
Bare Bones Bash

Thiseas C. Lamnidis

Aida Andrades Valtueña

This work is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Aims of this session

Aim:

Familiarise yourself with basic concepts and commands of bash

Aims of this session

Aim:

Familiarise yourself with basic concepts and commands of bash

Objectives

What is a terminal? What is a command prompt?
What is the difference between Absolute and Relative paths?
How can you move around the filesystem and interact with files and/or
directories?
What are data streams, pipes, and redirects?
Finding documentation for bash tools.
What is a variable?
Difference between ' and "!
Parameter expansion!!

The Five Commandments of

Bare Bones Bash

1. Be lazy!
Desire for shortcuts motivates you
to explore more!

1. Be lazy!

2. Google The Hive-
Mind knows
everything.

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy

1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

4. There will ALWAYS
be a typo!

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy

Don't get disheartened, even best
programmers make mistakes

1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

4. There will ALWAYS
be a typo!

5. Don't be afraid of
you freedom!

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy

Don't get disheartened, even best
programmers make mistakes

Explore! Try out things!

Preparation!

Always mind the $ and >!

Absolute and Relative paths

In addition to your command prompt, you can use pwd to see your current
directory

$ pwd

Absolute and Relative paths

In addition to your command prompt, you can use pwd to see your current
directory

$ pwd

/home/ubuntu

Absolute and Relative paths

In addition to your command prompt, you can use pwd to see your current
directory

$ pwd

/home/ubuntu

~ is a relative path, while pwd returns an absolute path

You have just arrived to Leipzig for a summer school
that is taking place at MPI-EVA.
After some
questionable navigation, you find yourself at the
Bayerische Bahnhof.
Tired and disheartened, you
decide to ask a local.

Let's talk about paths!

You have just arrived to Leipzig for a summer school
that is taking place at MPI-EVA.
After some
questionable navigation, you find yourself at the
Bayerische Bahnhof.
Tired and disheartened, you
decide to ask a local.

You see a friendly-looking metalhead, and decide to
ask them for directions!

Let's talk about paths!

You have just arrived to Leipzig for a summer school
that is taking place at MPI-EVA.
After some
questionable navigation, you find yourself at the
Bayerische Bahnhof.
Tired and disheartened, you
decide to ask a local.

You see a friendly-looking metalhead, and decide to
ask them for directions!

A friendly-looking
metalhead.

Let's talk about paths!

Happy to help, but I only use absolute paths.
From Leipzig Hbf, take Querstraße southward.
Continue straight and take Nürnberger Str. southward until you reach Str. des 18 Oktober.
Finally take Str. des 18 Oktober. moving southeast until you reach EVA!

You have just arrived to Leipzig for a summer school
that is taking place at MPI-EVA.
After some
questionable navigation, you find yourself at the
Bayerische Bahnhof.
Tired and disheartened, you
decide to ask a local.

You see a friendly-looking metalhead, and decide to
ask them for directions!

A friendly-looking
metalhead.

Let's talk about paths!

Happy to help, but I only use absolute paths.
From Leipzig Hbf, take Querstraße southward.
Continue straight and take Nürnberger Str. southward until you reach Str. des 18 Oktober.
Finally take Str. des 18 Oktober. moving southeast until you reach EVA!

Examples of absolute paths:
/home/ubuntu
/Hbf/Querstraße/Nürnberger_Str/Str_18_Oktober/Deutscher_Platz/EVA

Let's talk about paths!

Not sure how to get back to Leipzig Hbf to apply those directions, you decide to
ask someone else for directions.

A friendly-looking local.

Let's talk about paths!

Not sure how to get back to Leipzig Hbf to apply those directions, you decide to
ask someone else for directions.

This street is Str. des 18 Oktober. Walk straight that way till
you walk past the tram tracks and you will reach EVA!

A friendly-looking local.

Let's talk about paths!

Not sure how to get back to Leipzig Hbf to apply those directions, you decide to
ask someone else for directions.

This street is Str. des 18 Oktober. Walk straight that way till
you walk past the tram tracks and you will reach EVA!

Examples of relative paths:
~
./Str_18_Oktober/Deutscher_Platz/EVA

The different types of file

paths

Absolute

The location of a file or folder, from the “root” directory (/).

Relative

The location of a file or folder, from your current directory.

The different types of file

paths

Absolute

The location of a file or folder, from the “root” directory (/).

Relative

The location of a file or folder, from your current directory.

When writing code it is better to use absolute paths, so your code works
independently of the users's current directory!

Basic bash commands

List directory contents:

$ ls

Desktop Downloads 'MEGA X' Pictures Templates bin
Documents M11CC_Out Music Public Videos thinclient_drives

Basic bash commands

List directory contents:

$ ls

Make a directory:

$ mkdir barebonesbash

Basic bash commands

List directory contents:

$ ls

Make a directory:

$ mkdir barebonesbash

Move (or rename) files and directories

$ mv barebonesbash BareBonesBash

Basic bash commands

List directory contents:

$ ls

Make a directory:

$ mkdir barebonesbash

Move (or rename) files and directories

$ mv barebonesbash BareBonesBash

Change directories

$ cd BareBonesBash

Basic bash commands

Download a remote file to your computer

$ wget git.io/Boosted-BBB-meta

Basic bash commands

Download a remote file to your computer

$ wget git.io/Boosted-BBB-meta

Copy a file or directory to a new location

$ cp Boosted-BBB-meta Boosted-BBB-meta.tsv

Basic bash commands

Download a remote file to your computer

$ wget git.io/Boosted-BBB-meta

Copy a file or directory to a new location

$ cp Boosted-BBB-meta Boosted-BBB-meta.tsv

Remove (delete) files

rm Boosted-BBB-meta

Basic bash commands

Concatenate file contents to screen

$ cat Boosted-BBB-meta.tsv

Basic bash commands

Concatenate file contents to screen

$ cat Boosted-BBB-meta.tsv

See only the first/last 10 lines of a file

$ head -n 10 Boosted-BBB-meta.tsv
$ tail -n 10 Boosted-BBB-meta.tsv

Basic bash commands

Concatenate file contents to screen

$ cat Boosted-BBB-meta.tsv

See only the first/last 10 lines of a file

$ head -n 10 Boosted-BBB-meta.tsv
$ tail -n 10 Boosted-BBB-meta.tsv

Look at the contents of a file interactively (quit with q)

$ less Boosted-BBB-meta.tsv

Basic bash commands

Concatenate file contents to screen

$ cat Boosted-BBB-meta.tsv

See only the first/last 10 lines of a file

$ head -n 10 Boosted-BBB-meta.tsv
$ tail -n 10 Boosted-BBB-meta.tsv

Look at the contents of a file interactively (quit with q)

$ less Boosted-BBB-meta.tsv

Count the number of lines in a file

$ wc -l Boosted-BBB-meta.tsv

Datastreams,

Piping,

and redirects

Datastreams

Programs can take in and spit out data from different streams. By default there are
3 such data streams.

stdin: the standard input
stdout: the standard output
stderr: the standard error

Datastreams

Programs can take in and spit out data from different streams. By default there are
3 such data streams.

stdin: the standard input
stdout: the standard output
stderr: the standard error

Datastreams

Programs can take in and spit out data from different streams. By default there are
3 such data streams.

Piping

Piping lets you combine commands together using |

$ head -n 10 Boosted-BBB-meta.tsv | wc -l

Piping

Piping lets you combine commands together using |

$ head -n 10 Boosted-BBB-meta.tsv | wc -l

10

Piping

Piping lets you combine commands together using |

$ head -n 10 Boosted-BBB-meta.tsv | wc -l

The stdout of one script becomes the stdin of the other.
stderr is always printed
on your screen.

Redirects

Much like streams in the real world, datastreams can be redirected.

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

stderr can be redirected with 2>.

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

stderr can be redirected with 2>.

$ head -n 10 Boosted-BBB-meta.tsv | wc -l >linecount.txt
$ cat linecount.txt

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

stderr can be redirected with 2>.

$ head -n 10 Boosted-BBB-meta.tsv | wc -l >linecount.txt
$ cat linecount.txt

10

Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

stderr can be redirected with 2>.

$ head -n 10 Boosted-BBB-meta.tsv | wc -l >linecount.txt
$ cat linecount.txt

10

You can then remove the file we just made

$ rm linecount.txt

Finding the help you need

You don't always have to google for documentation! Many programs come with
in-built helptext,
or access to online manuals right from your terminal!

Finding the help you need

You don't always have to google for documentation! Many programs come with
in-built helptext,
or access to online manuals right from your terminal!

You can get a one sentence summary of what a tool does with whatis

$ whatis cat

cat(1) - concatenate files and print on the standard output

Finding the help you need

You don't always have to google for documentation! Many programs come with
in-built helptext,
or access to online manuals right from your terminal!

You can get a one sentence summary of what a tool does with whatis

$ whatis cat

cat(1) - concatenate files and print on the standard output

While man gives you access to online manuals for each tool (exit with q)

$ man cat

Finding the help you need

You don't always have to google for documentation! Many programs come with
in-built helptext,
or access to online manuals right from your terminal!

You can get a one sentence summary of what a tool does with whatis

$ whatis cat

cat(1) - concatenate files and print on the standard output

While man gives you access to online manuals for each tool (exit with q)

$ man cat

Activity: What flag should you give cat to include line numbers in the output?

Variables

Variables

A named container whose contents you can expand at will or change.

Variables

A named container whose contents you can expand at will or change.

You can assign variables with = and pull their contents with $

Variables

A named container whose contents you can expand at will or change.

You can assign variables with = and pull their contents with $

The easiest way to see the contents of a varable is using echo!

$ echo "This is my home directory: $HOME"

Variables

A named container whose contents you can expand at will or change.

You can assign variables with = and pull their contents with $

The easiest way to see the contents of a varable is using echo!

$ echo "This is my home directory: $HOME"

This is my home directory: /home/ubuntu

Variables

A named container whose contents you can expand at will or change.

You can assign variables with = and pull their contents with $

The easiest way to see the contents of a varable is using echo!

$ echo "This is my home directory: $HOME"

This is my home directory: /home/ubuntu

And now for a trip...

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

$ GreekFood="Greek wine" #We can overwrite 'GreekFood' again,
but when there is a space in our string, we need quotations.
$ echo "The only thing better than Greek food is $GreekFood!"

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

$ GreekFood="Greek wine" #We can overwrite 'GreekFood' again,
but when there is a space in our string, we need quotations.
$ echo "The only thing better than Greek food is $GreekFood!"

The only thing better than Greek food is Greek wine!

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

$ GreekFood="Greek wine" #We can overwrite 'GreekFood' again,
but when there is a space in our string, we need quotations.
$ echo "The only thing better than Greek food is $GreekFood!"

The only thing better than Greek food is Greek wine!

$ GreekFood=7 #And, of course, we can overwrite with a number again too.
$ echo "I have been to Greece $GreekFood times already this year, for the food and

Variables

$ GreekFood=4 #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

$ GreekFood="Greek wine" #We can overwrite 'GreekFood' again,
but when there is a space in our string, we need quotations.
$ echo "The only thing better than Greek food is $GreekFood!"

The only thing better than Greek food is Greek wine!

$ GreekFood=7 #And, of course, we can overwrite with a number again too.
$ echo "I have been to Greece $GreekFood times already this year, for the food and

I have been to Greece 7 times already this year, for the food and wine!

Quotes matter!

In bash, there is a big difference between a single quote ' and a double quote "!

The contents of single quotes, are passed on as they are.
Inside double quotes, contents are interpreted!

In some cases the difference doesn't matter:

$ echo "I like Greek Food"
$ echo 'I like Greek Food'

I like Greek Food
I like Greek Food

Quotes matter!

In bash, there is a big difference between a single quote ' and a double quote "!

The contents of single quotes, are passed on as they are.
Inside double quotes, contents are interpreted!

In some cases the difference doesn't matter:

$ echo "I like Greek Food"
$ echo 'I like Greek Food'

I like Greek Food
I like Greek Food

In other cases it makes all the difference:

$ Arr=Banana
$ echo 'Pirates say $Arr'
$ echo "Minions say $Arr"

Quotes matter!

In bash, there is a big difference between a single quote ' and a double quote "!

The contents of single quotes, are passed on as they are.
Inside double quotes, contents are interpreted!

In some cases the difference doesn't matter:

$ echo "I like Greek Food"
$ echo 'I like Greek Food'

I like Greek Food
I like Greek Food

In other cases it makes all the difference:

$ Arr=Banana
$ echo 'Pirates say $Arr'
$ echo "Minions say $Arr"

Pirates say $Arr
Minions say Banana

Quotes matter!

In bash, there is a big difference between a single quote ' and a double quote "!

The contents of single quotes, are passed on as they are.
Inside double quotes, contents are interpreted!

Parameter expansion

The basics

Here's an example variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"

To expand a variable use ${}.

$ echo ${foo}

/home/thiseas/folder/subfolder/BBB.is.bae.txt

The basics

Here's an example variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"

To expand a variable use ${}.

$ echo ${foo}

/home/thiseas/folder/subfolder/BBB.is.bae.txt

The basics

Here's an example variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"

You can also add a parameter to expansions:

$ echo ${foo#/home/}
$ echo ${foo#*/}

thiseas/folder/subfolder/BBB.is.bae.txt
home/thiseas/folder/subfolder/BBB.is.bae.txt

Some parameters for

expansion

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters in this expansion
$ echo ${foo#*/} # Removes everything before the first '/'
$ echo ${foo%.*} # What will this do?

Some parameters for

expansion

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters in this expansion
$ echo ${foo#*/} # Removes everything before the first '/'
$ echo ${foo%.*} # What will this do?

/home/thiseas/folder/subfolder/BBB.is.bae.txt
 home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BBB.is.bae

Some parameters for

expansion

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters in this expansion
$ echo ${foo#*/} # Removes everything before the first '/'
$ echo ${foo%.*} # What will this do?

/home/thiseas/folder/subfolder/BBB.is.bae.txt
 home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BBB.is.bae

These expansion can be generalised:

$ echo ${foo##*/} # Removes everything before any '/'
$ echo ${foo%%.*} # Removes everything after any '.'

Some parameters for

expansion

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters in this expansion
$ echo ${foo#*/} # Removes everything before the first '/'
$ echo ${foo%.*} # What will this do?

/home/thiseas/folder/subfolder/BBB.is.bae.txt
 home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BBB.is.bae

These expansion can be generalised:

$ echo ${foo##*/} # Removes everything before any '/'
$ echo ${foo%%.*} # Removes everything after any '.'

BBB.is.bae.txt
/home/thiseas/folder/subfolder/BBB

More parameters for

expansion

You can use two / to substitute parts of the variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters
$ echo ${foo/BBB/BareBonesBash} # Change BBB to BareBonesBash

/home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BareBonesBash.is.bae.txt

More parameters for

expansion

You can use two / to substitute parts of the variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters
$ echo ${foo/BBB/BareBonesBash} # Change BBB to BareBonesBash

/home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BareBonesBash.is.bae.txt

Leaving the second / out replaces the pattern with "an empty string".

$ echo ${foo/BBB} # Remove BBB

More parameters for

expansion

You can use two / to substitute parts of the variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo} # No parameters
$ echo ${foo/BBB/BareBonesBash} # Change BBB to BareBonesBash

/home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BareBonesBash.is.bae.txt

Leaving the second / out replaces the pattern with "an empty string".

$ echo ${foo/BBB} # Remove BBB

/home/thiseas/folder/subfolder/.is.bae.txt

The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo} # The length of the variable contents

The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo} # The length of the variable contents

45

So the filepath in foo is 45 characters long!

The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo} # The length of the variable contents

45

So the filepath in foo is 45 characters long!

This parameter is more useful when dealing with bash arrays (i.e. lists of things).

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

What a variable is.
How to assign them and expand them.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

What a variable is.
How to assign them and expand them.

The difference between single and double quotes in bash.

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

What a variable is.
How to assign them and expand them.

The difference between single and double quotes in bash.

How you can use parameters to manipulate variable expansion on the fly!

Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

What a variable is.
How to assign them and expand them.

The difference between single and double quotes in bash.

How you can use parameters to manipulate variable expansion on the fly!

In the next session we will apply some of these concepts together with some new
commands to clean up a messy file system.

Accessing Google the hive-

mind

Knowing the question

ALWAYS include the name of the language in your query.

"Hey Google! How to set X
to 4 in bash?"

"Hey Google! How to set a
variable to an integer in
bash?"

Knowing the question

ALWAYS include the name of the language in your query.

Broaden your question.

Knowing the question

ALWAYS include the name of the language in your query.

Broaden your question.

When you are more familiar, use fancy programmer lingo to make google
think you know what you are talking about.

All the cool hackers say:

"string" and not "text".
"float" and not "decimal".
Some of these terms can be language specific.

