to save and press
enter to save it as first_script.sh.

That's it! You've made your first script!

How do you run a script?

Now to run the script, we do:

$ bash ./first_script.sh

How do you run a script?

Now to run the script, we do:

$ bash ./first_script.sh

Hello world

Input Variables

So now we want to change our script to instead of saying Hello world, it say Hello
<your_name>

So our script looked like:

#! /usr/bin/env bash

echo "Hello world"

We can use variables for the arguments passed to a script.

Input Variables

So now we want to change our script to instead of saying Hello world, it say Hello
<your_name>

So our script looked like:

#! /usr/bin/env bash

echo "Hello world"

We can use variables for the arguments passed to a script.

Wait... what are arguments??

Input Variables

So now we want to change our script to instead of saying Hello world, it say Hello
<your_name>

So our script looked like:

#! /usr/bin/env bash

echo "Hello world"

We can use variables for the arguments passed to a script.

Wait... what are arguments??

It is a user supplied value that the script will use to perform the tasks

Input Variables

In Bash, the arguments passed on the command line can be called ${1},${2} ...

${1} is the first argument

Input Variables

In Bash, the arguments passed on the command line can be called ${1},${2} ...

${1} is the first argument

${2} is the second argument

Input Variables

In Bash, the arguments passed on the command line can be called ${1},${2} ...

${1} is the first argument

${2} is the second argument

${3} is the third argument

Input Variables

In Bash, the arguments passed on the command line can be called ${1},${2} ...

${1} is the first argument

${2} is the second argument

${3} is the third argument

and so on.

Input Variables

In Bash, the arguments passed on the command line can be called ${1},${2} ...

${1} is the first argument

${2} is the second argument

${3} is the third argument

and so on.

Let's go back to our script and change the printing message

Input Variables

This is our script from before:

#! /usr/bin/env bash

echo "Hello world"

Input Variables

This is our script from before:

#! /usr/bin/env bash

echo "Hello world"

First, we want to pass our name to the script as an argument.

Input Variables

This is our script from before:

#! /usr/bin/env bash

name=${1}

echo "Hello world"

First, we want to pass our name to the script as an argument.

Input Variables

This is our script from before:

#! /usr/bin/env bash

name=${1}

echo "Hello world"

First, we want to pass our name to the script as an argument.

Then, we want to print out "Hello < name >" instead of "Hello World".

Input Variables

This is our script from before:

#! /usr/bin/env bash

name=${1}

echo "Hello ${name}"

First, we want to pass our name to the script as an argument.

Then, we want to print out "Hello < name >" instead of "Hello World".

Input Variables

This is our script from before:

#! /usr/bin/env bash

name=${1}

echo "Hello ${name}"

First, we want to pass our name to the script as an argument.

Then, we want to print out "Hello < name >" instead of "Hello World".

The script now needs an argument to run, so we will run:

$ bash ./first_script.sh Aida

Hello Aida

Input Variables

This is our script from before:

#! /usr/bin/env bash

name=${1}

echo "Hello ${name}"

First, we want to pass our name to the script as an argument.

Then, we want to print out "Hello < name >" instead of "Hello World".

The script now needs an argument to run, so we will run:

$ bash ./first_script.sh Aida

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

#! /usr/bin/env bash

Read name from positional arguments
name=${1}

Printing Hello and the specified variable into screen
echo "Hello ${name}"

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

#! /usr/bin/env bash

Read name from positional arguments
name=${1}

Printing Hello and the specified variable into screen
echo "Hello ${name}"

Give variables informative names.

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

#! /usr/bin/env bash

Read name from positional arguments
name=${1}

Printing Hello and the specified variable into screen
echo "Hello ${name}"

Give variables informative names.

Try to have all bash variables in ${}. This helps distinguish them visually and
ensures all variables are interpreted correctly.

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

#! /usr/bin/env bash

Read name from positional arguments
name=${1}

Printing Hello and the specified variable into screen
echo "Hello ${name}"

Give variables informative names.

Try to have all bash variables in ${}. This helps distinguish them visually and
ensures all variables are interpreted correctly.

Keep the code simple: try to simplify your code instead of having 1,000 lines

Best practices when coding

There are a few best practices that you should follow when writing code, to
ensure that anyone can understand your code.

Comment your code: add a short description of the steps. So in our
first_script.sh, we should include:

#! /usr/bin/env bash

Read name from positional arguments
name=${1}

Printing Hello and the specified variable into screen
echo "Hello ${name}"

Give variables informative names.

Try to have all bash variables in ${}. This helps distinguish them visually and
ensures all variables are interpreted correctly.

Keep the code simple: try to simplify your code instead of having 1,000 lines

Avoid duplicating code.

Good coding practices

Add a help message. In our basic script, we could add the following:

#! /usr/bin/env bash

name=${1}

if [[${name} == "--help" || ${name} == "-h"]]; then
 ## Print help message
 echo "This script prints Hello <your_name> into screen."
 echo "To run it type: bash ./first_script.sh <your_name>"
else
 ## Printing Hello and the specified variable into screen
 echo "Hello ${name}"
 fi

You will often go back to old scripts and
not remember the options and
arguments they need.

Having help text will make it easier to
remember.

Good coding practices

Add a help message. In our basic script, we could add the following:

#! /usr/bin/env bash

name=${1}

if [[${name} == "--help" || ${name} == "-h"]]; then
 ## Print help message
 echo "This script prints Hello <your_name> into screen."
 echo "To run it type: bash ./first_script.sh <your_name>"
else
 ## Printing Hello and the specified variable into screen
 echo "Hello ${name}"
 fi

Debugging your code

Try your code outside the script

Debugging your code

Try your code outside the script

Add print statements to check the variables/commands render properly

Debugging your code

Try your code outside the script

Add print statements to check the variables/commands render properly

Write the script by its functional parts.

Think what you want your script to do
Write/Draw the steps to do
Write code for the first step -> try it -> write code for the next step -> try it
-> repeat until the end
Simplify your code

Explain your code to someone else!
Talking through the logic of it will
often make the problem obvious.

This is called the Rubber ducky
approach, as many
programmers have a rubber
duck on their desk to explain
their code to.

Debugging your code

Try your code outside the script

Add print statements to check the variables/commands render properly

Write the script by its functional parts.

Think what you want your script to do
Write/Draw the steps to do
Write code for the first step -> try it -> write code for the next step -> try it
-> repeat until the end
Simplify your code

Things to keep in mind

Code for the same task can be written in multiple ways

Some code is more efficient -> a.k.a runs faster.
Some code is more readable.

Things to keep in mind

Code for the same task can be written in multiple ways

Some code is more efficient -> a.k.a runs faster.
Some code is more readable.
Some code is both!

Things to keep in mind

Code for the same task can be written in multiple ways

Some code is more efficient -> a.k.a runs faster.
Some code is more readable.
Some code is both!
Some code is neither...

Things to keep in mind

Code for the same task can be written in multiple ways

Some code is more efficient -> a.k.a runs faster.
Some code is more readable.
Some code is both!
Some code is neither...

Practice makes perfect: the more you do it, the more you learn.

Quiz time!

Time to practice!

Your task now will be to generate a script to perform the image sorting that we
have shown you in this presentation and email it to us.

BUT: This time you will need to make an extra subdirectory within each of the
categories with the secondary description of the images!

That is column 3 of the metadata file. (Artwork, Baby, Funny, Historical, Normal)

$ mkdir ~/Boosted-BBB_scripting
$ cd ~/Boosted-BBB_scripting

Get images zip and metadata file
$ wget git.io/Boosted-BBB-images # On Mac: `curl -LO`
$ wget git.io/Boosted-BBB-meta # On Mac: `curl -LO`

Unzip image folders and rename metadata file
$ unzip Boosted-BBB-images
$ mv Boosted-BBB-meta \
~/Boosted-BBB_scripting/Boosted-BBB-meta.tsv

Time to practice!

Your task now will be to generate a script to perform the image sorting that we
have shown you in this presentation and email it to us.

BUT: This time you will need to make an extra subdirectory within each of the
categories with the secondary description of the images!

That is column 3 of the metadata file. (Artwork, Baby, Funny, Historical, Normal)

For this, please make a new directory and download the data again:

$ mkdir ~/Boosted-BBB_scripting
$ cd ~/Boosted-BBB_scripting

Get images zip and metadata file
$ wget git.io/Boosted-BBB-images # On Mac: `curl -LO`
$ wget git.io/Boosted-BBB-meta # On Mac: `curl -LO`

Unzip image folders and rename metadata file
$ unzip Boosted-BBB-images
$ mv Boosted-BBB-meta \
~/Boosted-BBB_scripting/Boosted-BBB-meta.tsv

You are set up to start
now!

Time to practice!

Your task now will be to generate a script to perform the image sorting that we
have shown you in this presentation and email it to us.

BUT: This time you will need to make an extra subdirectory within each of the
categories with the secondary description of the images!

That is column 3 of the metadata file. (Artwork, Baby, Funny, Historical, Normal)

For this, please make a new directory and download the data again:

Today I learned...

find to locate files or directories
What is a for loop
Regular expressions for weird and wonderful pattern matching
rename for renaming files
While loops (reading contents of files)
sed for on-the-fly string manipulation within files
If statements and conditionals (if this, then do that, else do this)
Scripts and arguments (now you're a programmer! Yes, you!)

Rerun: Enter the janitor!

Despite being lazy - you should ALWAYS keep your room tidy.

This stops losing files
Prevents getting lost in a maze of directories
Accidentally permanently deleting a days worth of work

[don't ask how many times this has happened.]

Lets remove:

the Boosted-BBB directory
all of its contents.

$ cd ~ # Don't delete a directory
 # while we are still in it!
$ rm -r Boosted-BBB*

Rerun: Enter the janitor!

Despite being lazy - you should ALWAYS keep your room tidy.

This stops losing files
Prevents getting lost in a maze of directories
Accidentally permanently deleting a days worth of work

[don't ask how many times this has happened.]

Lets remove:

the Boosted-BBB directory
all of its contents.

$ cd ~ # Don't delete a directory
 # while we are still in it!
$ rm -r Boosted-BBB*

Rerun: Enter the janitor!

Despite being lazy - you should ALWAYS keep your room tidy.

This stops losing files
Prevents getting lost in a maze of directories
Accidentally permanently deleting a days worth of work

[don't ask how many times this has happened.]

There is more!

This was a reduced version of previous BBB series

You can find all the slides and walkthroughs here:
https://barebonesbash.github.io/#/

https://barebonesbash.github.io/#/

Thanks to...

Stephan Schiffels

for giving support and advice on cluster setup in our initial runs of BBB

James Fellows Yates

Creator of many of those slides for the BBB courses we've given

Zandra Färgenas

for the wonderful images of ourselves <3

Google

Pretty much teaching all of this

giphy, tenor

For procrastination

fontawesome.com

for icons for making the logo

https://google.com/
https://giphy.com/
https://tenor.com/
https://fontawesome.com/

