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Executive Summary 
Deliverable Description:  

This deliverable report supports deliverable D3.3 “Control Design Models of X-Rotor Concept”, and 

details the design and development of a set of linear control design models for the X-Rotor concept, 

which aim to provide a transparent tool for controller design. 

Responsible:  

The responsible partner is the University of Strathclyde, with Prof. W.E. Leithead as the principle 

investigator. 

Outcome Summary:  

The X-Rotor concept consists of a large vertical axis primary rotor with smaller secondary horizontal 

axis rotors mounted on the primary rotor to extract power. Both the pitch angle of the primary rotor 

blades and the thrust of the secondary rotors can be adjusted to control the turbine.   

Based on the work being undertake in Tasks 3.1 and 3.4, it is clear, that the inputs to the X-rotor full 

envelop controller are the primary rotor speed and secondary rotor speeds or equivalently the 

frequencies of the power connections to the generators. The outputs are pitch angle demand for the 

upper primary rotor blades and a parameter that is equivalent to a tip speed ratio demand. It is, also 

clear that a separate controller incorporated into each power take-off unit, consisting of a secondary 

rotor, generator and converter, is required. These additional controllers are tasked with ensuring that 

the secondary rotor speed and aerodynamic torque maintain the relationship required to achieve the 

required tip speed ratio. 

A nonlinear dynamic model of the power take-off unit and its associated linearised model, suitable for 

design of the power take-off controller are described. In addition, a nonlinear dynamic model of the X-

rotor turbine and its associated linearised model, suitable for design of the full envelop controller, are 

described. A MATLAB script to determine the linear models for a given X-rotor operational strategy is 

developed and some illustrative examples provided. 
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1 Introduction 
The X-Rotor concept is an innovative wind turbine design that consists of a large vertical axis primary 

rotor with smaller secondary horizontal axis rotors mounted on it to extract power.  The pitch angle of 

the primary rotor blades can be altered to control the aerodynamic torque and the thrust of the 

secondary rotors can also be controlled.  A visualisation of the concept is shown in Figure 1. 

 

Figure 1: X-Rotor concept 

In prior deliverable D3.2 [4], a control simulation model was created for the X-Rotor concept that models 

the necessary fundamental dynamics and allows controllers for the turbine to be tested.  To design the 

controllers, linearised models of a system are required for linear control analysis and design.  The 

controllers can then be applied to the aforementioned control simulation model (which is highly non-

linear) to ensure that transient conditions are suitably dealt with and to quantify the controller 

performance. 

Any controller must follow a control strategy, i.e. the controller aims to ensure the turbine tracks given 

operating points at given wind speeds using available control signals.  The control strategy directly 

impacts both the power capture and the structural loads experienced by the turbine. The choice of 

control strategy, also, impacts on the nature of the control design models.  It is therefore essential  to 

review the control strategy prior to the development of the control design models for the X-Rotor. 

In this report, the creation of suitable linearised control models is detailed.  In Section 2, an overview of 

the X-Rotor’s operational strategy and the structure of the dynamics of the turbine and its controller is 

given. In Section 3, a nonlinear model  and an associated linear model of the power take-off system 

dynamics, suitable for its controller design, are presented. In Section 4, a nonlinear model and an 

associated linear model of the X-Rotor turbine dynamics, suitable for its full envelop controller design, 

are presented. In Section 5, some illustrative examples of the linear dynamics are provided and, in 

Section 6, conclusions are drawn.      
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2 Overview of operational strategy and controller structure 
The specification of the operational strategy for the X-Rotor is being investigated in Task 3.1 and the 
controller to realise the operational strategy is being designed in Task 3.4. Although completion of these 
tasks is not due till months 34 and 33, respectively, it is already clear that the operational strategy 
consists of several different modes.  
 
Mode 1 – Constant secondary rotor speed: In very low wind speeds, just above cut-in, the average 

secondary rotor speed is held constant with the tip speed ratio for each rotor independently varying with 

wind speed. (When considering the X-Rotor turbine’s operational strategy, since the strategy is defined 

by the equilibrium operating points for each wind speed, the average rotor speed would is defined as 

the average over one rotation of the primary rotor. However, for any practical controller dependent on 

average rotor speed, this definition is not appropriate due to the time-varying nature of the wind speed. 

Instead in practical controllers, since the variation of the rotor speed during a rotation is dominated by 

a sinusoid, the average the two rotor speeds of the two secondary speeds is preferred. In this way, a 

time-varying estimate of rotor speed is obtained.)  Suppose each power take-off unit, i.e. secondary 

rotor, generator and associated power converter, is operated such that 𝑄𝑆 = 𝑘𝑐Ω𝑆
2 or equivalently 𝑇𝑒 =

𝑘𝑐(𝜔𝑒/𝑝)2, where 𝑄𝑆 is the secondary rotor’s aerodynamic torque, Ω𝑠  is its rotational speed, 𝑇𝑒 is 

generator reaction torque, 𝜔𝑒 is the frequency of the AC connection to the generator and 𝑝 is the number 

of generator pole pairs. For each value of 𝑘𝑐, the secondary rotor operates at some specific tip speed 

ratio. Hence, by varying 𝑘𝑐, the tip speed ratio for the secondary rotor can be varied as required. It 

follows that the average secondary rotor speed can be maintained at a fixed value by the feedback loop 

in Figure 1, where Ω𝑆1 and Ω𝑆2 are the rotor speeds of the two secondary rotors and Ω̅𝑆𝑅 is the required 

average secondary rotor speed. 

 

 

 

 

 

 

 

A commonly used device to present operational strategies for HAWTs is the torque/speed diagram, 

whereon the locus of equilibrium operating points is plotted on the rotor torque/rotor speed plane. The 

corresponding device for the X-Rotor concept is the combination primary rotor torque/speed diagram 

and secondary rotor thrust/speed diagram, whereon the locus of equilibrium operating points is plotted 

on the secondary rotor thrust/rotor speed plane see Figure 2. In the latter, thrust is scaled by the primary 

rotor diameter so that primary and secondary rotor equilibrium operating points lie on horizontal lines. 

Mode 1 is plotted on Figure 2. 

Mode 2 – 𝐶𝑃𝑚𝑎𝑥  tracking: In intermediate wind speeds, energy capture is maximised. Since the 

relationships between secondary rotor torque and secondary rotor speed, secondary rotor thrust and 

secondary rotor speed, and primary rotor torque and primary rotor speed are all quadratic, both the 

primary and secondary rotors can be caused to operate at their aerodynamic coefficients’ maximum 

value through an appropriate choice for the value of 𝑘𝑐, say 𝑘𝑜𝑝𝑡; that is, 𝑘𝑐 = 𝑘𝑜𝑝𝑡 . Mode 2 is plotted on 

the combined primary rotor torque/speed and secondary rotor thrust/speed diagrams in Figure 3. 

 

 

Figure 1: Constant secondary rotor speed control 
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Mode 3 – pre-emptive pitching: In wind speeds just below rated wind speed, the upper blades on the 

primary rotor can be pitched to reduce pitch activity that otherwise would be very high in wind speeds 

just above rated. As the primary rotor speed continues to increase in these wind speeds, the blade pitch 

angle, 𝛽𝑑, can be adjusted as a function of primary rotor speed, 𝛺𝑃; that is, 𝛽𝑑 = 𝑓(𝛺𝑃), for some 

appropriate choice of the function, 𝑓(⋅). The introduction of this pitch adjustment in below rated wind 

speed displaces the operating state of the primary rotor from 𝐶𝑃𝑚𝑎𝑥  tracking, thereby reducing the 

primary rotor torque. The secondary rotor thrust must be reduced by a matching reduction in the 

secondary rotor thrust. To do so, as the average secondary rotor speed continues to increase in these 

wind speeds, 𝑘𝑐 is adjusted as a function of Ω̅𝑆 = 1

2
(𝛺𝑆1

+ Ω𝑆2
); that is, 𝑘𝑐 = 𝑔(Ω̅𝑆), for some appropriate 

choice of the function, 𝑔(⋅). Mode 3, with pitch increasing linearly between 11.5m/s and 12.5m/s, is 

plotted on the combined primary rotor torque/speed and secondary rotor thrust/speed diagrams in 

Figure 4.  

Mode 4 – Constant torque and rotor speed: In above rated wind speed, the average thrust from the 

secondary rotors is held constant through an appropriate choice for the value of 𝑘𝑐, say 𝑘𝑎; that is, 𝑘𝑐 =

𝑘𝑎. the primary rotor speed is held constant by adjusting the angle of pitch of the upper blades of the 

primary rotor. 

It is clear from the above discussion that the full envelope controller for the X-Rotor concept acts through 

adjusting 𝑘𝑐 and 𝛽𝑑 in response to measurements of 𝛺𝑃 and Ω𝑠 or 𝜔𝑒. A schematic diagram for the 

interplay between the dynamics of the turbine full envelop controller and the dynamics of the primary 

rotor and the power take-off system is depicted in Figure 5. Only the main inputs and outputs to the 

 

Figure 3: Operating strategy Mode 2 

  

 

⋅ ⋅ 

equilibrium operating point 

Mode 1 

Figure 2: Operating strategy Mode 1 
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power take-off unit are included. For simplicity of interpretation only one power take-off system is 

explicitly represented.  

 

 

 

 

 

 

  

 

It is, also, clear that the X-Rotor has two controllers, a full envelop controller that regulates the operation 

of the primary rotor to deliver the operational strategy and a controller that regulates the power take-off 

system to ensure 𝑄𝑆 = 𝑘𝑐Ω𝑆
2 or equivalently 𝑇𝑒 = 𝑘𝑐(𝜔𝑒/𝑝)2. For each of these controllers a suitable 

linearised model is required for controller design purposes. 
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Figure 5: Dynamic structure of turbine and controller 

  

Mode 3 

Figure 4: Operating strategy mode 3  
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3 Power take-off system controller design model 
As represented in Figure 6, the power take-off system has one exogenous input, 𝑉𝑆, the wind speed as 

experienced by the secondary rotor, and one control input, 𝑘𝑐, for regulating the tip speed ratio. It has 

one output regulating the primary rotor, namely, secondary rotor thrust, 𝑇𝑆. Three auxiliary variables are 

determined by the model of the power take-off dynamics, the secondary rotor torque, 𝑄𝑆, rotor speed, 

Ω𝑆, and tip speed ratio, 𝜆𝑆.  

 

Figure 6: Non-linear model of the power take-off by secondary rotors 

A schematic diagram for the power take-off system is shown in Figure 7.   

 

 

The power take-off system includes a controller, represented by strategy together with C. (Italicised text 

is used to indicate when sub-systems in Figure 7 are being referred to.) 

As well as ensuring 𝑄𝑆 = 𝑘𝑐Ω𝑆
2 or equivalently 𝑇𝑒 = 𝑘𝑐(𝜔𝑒/𝑝)2, the objectives for this controller are to 

ensure the power take-off system is adequately damped and to maintain the secondary rotor at a 

specified tip speed ratio. 

3.1 Power take-off unit nonlinear model 
The aerodynamics for the secondary rotors is modelled by the standard relationships for torque and 

thrust, namely,  

 𝑄𝑆(Ω𝑆, 𝑉𝑆) = 1

2
𝜌𝐴𝑆𝑅𝑆𝑉𝑆

2𝐶𝑄𝑆(𝜆𝑆)   ;   𝑇𝑆(Ω𝑆 , 𝑉𝑆) = 1

2
𝜌𝐴𝑆𝑉𝑆

2𝐶𝑇𝑆(𝜆𝑆)   ;   𝜆𝑆 = 𝑅𝑆Ω𝑆/𝑉𝑆 (1)   

where 𝜌 is the density of air, 𝐴𝑆 is the secondary rotor area, 𝑅𝑆 is its radius and 𝐶𝑄𝑆 and 𝐶𝑇𝑆 are its 

aerodynamic torque and thrust coefficients, respectively. 

The nacelle dynamics are modelled by a 2 lumped-inertia system 

 𝐽𝑆Ω̇𝑆 = 𝑄𝑆 − 𝑇𝑅𝐺    ;   �̇�𝑅𝐺 = 𝐾𝑆(Ω𝑆 − Ω𝐺)   ;   𝐽𝐺Ω̇𝐺 = 𝑇𝑅𝐺 − 𝑇𝑚 (2)   

where inertia, 𝐽𝑆, is dominated by the inertia of the secondary rotor, the inertia, 𝐽𝐺, is the combined 

inertia of the rotor hub and generator rotor, 𝐾𝑆 is the stiffness of the secondary rotor, 𝑇𝑅𝐺  is the in-plane 

strategy C 

aero- 

dynamics 
nacelle 

dynamics electrical 

dynamic

s 

ed 

𝑄𝑆  

𝑇𝑚  

Ω𝑆  

Ω𝐺  e 𝑉𝑆  

𝑘𝑐  

Figure 7: Power take-off schematic diagram 
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blade bending torque, Ω𝐺  is the generator speed and 𝑇𝑚 is the generator reaction torque. Due to the 

power take-off being direct drive, viscous damping losses are negligible and are omitted. Even taking 

into account aerodynamic damping, the nacelle dynamics are a lightly damped second order system 

with frequency related to the rotor symmetric mode frequency. 

The nacelle dynamics together with the generator electrical system is equivalent to the standard swing 

equation for a generator [1]. The generated power is proportional to the phase difference between the 

mechanical frequency and the electrical frequency, that is, it is proportional to the integral of (𝑝Ω𝐺 −

ω𝑒), where ω𝑒 is electrical frequency and 𝑝 is the number of pole pairs.  It is assumed that the power 

electronics and their internal controllers are configured such that electrical dynamics, consisting of 

generator electrical system, power electronics and their internal controllers, are dynamically equivalent 

to the system 

 �̇�𝑒 = 𝑘𝑒(Ω𝐺 − ω𝑒/𝑝)   ;   𝑇𝑚 = 𝑇𝑒/𝐸𝑓𝑓 (3)   

over a frequency range greater than the bandwidth of nacelle dynamics and the bandwidth of the 

transmittance from 𝑘𝑐 to Ω𝑆, where 𝑇𝑒 is electrical torque and 𝐸𝑓𝑓 is combined efficiency of generator 

and power electronics; that is, it behaves similarly to an induction generator [1] 

The relationship between aerodynamic torque and generator frequency, corresponding to a specified 

secondary rotor tip speed ratio, is defined in strategy such that 

 �̃� = 𝑝√�̂�𝐴/𝑘𝑐   ;   �̇�𝑒𝑑 = 𝑎(�̃� − 𝜔𝑒𝑑) (4)   

where 𝑘𝑐 is the control input for setting the tip speed ratio and �̂�𝐴 is an estimate of aerodynamic torque. 

The simplest choice would be �̂�𝐴 = 𝑇𝑚. Due to the low inertia of the secondary rotor, it might be 

expected that the power take-off system would be sufficiently responsive to cater for the changes in 

wind speed with azimuthal angle. If this is not the case, a better choice of aerodynamic torque of the 

form, �̂�𝐴 = ℎ1(𝑠)𝑇𝑚 + ℎ2(𝑠)Ω𝐺  [2] would be required. The rate of change of demanded electrical 

frequency, induced by changes in 𝑘𝑐, must be kept comfortably within limits acceptable to the power 

electronics. This could be achieved through inclusion of a rate limited low pass filter in C. However, here 

the low pass filter is included within strategy to highlight its importance. 

In constant speed HAWTs, induction generators provide sufficient damping that the drive-train is not 

resonant. However, that may not be the case for the secondary rotors. Accordingly, C could include an 

inner feedback loop to damp the nacelle dynamics. This inner feedback loop is not shown in the above 

diagram. In addition, C includes an outer feedback loop to ensure that 𝜆𝑆 tracks the secondary rotor 

operating strategy, irrespective of azimuthal angle of the primary rotor. This inner/outer feedback loop 

structure is similar to PSS/AVRs in electrical generators [3] or to drive-train filters in variable speed pitch 

regulated HAWTs, whereby, an inner feedback loop acting through generator reaction torque is used 

to increase damping of the first drive train mode and an outer feedback loop is used to regulated rotor 

speed. In both these examples, the inner feedback loop is active over a narrow band of frequencies 

greater than the bandwidth of outer feedback loop. 

3.2 Power take-off unit linear model 
An equilibrium operating point for the power take-off can be specified by the value of tip speed ratio, 

𝜆𝑆0, and the secondary rotor speed averaged over a single rotation of the primary rotor, Ω𝑆0. The pairs, 

(𝜆𝑆0, Ω𝑆0), are determined by the X- Rotor turbine’s operating strategy. The corresponding equilibrium 

values for all other variables are then obtained from the nonlinear model with all rates of change set to 

zero.   

The linear dynamics relative to the equilibrium operating point 

(𝜆𝑆0, Ω𝑆0; 𝑄𝑆0, 𝑉𝑆0, Ω𝑆0, 𝑇𝑆0, 𝑇𝑅𝐺0, Ω𝐺0, 𝑇𝑚0, 𝑇𝑒0 , ω𝑒0, �̂�𝐴, �̃�0, 𝜔𝑒𝑑0)   (5) 
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are 

∆𝑄𝑆 =
𝜕𝑄𝑆

𝜕Ω𝑆
∆Ω𝑆 +

𝜕𝑄𝑆

𝜕𝑉𝑆
∆𝑉𝑆   ;    ∆𝑇𝑆 =

𝜕𝑇𝑆

𝜕Ω𝑆
∆Ω𝑆 +

𝜕𝑇𝑆

𝜕𝑉𝑆
∆𝑉𝑆    (6) 

∆𝑄𝑆 =
𝜕𝑄𝑆

𝜕Ω𝑆
∆Ω𝑆 +

𝜕𝑄𝑆

𝜕𝑉𝑆
∆𝑉𝑆   ;    ∆𝑇𝑆 =

𝜕𝑇𝑆

𝜕Ω𝑆
∆Ω𝑆 +

𝜕𝑇𝑆

𝜕𝑉𝑆
∆𝑉𝑆    (7) 

𝐽𝑆∆Ω̇𝑆 = ∆𝑄𝑆 − ∆𝑇𝑅𝐺    ;    ∆�̇�𝑅𝐺 = 𝐾𝑆(∆Ω𝑆 − ∆Ω𝐺)   ;    𝐽𝐺∆Ω̇𝐺 = ∆𝑇𝑅𝐺 − ∆𝑇𝑚   (8) 

∆�̇�𝑒 = 𝑘𝑒(∆Ω𝐺 − ∆ω𝑒/𝑝)   ;    ∆𝑇𝑚 = ∆𝑇𝑒/𝐸𝑓𝑓     (9) 

∆�̂�𝐴 = ℎ1(𝑠)∆𝑇𝑚 + ℎ2(𝑠)∆Ω𝐺   ;  ∆�̃� =
𝜕�̃�

𝜕�̂�𝐴
∆�̂�𝐴 +

𝜕�̃�

𝜕𝑘𝑐
∆𝑘𝑐    ;   ∆�̇�𝑒𝑑 = 𝑎(∆�̃� − ∆𝜔𝑒𝑑)  (10) 

These linear dynamics can be used to design the controller, C. 
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4 Full envelop controller design model 
The structure of the full envelop controller and turbine is shown in Figure 5. The X-Rotor control 

simulation model [4] is simplified in the following manner: 

 The variation of aerodynamic torques and moments with azimuthal angle is neglected; that is, 

the aerodynamic coefficients are averaged over azimuthal angle. 

 The cross-arm is considered rigid. 

 The lower blades are considered rigid. (From [5] and simulations using the Control Simulation 

Model [4], it is clear that the flexing of the lower blades are very much stiffer and flex much less 

than the upper blades.)  

 The upper blades are represented by a “single blade model” whereby only the lowest tangential 

and normal dynamic modes, with tangential displacement and normal displacement for each 

blade the same, are included. 

 The pitch angle for both blades are the same. 

On the premise that the specification of the pitch actuator and so its dynamics is determined from the 

control design task, the pitch actuator dynamics are included in the full envelope controller rather than 

in the primary rotor dynamics. 

4.1 Nonlinear model for full envelop controller design 
The simplified dynamics for the upper rotor are  

𝐽𝑃 [
Ω̇𝑃

Φ̇𝑃

] = −𝐽𝑃 [
(𝜔𝑒

2𝑐𝛽
2 + 𝜔𝑓

2𝑠𝛽
2) −(𝜔𝑒

2 − 𝜔𝑓
2)𝑠𝛽𝑐𝛽

−(𝜔𝑒
2 − 𝜔𝑓

2)𝑠𝛽𝑐𝛽 (𝜔𝑒
2𝑠𝛽

2 + 𝜔𝑓
2𝑐𝛽

2)
] [

𝜃𝑃 − 𝜃𝐻

𝜙𝑃 − 𝜓
] 

−𝐽𝑃 [
(𝛾𝑒𝑐𝛽

2 + 𝛾𝑓𝑠𝛽
2) −(𝛾𝑒 − 𝛾𝑓)𝑠𝛽𝑐𝛽

−(𝛾𝑒 − 𝛾𝑓)𝑠𝛽𝑐𝛽 (𝛾𝑒𝑠𝛽
2 + 𝛾𝑓𝑐𝛽

2)
] [

Ω𝑃 − �̇�𝐻

Φ𝑃
] + [

𝑀𝑃𝐴𝜃(𝑉𝑃, Ω𝑃 , 𝛽)

𝑀𝑃𝐴𝜙(𝑉𝑃 , Ω𝑃 , 𝛽)
]  (11) 

+ [
0

(𝐽𝑃 + 𝐽𝑃)Ω𝑃
2 cos(𝜙𝑃) + 𝑔𝑀𝑃ℓ𝑃𝑐𝑚sin (𝜙𝑃)

] 

and 

[
�̇�𝑃

�̇�𝑃

] = [
Ω𝑃

Φ𝑃
]      (12) 

where 𝜃𝑃 and 𝜙𝑃 are, respectively, the tangential and normal angular displacement of the upper blades, 

𝜃𝐻 is the angular dispacement of the cross-arm, 𝜓 is the coning angle of the upper blade, 𝛽 is the pitch 

angle of the upper blades, 𝜔𝑒 and 𝜔𝑓 are , respectively, the tangential and normal frequencies of the 

upper blades, 𝛾𝑒 and 𝛾𝑓 are, respectively, tangential and normal damping coefficients of the upper 

blades, 𝐽𝑃 is the inertia of the upper blades, 𝑀𝑃𝐴𝜃 and 𝑀𝑃𝐴𝜙 are, respectively, the tangential and normal 

aerodynamic blade bending moments for the upper blades, 𝑔 is the gravity, 𝑀𝑃 is the mass of the upper 

blades, ℓ𝑃𝑐𝑚 is the distance between the upper blade centre of gravity and its root and 𝑅𝑃 is the radius 

of the upper rotor. In addition,  

𝜔𝑒
2 = 𝐾𝑒/𝐽𝑃   ;   𝜔𝑓

2 = 𝐾𝑓/𝐽𝑃   ;  𝐽𝑃 = 𝑀𝑃 (ℓ𝑐
2 + 2ℓ𝑐ℓ𝑃𝑐𝑚 sin(𝜙𝑃) − ℓ𝑐

2 sin2(𝜙𝑃)) (13) 

where 𝐾𝑒 and 𝐾𝑓 are, respectively, the tangential and normal upper blade stiffnesses and ℓ𝑐 is the radius 

of the cross-arm. (The parameter values for one blade can be used here without changing these 

dynamics.) 

The torque acting on on the cross-arm due to the upper primary rotor is 
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𝑄𝑃𝑈 = 𝐽𝑃𝜔𝑒
2[(𝜃𝑃 − 𝜃𝐻)𝑐𝛽 − (𝜙𝑃 − 𝜓)𝑠𝛽]𝑐𝛽 + 𝐽𝑃𝜔𝑓

2[(𝜃𝑃 − 𝜃𝐻)𝑠𝛽 − (𝜙𝑃 − 𝜓)𝑐𝛽]𝑠𝛽 (14) 

+𝐽𝑃[(𝛾𝑒𝑐𝛽
2 + 𝛾𝑓𝑠𝛽

2)(Ω𝑃 − �̇�𝐻) − (𝛾𝑒 − 𝛾𝑓)𝑠𝛽𝑐𝛽𝜙𝑃 

and the dynamics for the cross-arm and lower blades are, 

𝐽𝐻Ω̇𝐻 = 𝑄𝑃𝑈 + 𝑄𝑃𝐿 − 𝑅𝑃𝑇𝑆    ;   �̇�𝐻 = Ω𝐻    (15) 

where 𝐽𝐻 is the combined inertia of the cross-arm, lower blades and power take-off, 𝑄𝑃𝐿 is the 

aerodynamic torque from the (assumed stiff) lower primary rotor blades and 𝑇𝑆 is the thrust from the 

secondary rotors. (When parameter values for one blade are used in 𝑄𝑃𝑈 and 𝑄𝑃𝐿, 𝑇𝑆 is the thrust on 

one secondary rotor and 𝐽𝐻 is half the inertia of the combined inertia.) 

The power take-off is treated as an actuator. It is simplified in the following manner: 

 The azimuthal variation in wind speed experienced by the secondary rotor is neglected. 

 The azimuthal variation in wind speed experienced by the secondary rotor is neglected. 

 𝐶, the controller embedded in the power take-off, is chosen to be fast acting relative to the full 

envelope controller. 

 The electrical dynamics are at relatively high frequency. 

Since the azimuthal variation in wind speed is being neglected, the response of the power take-off can 

be slower and the simplest choice of aerodynamic torque estimator suffices; that is, �̂�𝐴 = 𝑇𝑚. The 

resulting dynamics for the power take-off are 

𝑄𝑆(Ω𝑆, Ω𝑃) = 1

2
𝜌𝐴𝑆𝑅𝑆𝑉𝑆

2(1 + 0.5𝜆𝑠
−2)𝐶𝑄𝑆(𝜆𝑆)   ;   𝑇𝑆(Ω𝑆, Ω𝑃) = 1

2
𝜌𝐴𝑆𝑉𝑆

2(1 + 0.5𝜆𝑠
−2)𝐶𝑇𝑆(𝜆𝑆) (16) 

𝜆𝑆 = 𝑅𝑆Ω𝑆/𝑉𝑆   ;   𝑉𝑆 = 𝑅𝑃Ω𝑃     (17) 

𝐽𝑆Ω̇𝑆 = 𝑄𝑆 − 𝑇𝑅𝐺    ;   �̇�𝑅𝐺 = 𝐾𝑆(Ω𝑆 − Ω𝐺)   ;   𝐽𝐺Ω̇𝐺 = 𝑇𝑅𝐺 − 𝑘𝑐Ω𝐺
2    (18) 

At a constant tip speed ratio, the secondary rotors experience a wind speed that includes a strong 

sinusoidal variation in azimuthal angle due to their rotation into and out of the ambient wind acting on 

the X-Rotor turbine. Averaged over azimuthal angle, this variation in wind speed increases the 

aerodynamic thrust and torque by a factor, (1 + 0.5𝜆𝑃
−2) [5]. Hence, its inclusion in the expression for 

𝑇𝑆.  

Furthermore, when the bandwidth of the power take-off is sufficiently large, it can be assumed that 𝑄𝑆 =

𝑘𝑐Ω𝑆
2. The dynamics simply further to  

𝑄𝑆(Ω𝑃 , 𝑘𝑐) = 1

2
𝜌𝐴𝑆𝑅𝑆𝑉𝑆

2(1 + 0.5𝜆𝑃
−2)𝐶𝑄𝑆(𝜆𝑆)   ;   𝑇𝑆(Ω𝑃 , 𝑘𝑐) = 1

2
𝜌𝐴𝑆𝑉𝑆

2(1 + 0.5𝜆𝑃
−2)𝐶𝑇𝑆(𝜆𝑆)      (19) 

𝜆𝑆 = ℎ(𝑘𝑐)   ;   𝑉𝑆 = 𝑅𝑃Ω𝑃    (20) 

where 𝜆𝑆 is the solution 𝑘𝑐λ𝑆
2 = 1

2
𝜌𝐴𝑆𝑅𝑆

3(1 + 0.5𝜆𝑃
−2)𝐶𝑄𝑆(𝜆𝑆). 

No aspect of the above nonlinear model for the X-Rotor retains any dependence on azimuthal angle. 

Furthermore, this dynamic model is quite similar to the control design model for a HAWT [6], albeit with 

the tower and drive-train dynamics omitted and a rather unusual reaction torque actuator. Accordingly, 

the nonlinear model for the X-Rotor can be linearised in the usual manner [6]. 

4.2 Linear model for full envelop controller design 
An equilibrium operating point for the power take-off can be specified by the value of wind speed, 𝑉𝑃0, 

pitch angle, 𝛽0, control demand, 𝑘𝑐0, and the induced wind speed, 𝑉𝑆0. The quadruples, (𝑉𝑃0, 𝛽0, 𝑘𝑐0, 𝑉𝑆), 

are determined by the X-Rotor turbine’s operating strategy. The corresponding equilibrium values for 
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all other variables are then obtained from the nonlinear model with all rates of change set to zero. Prior 

to linearising the dynamics, the following transformation of variables is made: 

Ω𝑃 ⟶ Ω𝐻0 + ΔΩ𝑃  ;   𝜃𝑃 ⟶ Ω𝐻0𝑡 + Δ𝜃𝑃   ;   Ω𝐻 ⟶ Ω𝐻0 + ΔΩ𝐻  ;   𝜃𝐻 ⟶ Ω𝐻0𝑡 + Δ𝜃𝐻 (21) 

The equilibrium operating points for 𝜃𝑃 and 𝜃𝐻 are now well defined. The only term in the dynamics 

explicitly changed by this transformation is Ω𝑃
2  in the upper blade dynamics which becomes (Ω𝐻0 +

ΔΩ𝑃)2. 

Relative to the equilibrium operating point 

(𝑉𝑃0, 𝛽0, 𝑘𝑐0, 𝑉𝑆0; Ω𝐻0, 𝜃𝑃0, 𝜃𝐻0, 𝜙𝑃0, Ω𝑃0, Φ𝑃0, 𝑀𝑃𝐴𝜃0, 𝑀𝑃𝐴𝜙0, 𝑇𝑆0, Ω𝐺0, 𝑇𝑅𝐺0, 𝜆𝑆0)  (22) 

the linear dynamics for the upper rotor are 

𝐽𝑃 [
ΔΩ̇𝑃

ΔΦ̇𝑃

] = −𝐽𝑃 [
(𝜔𝑒

2𝑐𝛽0

2 + 𝜔𝑓
2𝑠𝛽0

2 ) −(𝜔𝑒
2 − 𝜔𝑓

2)𝑠𝛽0
𝑐𝛽0

−(𝜔𝑒
2 − 𝜔𝑓

2)𝑠𝛽0
𝑐𝛽0

(𝜔𝑒
2𝑠𝛽0

2 + 𝜔𝑓
2𝑐𝛽0

2 )
] [

Δ𝜃𝑃 − Δ𝜃𝐻

Δ𝜙𝑃
] 

−𝐽𝑃 [
(𝛾𝑒𝑐𝛽0

2 + 𝛾𝑓𝑠𝛽0

2 ) −(𝛾𝑒 − 𝛾𝑓)𝑠𝛽0
𝑐𝛽0

−(𝛾𝑒 − 𝛾𝑓)𝑠𝛽0
𝑐𝛽0

(𝛾𝑒𝑠𝛽0

2 + 𝛾𝑓𝑐𝛽0

2 )
] [

ΔΩ𝑃 − ΔΩ𝐻

ΔΦ𝑃
] 

−𝐽𝑃 [
−sin(2𝛽0) −cos (2𝛽0)
−cos (2𝛽0) sin(2𝛽0)

] {(𝜔𝑒
2 − 𝜔𝑓

2) [
𝜃𝑃0 − 𝜃𝐻0

𝜙𝑃0 − 𝜓
] + (𝛾𝑒 − 𝛾𝑓) [

Ω𝑃0 − Ω𝐻0

Φ𝑃0
]} Δ𝛽        (23) 

+ [

𝜕𝑀𝑃𝐴𝜃

𝜕Ω𝑃

𝜕𝑀𝑃𝐴𝜙

𝜕Ω𝑃

] ΔΩ𝑃 + [

𝜕𝑀𝑃𝐴𝜃

𝜕𝛽

𝜕𝑀𝑃𝐴𝜙

𝜕𝛽

] Δ𝛽 + [

𝜕𝑀𝑃𝐴𝜃

𝜕𝑉𝑃

𝜕𝑀𝑃𝐴𝜙

𝜕𝑉𝑃

] Δ𝑉𝑃 

+[
0

−(𝐽𝑃 + 𝐽𝑃)Ω𝐻0
2 sin(𝜙𝑃0) + 𝑔𝑀𝑃ℓ𝑃𝑐𝑚cos (𝜙𝑃0)

] Δ𝜙𝑃 + [
0

(𝐽𝑃 + 𝐽𝑃)2Ω𝐻0 cos(𝜙𝑃))
] ΔΩ𝑃 

and 

[
Δ�̇�𝑃

Δ�̇�𝑃

] = [
ΔΩ𝑃

ΔΦ𝑃
]      (24) 

The linear dynamics for the cross-arm are 

𝐽𝐻ΔΩ̇𝐻 = Δ𝑄𝑃 + Δ𝑄𝑃𝐿 − 𝑅𝑃Δ𝑇𝑆   ;   Δ�̇�𝐻 = ΔΩ𝐻   (25) 

Δ𝑄𝑃 = 𝐽𝑃[(𝜔𝑒
2𝑐𝛽0

2 + 𝜔𝑓
2𝑠𝛽0

2 ) −(𝜔𝑒
2 − 𝜔𝑓

2)𝑠𝛽0
𝑐𝛽0

]
 

[
Δ𝜃𝑃 − Δ𝜃𝐻

Δ𝜙𝑃
] 

+ 𝐽𝑃[(𝛾𝑒𝑐𝛽0

2 + 𝛾𝑓𝑠𝛽0

2 ) −(𝛾𝑒 − 𝛾𝑓)𝑠𝛽0
𝑐𝛽0

]
 

[
ΔΩ𝑃 − ΔΩ𝐻

ΔΦ𝑃
]   (26) 

− 𝐽𝑃[sin(2𝛽0) cos(2𝛽0)]
 

{(𝜔𝑒
2 − 𝜔𝑓

2) [
𝜃𝑃0 − 𝜃𝐻0

𝜙𝑃0 − 𝜓
] + (𝛾𝑒 − 𝛾𝑓) [

Ω𝑃0 − Ω𝐻0

Φ𝑃0
]} Δ𝛽 

Δ𝑄𝑃𝐿 =
𝛿𝑀𝑃𝐴𝐿𝜃

𝑑Ω𝐻
ΔΩ𝐻 +

𝛿𝑀𝑃𝐴𝐿𝜃

𝛿𝑉𝑃
Δ𝑉𝑃     (27) 

The resulting linear dynamics for the power take-off are  

𝐽𝑆ΔΩ̇𝑆 = Δ𝑄𝑆 − Δ𝑇𝑅𝐺    ;   Δ�̇�𝑅𝐺 = 𝐾𝑆(ΔΩ𝑆 − ΔΩ𝐺)   ;   𝐽𝐺ΔΩ̇𝐺 = Δ𝑇𝑅𝐺 − 2𝑘𝑐0Ω𝑆0ΔΩ𝑆 − Ω𝐺0
2 Δ𝑘𝑐     (28) 

Δ𝑄𝑆 =
𝜕𝑄𝑆

𝜕Ω𝑆
ΔΩ𝑆 +

𝜕𝑄𝑆

𝜕Ω𝑃
ΔΩ𝑃   ;   Δ𝑇𝑆 =

𝜕𝑇𝑆

𝜕Ω𝑆
ΔΩ𝑆 +

𝜕𝑇𝑆

𝜕Ω𝑃
ΔΩ𝑃   (29) 
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and the linear dynamics for the simplified model for the power take-off, when the bandwidth of the power 

take-off is sufficiently large, are  

Δ𝑄𝑆 =
𝜕𝑄𝑆

𝜕Ω𝑃
ΔΩ𝑃 +

𝜕𝑄𝑆

𝜕𝑘𝑐
Δ𝑘𝑐   ;   Δ𝑇𝑆 =

𝜕𝑇𝑆

𝜕Ω𝑃
ΔΩ𝑃 +

𝜕𝑇𝑆

𝜕𝑘𝑐
Δ𝑘𝑐   (30) 

These linear dynamics can be used to design the full envelop controller, C. 
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5 Illustrative examples of the linear dynamics  
A MATLAB script has been generated to determine the equilibrium operating points associated with an 

operational strategy for a particular X-Rotor turbine. These equilibrium operating points are then input 

to a further MATLAB script to determine the local linear dynamics. The linear equations for the sub-

systems described in Sections 4 and 5 are reformulated in state space form and linked together by the 

script. Linear models in state space, transfer function on Bode plot form are created and output. Some 

examples are provided below for 12.55m/s wind speed. The Bode plots for the transmittance from ∆𝛽 

to ∆Ω𝐻 and from ∆𝑘𝑐 to ∆Ω𝐻 are shown in Figures 8 and 9, respectively. 

  
 

  
 

  

 

 

Figure 9: Bode plot for transmittance from 

𝑘𝑐 to cross-arm speed 

Figure 8: Bode plot for transmittance from 
  pitch angle to cross-arm speed 
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6 Conclusions 
Based on the work being undertake in Tasks 3.1 and 3.4, an overview of the X-rotor’s operational 

strategy and the structure of the dynamics of the turbine and its controller is provided In Section 2. From 

this it is clear, that the inputs to the X-Rotor full envelop controller are the primary rotor speed and 

secondary rotor speeds or equivalently the frequencies of the power connections to the generators. The 

outputs are pitch angle demand for the upper primary rotor blades and a parameter that is equivalent 

to a tip speed ratio demand. It is, also clear that a separate controller incorporated into each power 

take-off unit, consisting of a secondary rotor, generator and converter, is required. These additional 

controllers are tasked with ensuring that the secondary rotor speed and aerodynamic torque maintain 

the relationship required to achieve the required tip speed ratio. 

Informed by Section 2, a nonlinear dynamic model of the power take-off unit and its associated 

linearised model, suitable for design of the power take-off controller, are described in Section 3. In 

addition, a nonlinear dynamic model of the X-Rotor turbine and its associated linearised model, suitable 

for design of the full envelop controller, are described in Section 4.  The nonlinear models in Section 3 

and Section 4 are modifications of the nonlinear simulation models reported in deliverable D3.2 [4]. A 

MATLAB script to determine the linear models for a given X-Rotor operational strategy is developed. 

Some illustrative examples are provided in Section 5.   
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