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Abstract. During the last decade, a growing prevalence of new 
psychoactive substances (NPS) has been noticed by the law enforcement 
agencies. Although NPS have no medical use due to their very high toxicity, 
they are often sold on the black market. NBOMe defines a group of toxic 
amphetamines that has as parent compound 25I-NBOMe, a synthetic 
derivative of 2C-I (2,5-dimethoxy-4-iodophenetylamine). In this paper, we 
are presenting a series of Artificial Neural Networks (ANNs) designed to 
identify the NBOMe class membership based on a mixture of topological 
and 3D-MoRSE descriptors. For this purpose, the molecular structures of 
160 compounds representing NBOMe compounds, narcotics, 
sympathomimetic amines, potent analgesics, as well as their main precursors 
have been first optimized. Then a molecular database was formed by 
computing a large number of topological and 3D-MoRSE descriptors that 
characterize these structures. This database was used as input for building 
an ANN system designed to recognize NBOMes. The relevance of the input 
variables on its classification performance has been assessed and new 
systems have been built by using different combinations of selected 
topological and 3D-MoRSE descriptors. The best performing system has 
been found by comparing various classification efficiency criteria.   

1 Introduction 
In recent years, a class of potent synthetic psychoactive substances, referred to as 

dimethoxyphenyl -N-[(2-methoxyphenyl) methyl] ethanolamine derivatives (NBOMes), has 
been increasingly detected by law enforcement institutions in seizures of controlled 
substances. These amphetamines, abused for recreational purposes, were initially synthetized 
for mapping the brain usage of the 2A serotonin receptor. They are very toxic and hence have 
no medical use [1].  

The most frequently seized NBOMe compound is 25I-NBOMe (2-(4-iodo-2,5-
dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl] ethanamine) (see Figure 1). This 
compound is a derivative of 2C-I (2,5-dimethoxy-4-iodophenetylamine) and it is sold by the 

 
* Corresponding author: Mirela.Praisler@ugal.ro 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 342, 05008 (2021) https://doi.org/10.1051/matecconf/202134205008
UNIVERSITARIA SIMPRO 2021



vendors of designer drugs under a variety of names, such as N-bomb, N-bome, Smiles, 25I, 
Bom-25 or Cimbi-5. 25I-NBOMe is very potent, being active in sub-milligram doses. Hence, 
the risk of overdose is very high. Nevertheless, due to its potency and much lower cost than 
classical psychedelics, it becomes increasingly popular in rave parties [2]. Clinical toxicology 
studies indicate that consumption of 25I-NBOMe usually generates confusion, panic and 
anxiety, visual hallucinations, auditory hallucinations, increased heart rate and blood 
pressure, thought loops, vasoconstriction, nausea, acute kidney injury or oxygen desaturation 
[3-7]. 
 

 
Fig. 1. Skeletal structure of the 25I-NBOMe psychoactive amphetamine. 

 

     Artificial neural networks (ANNs) are statistical learning algorithms considered very 
useful machine learning tools in bioinformatics [8-9]. They simulate the structure and 
functionality of biological neural networks and have been successfully used for identifying 
patterns or for classification purposes. ANNs are trained by using algorithms based on the 
optimization theory and statistical estimation. Real gradients are determined based on the 
back propagation method and then, by applying a gradient lowering method, the derivative 
of a cost function is determined in relation to the network parameters. The last procedure 
determines the best network architecture by modifying the system parameters in a direction 
related to the gradient [10-12]. This way, ANN are very adequate for analyzing databases 
that are very large or have incomplete information [13-15].  
     In this paper, we are presenting and comparing the efficiency of a series of Artificial 
Neural Networks (ANNs) designed to recognize NBOMe drugs of abuse based on a mixture 
of topological and 3D-MoRSE descriptors. These molecular descriptors are the result of a 
mathematical procedure based on the graph theory, which converts a symbolic (2- or 3-
dimensional Euclidean) representation of a molecule into a numeric value, i.e. a theoretical 
descriptor. As these molecular descriptors contain important information about the associated 
molecular structure, they are very appropriate for describing and classifying substances, as 
well as for determining correlations between molecular structures and physico - chemical or 
biological properties. 
 

2 Database and methods 
     The input database was formed with molecular descriptors calculated for a number of 160 
controlled substances that were divided into a class of positives (referred to as NBOMe) and 
one of negatives (non-NBOMe). The class of positives contains 15 NBOMe hallucinogens 
and the class of negatives includes 145 compounds of forensic interest, such as narcotics, 
sympathomimetic amines, analgesics and their main precursors. 
     The 3D representation of the molecular structures was obtained with the HyperChem8.03 
software [16] for all the 160 compounds forming the input database. The AM1 semi-
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empirical quantum method was applied for the full optimization of their geometries. The 
geometry was adjusted and the parameters in which the minimum energy of the molecular 
system is reached were determined based on the Polak-Ribiere mechanism. 
     A number of 96 topological descriptors and 80 3D-MoRSE descriptors were computed 
for each of the 160 compounds by using the Dragon 5.5 software [18]. They have been 
presented in detailed in a previous published article [19]. The detailed definitions, 
mathematical formulas and chemical significance of the topological descriptors and 3D-
MoRSE (3D-Molecule Representation of Structures based on Electron diffraction) 
descriptors are detailed in Todeschini et al. [17]. 
     A first ANN, named 176_topo+3D_ANN, was built with all these 176 molecular 
descriptors (96 topological descriptors and 80 3D-MoRSE descriptors) by using the Easy NN 
plus software. The system has three layers (the input, hidden and output layers) and use the 
sigmoid function as transfer function. The training set consists of 8 NBOMe amphetamines, 
17 non-NBOMe compounds, while the validation set is formed by the remaining 135 
substances. The output layer has two output nodes, i.e. NBOMe (positives) and non-NBOMe 
(negatives). Convergence was reached for the training process when the average training 
error falls below the target error of 0.01. The system was trained by using the 
backpropagation algorithm. Full cross-validation was performed based on the leave-one-out 
method. The resulting architecture of 176_topo+3D_ANN consists of 13 hidden nodes and 
2314 weight connections.  
     This initial system was used to evaluate the relative importance of each input descriptors, 
i.e. its influence on the next layer in the network. Then a new network, named 
54_topo+3D_imp_ANN, was built by including in the database only the first 54 most 
important descriptors, while using the same sets of compounds and mathematical procedures 
as for 176_topo+3D_ANN. This system has 12 hidden nodes and 672 weight connections 
after optimization. 
     176_topo+3D_ANN was also used to evaluate the sensitivity of the input descriptors, 
parameter that indicates how the outputs change when inputs are modified. Then a third 
system, 43_topo+3D_senz_ANN, was built with the first 43 most sensitive descriptors. After 
optimization, this system has 13 hidden nodes and 585 weight connections. 

3 Results and discussion 
     The normalized and relative errors obtained during the training of 176_topo+3D_ANN is 
presented in Figure 2. The training process ended after 8 cycles.   
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Fig. 2. Normalized and relative error obtained during the training of the 176_topo+3D_ANN system, 
built with 176 molecular descriptors (96 topological descriptors and 80 3D-MoRSE descriptors). 

     The first 30 most important descriptors, as determined with 176_topo+3D_ANN, are 
listed in Figure 3, in descending order. We notice that they include mostly 3D-MoRSE 
descriptors, the most important being Mor18p (signal 18/weighted by polarizability), Mor10u 
(signal 10/ unweighted) and Mor18v (signal 18/weighted by van der Waals volume). In fact, 
the first 11 most important variables are only 3D-MoRSE descriptors. However, a very 
positive aspect is that the relative importance is decreasing very slowly.   

 

Fig. 3. The first 30 molecular descriptors found to have the highest relative importance by analyzing 
the 176_topo+3D_ANN system. 
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     The most important topological descriptors are MAXDP (maximal electrotopological 
positive variation), D/Dr05 (distance/detour ring index of order 5) and T(O..O) (sum of 
topological distances between O..O). 
     Figure 4 presents the first 30 descriptors that have the highest relative sensitivity, as 
assessed by analyzing the 176_topo+3D_ANN system. We notice the same behavior as in 
the case of the importance analysis. The first 30 descriptors that have the highest relative 
sensitivity are predominantly 3D-MoRSE descriptors. The most sensitive are Mor20e (signal 
20/weighted by Sanderson electronegativity), Mor15p (signal 15/weighted by polarizability) 
and Mor15v (signal 15/weighted by van der Waals volume). The most sensitive topological 
descriptors are S2K (2-path Kier alpha-modified shape index, T(O..O)-sum of topological 
distances between O..O), PHI (Kier flexibility index) and D/Dr06, which is a ring descriptor.  
     We may notice that the relative sensitivity decreases much faster that the relative 
importance. Hence, a smaller number of 3D-MoRSE and topological descriptors are worth 
selecting for building a new ANN system with the most sensitive descriptors. 
 

 

Fig. 4. The first 30 molecular descriptors found to have the highest relative sensitivity by analyzing the 
176_topo+3D_ANN system. 

     In the case of 54_topo+3D_imp_ANN network (which includes 13 topological descriptors 
and 31 3D-MoRSE descriptors), 18 learning cycles were needed to end the training process, 
while 43_topo+3D_senz_ANN (built with 13 topological descriptors and 30 3D-MoRSE 
descriptors) reached convergence after only 5 learning cycles (see Figure 5 and Figure 6).  
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Fig. 5. Training process of the 54_topo+3D_imp_ANN system, built with the first 54 most important 
descriptors, as determined with the 176_topo+3D_ANN system. 

 

Fig. 6. Training process of the 43_topo+3D_senz_ANN system, built with the first 43 most sensitive 
descriptors, as determined with the 176_topo+3D_ANN system. 
 
     The efficiency of the ANN system in identifying the class identity of an unknown sample 
has been evaluated based on several figures of merit, i.e. the rate of true positives (TPR), of 
true negatives (TNR), of false positives (FNR), the classification rate (CR) and the correct 
classification rate (CCR), as presented in Table 1. They indicate that all ANNs are very 
efficient, being characterized by remarkably good figures of merit.  
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Table 1. Results of the validation process. 

 176_topo+3D_A
NN  

54_topo+3D_imp_
ANN 

43_topo+3D_senz_
ANN 

TPR (%) 100 100 100 

TNR (%) 92.36 96.55 95.86 

FNR (%) 0 0 0 

FPR (%) 7.64 3.45 4.18 

CR (%) 99.38 100 100 

CCR (%) 93.08 96.87 96.25 

 
      
     The results indicate that all the ANNs presented in this study re exceptionally sensitive, 
as they are all detecting the NBOMe psychotropic drugs without exception (TPR = 100%, 
FNR = 0%). The systems are also very sensitive from the point of view of the negatives, the 
proportion of actual negatives recognized as such being also very good (TNR ≥ 92.36%) for 
all networks. The best results are obtained with 54_topo+3D_imp_ANN (TNR = 96.55%). 
      Only very few negatives are misclassified as NBOMes (FPR ≤ 7.64%). This figure of 
merit indicates best that the selection of variables based on their sensitivity, and especially 
on their importance, is a very useful step for optimizing the efficiency of these screening 
systems. The FPR obtained for 54_topo+3D_imp_ANN, the system built with the most 
important descriptors is less than half of the FPR rate obtained for the 176_topo+3D_ANN 
system.  
      In addition, the systems built with selected variables have a better capacity to assign a 
class identity to the analyte than 176_topo+3D_ANN. Both 54_topo+3D_imp_ANN and 
43_topo+3D_senz_ANN were able to classify all the samples, while 176_topo+3D_ANN 
missed on sample (CR = 99.38%). Out of the classified samples, the systems built with 
selected descriptors classify correctly the same percentage of the samples, which by 3% 
higher than the CCR of 176_topo+3D_ANN. 

4 Conclusions 
     The detection of NBOMe designer drugs is extremely important in forensic practice. The 
most important characteristic of any system screening for these drugs of abuse is its capacity 
of recognizing the positive samples, which should not be missed under any circumstance. 
The results of this study show that the 54_topo+3D_imp_ANN system is the most efficient 
system screening for NBOMe. This artificial intelligence application can be used 
successfully to predict and estimate the toxicity of any novel compounds having a molecular 
structure similar to NBOMe psychotropic drugs of abuse. This way, it may save the high 
costs of analytical and toxicological studies.  
     In addition, we should underline the benefits brought by mixing different types of 
molecular descriptors, in our case topological descriptors and 3D-MoRSE descriptors. This 
approach has led to selections of variables having higher importance / sensitivity than if the 
selections would have been made only with the same number of most important descriptors 
(54) or most sensitive ones (43) of the same type (only topological  or only 3D-MoRSE 
descriptors).  This is certainly one of the main reasons for the significant improvement of the 
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classification efficiency noticed for the two ANN systems built with selections of variables 
in comparison with 176_topo+3D_ANN. 
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