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Aims of this session

Aim:

Familiarise yourself with basic concepts and commands of bash

Objectives

What is a terminal? What is a command prompt?
What is the difference between Absolute and Relative paths?
How can you move around the filesystem and interact with files and/or
directories?
What are data streams, pipes, and redirects?
Finding documentation for bash tools.
What is a variable?
Difference between ' and "!
Parameter expansion!!



The Five Commandments of

Bare Bones Bash



1. Be lazy! 
Desire for shortcuts motivates you
to explore more!



1. Be lazy!

2. Google The Hive-
Mind knows
everything.

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.



1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy



1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

4. There will ALWAYS
be a typo!

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy

Don't get disheartened, even best
programmers make mistakes



1. Be lazy!

2. Google The Hive-
Mind knows
everything.

3. Document
everything you do.

4. There will ALWAYS
be a typo!

5. Don't be afraid of
you freedom!

Desire for shortcuts motivates you
to explore more!

99% of the time, someone else has
already had the same issue.

Make future you happy

Don't get disheartened, even best
programmers make mistakes

Explore! Try out things!



Preparation!





Always mind the $ and >!
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Absolute and Relative paths

In addition to your command prompt, you can use pwd to see your current
directory

$ pwd

/home/ubuntu

~ is a relative path, while pwd returns an absolute path
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You have just arrived to Leipzig for a summer school
that is taking place at MPI-EVA.
After some
questionable navigation, you find yourself at the
Bayerische Bahnhof.
Tired and disheartened, you
decide to ask a local.

You see a friendly-looking metalhead, and decide to
ask them for directions!

A friendly-looking
metalhead.

Let's talk about paths!

Happy to help, but I only use absolute paths.
From Leipzig Hbf, take Querstraße southward.
Continue straight and take Nürnberger Str. southward until you reach Str. des 18 Oktober.
Finally take Str. des 18 Oktober. moving southeast until you reach EVA!

Examples of absolute paths:
/home/ubuntu
/Hbf/Querstraße/Nürnberger_Str/Str_18_Oktober/Deutscher_Platz/EVA
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A friendly-looking local.

Let's talk about paths!

Not sure how to get back to Leipzig Hbf to apply those directions, you decide to
ask someone else for directions.

This street is Str. des 18 Oktober. Walk straight that way till
you walk past the tram tracks and you will reach EVA!

Examples of relative paths:
~
./Str_18_Oktober/Deutscher_Platz/EVA
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paths

Absolute

The location of a file or folder, from the “root” directory (/).

Relative

The location of a file or folder, from your current directory.



The different types of file

paths

Absolute

The location of a file or folder, from the “root” directory (/).

Relative

The location of a file or folder, from your current directory.

When writing code it is better to use absolute paths, so your code works
independently of the users's current directory!



Basic bash commands

List directory contents:

$ ls
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Basic bash commands

List directory contents:

$ ls

Make a directory:

$ mkdir barebonesbash

Move (or rename) files and directories

$ mv barebonesbash BareBonesBash

Change directories

$ cd BareBonesBash
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Download a remote file to your computer

$ wget git.io/Boosted-BBB-meta

Copy a file or directory to a new location

$ cp Boosted-BBB-meta Boosted-BBB-meta.tsv

Remove (delete) files

rm Boosted-BBB-meta
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Basic bash commands

Concatenate file contents to screen

$ cat Boosted-BBB-meta.tsv

See only the first/last 10 lines of a file

$ head -n 10 Boosted-BBB-meta.tsv
$ tail -n 10 Boosted-BBB-meta.tsv

Look at the contents of a file interactively (quit with q)

$ less Boosted-BBB-meta.tsv

Count the number of lines in a file

$ wc -l Boosted-BBB-meta.tsv



Datastreams,

Piping,

and redirects
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$ head -n 10 Boosted-BBB-meta.tsv | wc -l

10



Piping

Piping lets you combine commands together using |

$ head -n 10 Boosted-BBB-meta.tsv | wc -l

The stdout of one script becomes the stdin of the other.
stderr is always printed
on your screen.
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Redirects

Much like streams in the real world, datastreams can be redirected.

stdin can be redirected with <.

stdout can be redirected with >.

stderr can be redirected with 2>.

$ head -n 10 Boosted-BBB-meta.tsv | wc -l >linecount.txt
$ cat linecount.txt

10

You can then remove the file we just made

$ rm linecount.txt
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or access to online manuals right from your terminal!
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Finding the help you need

You don't always have to google for documentation! Many programs come with
in-built helptext,
or access to online manuals right from your terminal!

You can get a one sentence summary of what a tool does with whatis

$ whatis cat

cat(1)                   - concatenate files and print on the standard output

While man gives you access to online manuals for each tool (exit with q)

$ man cat

Activity: What flag should you give cat to include line numbers in the output?
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The easiest way to see the contents of a varable is using echo!

$ echo "This is my home directory: $HOME"
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Variables

A named container whose contents you can expand at will or change.

You can assign variables with = and pull their contents with $

The easiest way to see the contents of a varable is using echo!

$ echo "This is my home directory: $HOME"

This is my home directory: /home/ubuntu

And now for a trip...
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$ GreekFood=4            #Here, 'GreekFood' is a number.
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Variables

$ GreekFood=4            #Here, 'GreekFood' is a number.
$ echo "Greek food is $GreekFood people who want to know what heaven tastes like."

Greek food is 4 people who want to know what heaven tastes like.

$ GreekFood=delicious   #We overwrite that number with a word (i.e. a 'string').
$ echo "Everyone says that Greek food is $GreekFood."

Everyone says that Greek food is delicious.

$ GreekFood="Greek wine" #We can overwrite 'GreekFood' again, 
## but when there is a space in our string, we need quotations.
$ echo "The only thing better than Greek food is $GreekFood!"

The only thing better than Greek food is Greek wine!

$ GreekFood=7 #And, of course, we can overwrite with a number again too.
$ echo "I have been to Greece $GreekFood times already this year, for the food and 

I have been to Greece 7 times already this year, for the food and wine!
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Inside double quotes, contents are interpreted!
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In some cases the difference doesn't matter:

$ echo "I like Greek Food"
$ echo 'I like Greek Food'

I like Greek Food
I like Greek Food

In other cases it makes all the difference:

$ Arr=Banana
$ echo 'Pirates say $Arr'
$ echo "Minions say $Arr"

Pirates say $Arr
Minions say Banana

Quotes matter!

In bash, there is a big difference between a single quote ' and a double quote "!

The contents of single quotes, are passed on as they are.
Inside double quotes, contents are interpreted!
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You can also add a parameter to expansions:

$ echo ${foo#/home/}
$ echo ${foo#*/}
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$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo}    # No parameters in this expansion
$ echo ${foo#*/} # Removes everything before the first '/'
$ echo ${foo%.*} # What will this do?

/home/thiseas/folder/subfolder/BBB.is.bae.txt
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/home/thiseas/folder/subfolder/BBB.is.bae

These expansion can be generalised:

$ echo ${foo##*/} # Removes everything before any '/'
$ echo ${foo%%.*} # Removes everything after any '.'

BBB.is.bae.txt
/home/thiseas/folder/subfolder/BBB
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You can use two / to substitute parts of the variable:
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More parameters for

expansion

You can use two / to substitute parts of the variable:

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${foo}                    # No parameters
$ echo ${foo/BBB/BareBonesBash}  # Change BBB to BareBonesBash

/home/thiseas/folder/subfolder/BBB.is.bae.txt
/home/thiseas/folder/subfolder/BareBonesBash.is.bae.txt

Leaving the second / out replaces the pattern with "an empty string".

$ echo ${foo/BBB}  # Remove BBB

/home/thiseas/folder/subfolder/.is.bae.txt



The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo}  # The length of the variable contents



The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo}  # The length of the variable contents

45

So the filepath in foo is 45 characters long!



The last parameter, I swear!

Finally, you can check the length of a variable by using a # BEFORE the variable
name.

$ foo="/home/thiseas/folder/subfolder/BBB.is.bae.txt"
$ echo ${#foo}  # The length of the variable contents

45

So the filepath in foo is 45 characters long!

This parameter is more useful when dealing with bash arrays (i.e. lists of things).
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Recap

You should now understand:

The difference between the Terminal and the command prompt.
What information the command prompt includes.

The difference between absolute and relative file paths.

What data streams are and how to redirect them into files.

How piping works in bash.

How to quickly find documentation about the tools you are using.

What a variable is.
How to assign them and expand them.

The difference between single and double quotes in bash.

How you can use parameters to manipulate variable expansion on the fly!

In the next session we will apply some of these concepts together with some new
commands to clean up a messy file system.



Accessing Google the hive-

mind



Knowing the question

ALWAYS include the name of the language in your query.



"Hey Google! How to set X
to 4 in bash?"

"Hey Google! How to set a
variable to an integer in
bash?"

Knowing the question

ALWAYS include the name of the language in your query.

Broaden your question.




Knowing the question

ALWAYS include the name of the language in your query.

Broaden your question.

When you are more familiar, use fancy programmer lingo to make google
think you know what you are talking about.

All the cool hackers say:

"string" and not "text".
"float" and not "decimal".
Some of these terms can be language specific.


