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1. Introduction  

This user-guide accompanies the publication Marston et al. (2023). It provides a user-

friendly introduction to implementing the satellite-based analysis and random forest 

modelling to identify the key bio-geographical variables that influence mosquito 

distributions and abundance. It is intended to be a resource for users with limited 

prior knowledge of analysis of this nature and presents step-by-step instructions for 

users to perform predictive modelling of mosquito distributions; sample datasets 

and analysis scripts are provided. 

This guide uses three software packages, Google Earth Engine, R (with RStudio) 

and QGIS for data pre-processing, modelling and visualisation, all of which are 

cost-free for non-commercial use. Scripts are provided to perform data processing 

and analysis in both Google Earth Engine (GEE) and R, and although these scripts are 

designed to automate the analysis to a large degree, they are currently optimised for 

the study area and time period used in the worked example (i.e. Lodja, Democratic 

Republic of the Congo, see page 14). It will require user input to adapt the scripts to 

different study areas and time-periods of interest, and this will also require suitable 

mosquito survey data with associated location coordinates (i.e. latitude and longitude 

decimal degrees) and dates to be provided by the user. Users are free to adapt and 

build on this to suit their own purposes.  

This user manual includes the following sections: 

2. Software installation and registration 

3. Study area 

4. Dataset generation – QGIS  

5. GEE - satellite data pre-processing 

6. R – feature selection 

7. GEE - data modelling 

8. GEE - data visualisation 

 

This user handbook comes with the following files: 

✔ R script  

✔ CSV file containing mosquito data from Lodja, DRC (supplied as an asset 
in the GEE script) 
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✔ Three Google Earth Engine (GEE) scripts 

✔ Land cover training data (supplied as an asset in the GEE script) 

 

By following the instructions, the user will learn to apply the methods, but will also 

produce key files necessary for subsequent stages of the methods. These may be 

useful should the user wish to apply these methods to different datasets, areas and 

scenarios of their choosing. The data processing workflow will involve moving between 

software packages at different stages of analysis, with a broad overview of the main 

processing stages and the corresponding software used presented in Figure 1. 

 

 

 

 

 

Figure 1. Broad overview of the main data processing stages and the corresponding 

software used 
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2. Software installation and registration  

To implement the functionality in this user manual, it is necessary to install QGIS and 

RStudio on a local computer and register for a user account for Google Earth Engine 

for cloud-processing. The following documentation is for a 64-bit Windows operating 

system. Installation instructions for other operating systems may differ - in this case, 

please refer to the installation instructions for the respective software packages for your 

specific operating system. The processing and analysis contained in this guide required 

a significant amount of storage space. We would recommend ensuring at least 10gb of 

free space is available prior to performing the analysis. 

 
2.1 Installing QGIS 

1. Go to the QGIS website – https://www.qgis.org/en/site/ (Figure 2.1) and click on 

the ‘Download Now’ button. 

 

Figure 2.1. QGIS Website 

2. In the download window that opens (Figure 2.2), select the appropriate 

download option for the platform that you are using. Here, we will select the most 

https://www.qgis.org/en/site/
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recent QGIS standalone Installer Version 3.20 (64 bit). QGIS updates are 

released at regular updates, so the most recent version available may differ from 

the 3.20 version used here. Click the link ‘QGIS Standalone Installer Version 

3.20’. 

 

Figure 2.2. QGIS download options. 

 

3. Select ‘Save As’ on the Save drop down menu and select a target directory on 

the computer for the QGIS application to run from. Depending on the operating 

system you are using, the download may start automatically. 

4. Navigate to the folder in which the installation file was saved and double-click on 

it to begin the installation process. If the download started automatically, the file 

should be saved in the ‘Downloads’ folder. Alternatively, an option may appear 

to click ‘Run’ at the bottom of the web browser. The QGIS installation wizard will 

then start up and guide you through the installation process. There is an option 

to download three sample datasets (North Carolina Data Set, South Dakota 

(Spearfish) and Alaska Data Set). You do not need to download these to run the 

methods presented in this user guide, however they may be useful as test 

datasets for exploring the broader functionality of QGIS. 
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Further useful documentation can be found at: https://www.qgis.org/en/site/ 

 

2.2 Installing R 

1. Go to the R website https://cran.rstudio.com/, and select the ‘Download R for 

Windows’ link (Figure 2.3). 

 

Figure 2.3. Cran.rstudio website with download options. 

 

2. Select the ‘base’ subdirectory for installing R (Figure 2.4). 

 

Figure 2.4. R download base subdirectories. 

 

3. Select the ‘Download R 4.1.1 for Windows’ link (or the most recent version 

available if version 4.1.1 has been superseded at the time of reading) (Figure 2.5). 

https://www.qgis.org/en/site/
https://cran.rstudio.com/
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Figure 2.5. R download link. 

 

4. When the installation file has downloaded, double-click on the file to begin the 

installation process. The installation wizard will then guide you through the 

installation steps. 

 

2.3 Installing RStudio 

RStudio operates as a front-end to R, offering R functionality through a more user-

friendly interface. RStudio must be installed separately, after you have installed R.  

 

Installation 

1. Go to the ‘Download RStudio’ website - 

https://www.rstudio.com/products/rstudio/download/ 

2. A number of download options are available, but it is the RStudio Desktop (Open 

Source Licence) that is required here. This option is free to download. Click on the 

‘Download’ icon under this option (Figure 2.6). 

https://www.rstudio.com/products/rstudio/download/
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Figure 2.6. RStudio download webpage. 

 

3. On the next window, click the ‘Download RStudio for Windows’ icon (Figure 2.7). 

 

 

Figure 2.7. Download RStudio of windows link. 

4. Save the installation file to an appropriate location. Once downloaded, navigate to 

the location where it is saved to, and double-click on the installation file to begin the 

installation. Alternatively, depending on the web browser being used, an option may 

appear to run the installation at the bottom of the web browser page. 

5. The RStudio installation wizard will then guide you through the installation steps. 
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Further useful documentation can be found at:  www.rstudio.com and https://cran.r-

project.org/bin/windows/Rtools/ 

 

2.4 Registration for Google Earth Engine 

User registration is required to use Google Earth Engine, although this is free for non-

commercial applications. To do this, it is necessary to register for a Google Drive 

account.  

2.4.1 Registration for Google Drive 

1. Open a web browser and navigate to:  

accounts.google.com/SignUpWithoutGmail 

 

2. Enter your name, email address and set a password (Figure 2.8). 

 

 

Figure 2.8. Google account registration webpage. 

 

3. Enter the verification code sent to the email account. 

http://www.rstudio.com/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/
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4. Adding a mobile phone number is required at this stage as another method of 

verification. Upon receiving a text message with the verification code, enter that 

into the second box. 

 

5. Fill out the personal information box to finish the account creation. Following this, 

agree to the Terms & Conditions, alongside the Privacy Policy to finish creating 

an account. 

 

To then access your Google Drive account, enter the following URL into the web browser 

– https://www.google.co.uk/drive/ and select the ‘Go to Google Drive’ option. Sign in 

with your newly created login details. You will then have access to your Google Drive 

and the contents within it. It is here that the datasets that you subsequently create in 

Google Earth Engine will be exported to. 

 

2.4.2 Registration for Google Earth Engine 

1. If you are not logged in already, log in to Google with your Google Account, and 

enter the following URL into the URL bar https://earthengine.google.com/. 

 

2. Click on the ‘Sign up’ button in the top right of the page (Figure 2.9). 

 

 

 

Figure 2.9. Google Earth Engine ‘Sign-up’ button. 

 

 

3. Complete the form shown in Figure 2.10 with your relevant information. 

 

https://www.google.co.uk/drive/
https://earthengine.google.com/
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Figure 2.10. Google Earth Engine sign-up form. 

 

4. A registration confirmation email will be sent to the email account used to register 

the account. Open the registration email and click on the ‘Earth Engine Code 

Editor’ link contained in it to access the code editor. This registration email may 

take some time to come through, so we would encourage users to allow ample time 

between submitting the registration and the time at which you need to conduct the 

analysis.  

The registration email (Figure 2.11) contains links to the Earth Engine Code Editor in 

which the analysis will be performed, but also the Earth Engine API, which contains a 

wealth of reference information about GEE functionality and datasets. It also contains a 

variety of other links including frequently asked questions and additional tutorials and 

documentation. It is worthwhile users taking some time to explore these resources for a 

broader introduction to the capabilities of GEE. 
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Figure 2.11. GEE registration email with relevant links. 
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3. Study area 

The example presented in this user guide focuses on a study area of the medium-sized 

town of Lodja (population c. 80,000) (latitude: -3.524661⁰, longitude: 23.596669⁰) and 

surrounds in the Democratic Republic of the Congo, which is meso-endemic for 

malaria (Figure 3.1). The area surrounding Lodja is typified by a mix of land cover 

components including traditional small holder shifting cultivation (cleared land, active 

field, fallow fields) along with settlements, grassy and bare areas, and a permeable 

interface area with forest. The Lukene river flows immediately to the south of Lodja. 

Mean monthly rainfall (between 1991-2015) was <100 mm for June and July and 100-

220 mm/month for the other months of the year, with mean temperatures of 24-26 ⁰C all 

year round. 

Mosquito survey data provided in the .csv file details Anopheles gambiae abundance 

collected monthly from 8 houses over 2015 and 2016.  

 

Figure 3.1 Lodja study area location. 
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4. Dataset generation – QGIS  

Most of the workflow in this user manual draws on the ingested data archives of GEE, 

but other input data, specific to the study area of interest, are also required. This 

includes: 

1) Coordinates, or a shapefile delineating the study area of interest. 

2) A polygon shapefile corresponding to training areas for generating a land cover 

classification of the study area. Each training polygon requires an integer 

code/attribute corresponding to the appropriate land cover class for that polygon 

(e.g.1 forest, 2 grassland etc. see table 4.1). 

3) A validation data set of locations of known land cover types to perform accuracy 

assessment of the land cover classification. This shapefile should have points 

containing integer code/attributes that correspond to the land cover class at that 

location. The integer codes used for each land cover class must be consistent 

between the training (polygon) and validation (point) shapefiles. 

4) Mosquito survey data including survey location coordinates, survey date and 

mosquito species and abundance for each location. 

 

It is expected that the mosquito count data will be available as a .csv file (viewable and 

editable in Excel), with columns corresponding to different data attributes, and rows 

corresponding to individual survey records (Figure 4.1). Data survey locations recorded 

with X and Y coordinates as different attributes are a pre-requisite for analysis. 

  

Figure 4.1. Example of mosquito survey data format. 
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4.1 Creating a validation point shapefile 

Here, we will create a point shapefile for validation comprising locations of known land 

cover types to assess the accuracy of the land cover classification that we will produce. 

Point shapefiles can be created manually (see the section below where a shapefile is 

created and populated; note that for the validation data, a point rather than polygon 

shapefile would be used) or generated from pre-existing ground reference points 

typically in spreadsheet format. We will create a point shapefile of validation data from 

a pre-existing dataset saved in .csv format. To import from a spreadsheet, follow these 

steps:  

● Open QGIS and create a new project by clicking on the icon under the main 

toolbar. 

● On the main ‘Layer’ toolbar, select ‘Add Layer’, then ‘Add Delimited Text 

Layer’ (Figure 4.2). Select the .csv file to import in the ‘File name’ box. 

● Click on the ‘Geometry Definition’ option. Make sure ‘Point coordinates’ is 

selected, then for the ‘X field’ select ‘Long_dd’, and for ‘Y field’ select 

‘Lat_dd’. 

● Ensure X and Y co-ordinates are in the correct columns and keep the default 

parameters. 

 

Figure 4.2. QGIS ‘Create a layer from a delimited text file’ window. 
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● Next, we check that the appropriate coordinate reference system (CRS) is being 

used. As our coordinates here are in decimal degrees, we use the CRS 

EPSG:4326 – WGS84. Check that this is selected as the ‘Geometry CRS’. If it 

is not, set the appropriate coordinate reference system by clicking the icon 

next to the ‘Geometry CRS’ drop-down box. This will open the ‘Coordinate 

Reference System Selector’ window (Figure 4.3). 

 

Figure 4.3. The coordinate reference system selector window. 

 

● Here, we can use the ‘Filter’ search tab at the top of the window to find the 

required coordinate system. Type 4326 into the search filter, and the WGS84 

EPSG:4326 option will appear below the filter bar. Select this and click ‘OK’. 

● Returning to the ‘Data Source Manager’ window, click ‘Add’ then close, and the 

locations in the .csv file should then be displayed (Figure 4.4). The layer name 

‘mosquito_survey_data’ should be displayed in the ‘Layers’ panel. 
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Figure 4.4. The locations contained in the .csv file displayed in QGIS. 

 

● To then save the mosquito_survey_data layer as a shapefile, right-click on the 

layer in the ‘Layers’ panel, select ‘Export’ then ‘Save Features As…’. Specify 

the File Format as ‘ESRI Shapefile’ and then specify the file name of the 

shapefile to be saved (you can retain the mosquito_survey_data file name), 

and specify the location where the file is to be saved using the icon. 

 

4.2 Creating a training polygon shapefile 

One of the steps in this tutorial is to generate a land cover classification of the study 

area. Depending on the specific nature of the study area, the land cover classes 

appropriate to map may differ. In this example, an eight-class classification 

nomenclature will be used with these classes and the corresponding land cover codes 

displayed in Table 4.1. This user guide comes complete with training and validation 

data for the classification for the study example Lodja but if users wish to create 

their own for their area of interest sections 4.2 and 4.3 describe the steps on how to do 

this.  
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Table 4.1. Land cover classes and corresponding codes. 

Land cover class Code 

Forest 1 

Grassland 2 

Clearing 3 

Fallow 4 

Built-up 5 

Flowing water 6 

Static water 7 

Burnt 8 

 

Ideally, land cover classification training and validation data will be based on field-

collected data where locations of known land cover type are recorded with a GPS. This 

can, where appropriate, be supplemented with additional training / validation data 

derived from very-high resolution (VHR) imagery of the area of interest derived via 

public portals such as Google Earth or Bing Aerial. Users must be aware of the 

limitations of using these data sources especially where there is a temporal mismatch 

between the acquisition dates of the satellite data that is being classified, and the VHR 

imagery being used as the reference. We do not offer a review of classification or 

training/validation data collection methodology here, but we would encourage users to 

engage with appropriate background literature on these topics to improve their 

understanding of the process, and how differing approaches can impact the quality of 

the output land cover classifications.  

The training dataset for the land cover classification that will be performed in Google 

Earth Engine will be a point vector dataset containing an equal number of training 

points (locations) for each land cover class. Initially, a polygon shapefile will be created 

with multiple polygons corresponding to areas of known land cover types. These 

training polygons will be created for each land cover class that we wish to classify. As 

the distribution of land cover class across a study area varies with some land cover 

types scarcer than others, and as the size and number of polygons created for each 

land cover class is likely to vary, we then create a subset of training data from these 

polygons. This process takes the existing training polygons and selects a defined 

number of randomly located points within the spatial extent of the polygons for each 

land cover class. This ensures that a balanced training dataset is used for the 
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classification, with each land cover class equally represented in the training data. The 

training polygon dataset will be imported into GEE as an asset, and the sub-setting and 

conversion to a point dataset will be performed within GEE. 

Here, reference VHR imagery layers available in QGIS will be used as a reference data 

source for creating the initial polygon training shapefile. 

● Open QGIS and install the ‘QuickMapServices’ plugin, which contains a 

variety of data sources including VHR imagery that can be used as a 

basemap for contextualisation, and for reference data collection. To do this, 

click ‘Plugins’ on the main toolbar, then ‘Manage and install plugins’. 

● The ‘Plugins’ pop-up box should open (Figure 4.5). In the search bar, search 

for ‘QuickMapServices’, the install the plugin.  

 

 

Figure 4.5. QGIS Plugins window. 

 

● Once installed, the QuickMapServices option should appear in the ‘Web’ tab 

on the main toolbar. If you select this, it will display the layers that are 

currently available to display as base maps (Figure 4.6). This currently only 

gives a limited number of options – we can increase these options by 

downloading additional contributed packs. 
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Figure 4.6 QGIS QuickMapServices layer options. 

 

● To do this, open the ‘QuickMapServices’ option from the main toolbar, and 

click the ‘settings’ option. On the pop-up box that opens, select the ‘More 

services’ tab, then click on ‘Get contributed pack’. Click ‘Save’. There 

should now be a larger range of base maps and imagery products available 

via QuickMapServices, including VHR imagery from the Google Satellite and 

Bing satellite layers. Select ‘Google Satellite’ and this should appear as a 

basemap, and as an option in the ‘Layers panel’, which can be switched on 

or off. If no other data is loaded in the QGIS session then the basemap will 

initially display for the full globe, however you can use the pan and zoom 

functions to focus on your area of interest at a much higher level of detail. 

 

● Next, create a new project by clicking on the icon under the main toolbar. 

Then, click on the ‘New Shapefile Layer’  icon under the main toolbar, 

and the ‘New Shapefile Layer’ window should open (Figure 4.7). 
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Figure 4.7. New shapefile window. 

 

● Fill out the menu box, ensuring you set the geometry ‘Type’ to ‘Polygon’ and 

select the appropriate Coordinate Reference System. You then need to add 

a column for the land cover classes in the ‘New field’ section. In the ‘Name’ 

box type ‘Class’. Make sure the ‘Type’ drop down menu is set to ‘Whole 

number’. Press ‘Add to fields list’ to add this to the polygon. 

● Save the polygon into an appropriate directory. It should then be added as a 

layer in the ‘Layers’ tab. 

● Select the shapefile in the Table of Contents, and then click the ‘Toggle 

Editing’  button on the toolbar on the top panel. Then select the ‘Add 

Feature’  button underneath. 

● Draw around an area of interest for a particular land cover class, using the 

left mouse button to add vertices and a right click to complete the polygon. 

When the polygon is finished, the ‘Feature Attributes’ box required details to 

be added (Figure 4.8). Add the polygon id and the class number that 

corresponds to the land cover class (Table 4.1) being digitized. 
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Figure 4.8. Feature Attributes window. 

 

● Continue adding more training polygons until a full training dataset is 

complete. 

● To finish editing, save the polygons by hitting the ‘Save’  button and then 

finish editing by clicking the ‘Toggle Editing’  button. It is recommended 

that you save your edits at regular intervals throughout this process. 

 

4.3 To create the study area extent shapefile 

We also need to create a shapefile delineating the study area of interest to constrain 

the area of data processed in, and exported from, Google Earth Engine. To do this, 

follow the steps set out in the ‘4.2 Creating a training polygon shapefile’ section to 

create a new shapefile. Then add a single polygon corresponding to the area of interest 

and save the polygon. It is not necessary to add further attributes to this shapefile, 

although you can do if you so wish. 

  



Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito 
distributions using Google Earth Engine and R 

UKCEH report … version 1.0                                      24 

 

5. Google Earth Engine - satellite date pre-
processing 

 

5.1 GEE interface / GUI 

Google Earth Engine (GEE) is the cloud-processing platform through which much of 

the data pre-processing is performed prior to the subsequent modelling stage. Before 

getting started with the analysis, lets familiarise ourselves with the GEE interface. 

First, open a web-browsing session in Google Chrome and navigate to 

https://code.earthengine.google.com. The GEE interface appears as in Figure 5.1, here 

with an example script and analysis output displayed. 

 

 

Figure 5.1. Google Earth Engine interface. 

 

GEE works via command-line using the programming language Javascript, with specific 

commands given as lines of code corresponding to different data processing 

https://code.earthengine.google.com/
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applications. Multiple commands can be linked together for more complex multi-stage 

data processing tasks, with scripts sharable with other users. It is advised to save 

revisions made to scripts at regular intervals. If you would like to share scripts that you 

have developed with other users you can do this by clicking ‘Get Link’, then in the pop-

up window that opens click the ‘Click to copy link’ icon. You can then distribute the 

link as appropriate to other users who will be able to access the script. If the script 

relies on assets that have been uploaded to a user account, it will be necessary to 

share those assets. To do this, navigate to the appropriate location in the ‘Assets’ tab, 

hover the cursor over the appropriate asset filename and click on the ‘share’ icon. In 

the pop-up box that opens tick the ‘Anyone can read’ check box, then click ‘Done’. 

The asset will then be available for other users to access when they are running the 

script that you have distributed. 

To open a GEE script that has been shared with you, simply paste the link into a 

Chrome web browser session or double-click the hyperlink. You will then be taken to a 

GEE code editor session displaying the script which you will then be able to run. 

Although this tutorial uses a script developed to run analysis similar to that contained in 

Marston et al. 2023, a far broader range of functionality and datasets are available 

within GEE and users are encouraged to investigate these via the GEE website at 

https://earthengine.google.com/.  

 

5.2 Uploading assets 

Some of the datasets that will be modelled in response to mosquito abundance can be 

directly exported from GEE, however others (such as land cover proportional coverage 

and distance to nearest patch of a given land cover type) will be generated by the user 

within GEE. To do this, it is necessary to upload additional datasets into GEE to 

perform and validate the land cover classifications. These datasets must be uploaded 

as assets and will include shapefiles delineation of the area of interest (AOI), training 

areas of known land cover type for performing land cover classification, and validation 

locations for assessing the accuracy of the land cover classifications performed. Points 

and/or polygons can be added directly vie the GEE, however, as datasets such as 

these are often collected in advance during fieldwork campaigns and are often large in 

number, a more practical way to add this data into GEE is to load an existing shapefile 

https://earthengine.google.com/
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containing the required data as an asset. To upload an asset, in the GEE session 

select the ‘Assets’ tab (top left), click ‘New’ then ‘Shapefiles’. Click ‘Select’, navigate 

to the location where the shapefile is saved. Although shapefiles are viewed as a single 

file in a GIS, they are actually comprised of several files, which will have the same 

prefix (filename), but different file extensions, for example .shp, .shx, .dbf and others. 

These multiple files work in combination to define the geometry and attributes of the 

data to be displayed or analysed. When uploading a shapefile to GEE, all the 

constituent files forming the shapefile must be selected, with the exception of the .sbx 

file. If the .sbx file is selected, then the upload process will fail. If this occurs, try 

uploading the shapefile again without including the individual file with the file extension 

that causes the problem. 

On this occasion, we will require training data identifying locations of known land cover 

types for performing a land cover classification, and a separate validation dataset to 

perform and accuracy assessment of the classification. These have already been 

uploaded as two separate assets and shared, the training data as a polygon shapefile, 

and the validation data as a point shapefile. 

 

5.3 GEE scripts 

Three Google Earth Engine scripts have been provided accompanying this user 

manual and are used for the following sequential stages;  

1. Data preparation (page 26) 

2. Data modelling (page 63) 

3. Data visualisation (page 71) 

The scripts are made available via the hyperlinks provided in the relevant sections of 

this user manual. If you use ctrl and click, this link it will open a GEE code editor 

session containing the script. Alternatively, this link can be copied and pasted into a 

web browser session.   

Script 1: Data pre-processing 

https://code.earthengine.google.com/d1e89a3d439d14e84df704a7c81d442c 

The code will appear similar to that displayed in Figure 5.2. 

 

https://code.earthengine.google.com/d1e89a3d439d14e84df704a7c81d442c
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Figure 5.2. Google Earth Engine code editor with script displayed. 

 

The following sections provide an explanation for the various stages of the data 

processing and modelling. Instructions on running the scripts is found in section 5.5 

(p.52)  

 

The GEE data processing requires several steps, which are outlined below. The code 

required to run these steps is described below but note that where an example is given 

(for example to perform a stage of data analysis for a particular land cover class), this 

may need repeating for other variables of interest (e.g., other land cover classes). For 

brevity, a single example is provided and described in this document, however the 

accompanying GEE script contains the complete code. The GEE script is divided into 

sections as following: 

2 Functions and display parameters 

3 Sentinel-1 SAR processing for land cover classification 

4 Topographical data processing 

5 Sentinel-2 imagery collection processing 

6 Random Forest land cover classification 
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7 Calculate proportional areas of individual land cover classes using moving 

window 

8 Calculate 'distance to' rasters 

9 Calculate vegetation and water indices 

10 CHIRPS (precipitation) data extraction and smoothing 

11 Scale and convert data to integer, compile bands and export 

12 Import mosquito sampling data and extract band data 

 

Sections of the script denoted by // are ‘commented out’, these are recognised by GEE 

as being inert code i.e. descriptive text rather than a command to run (e.g. Figure 5.3). 

This is useful for adding in comments or notes to describe what the commands do at 

certain stages of the script, or for disabling commands without deleting them from the 

script where this would be useful. Sections of the script that are commented out are 

displayed in green text. 

 

 

Figure 5.3. Example of the script with ‘//’ and green text denoting comments  

 

Although the content of this user-manual and the code therein are based on the 

research contained in Marston et al. (2023), there are slight differences in the methods 

and implementation of that paper and this user guide. These adaptations are deliberate 

and designed to utilise the richer abundance of satellite Earth Observation dataset 

available since the time period of field data collection involved in Marston et al. (2023), 

with a view to the future implementation of these methods across other malaria 

endemic regions. Principally, whereas Marston et al. (2023) utilised single cloud free 

images, the methods presented in this user guide instead use collections of images in 

combination to generate cloud-free composites, offering improved flexibility and 
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opportunity for practical application of these methods in areas where opportunities to 

obtain single cloud-free images are low. 

 
5.4 Importing assets 

Section 5.2 described how you can upload assets for analysis in GEE should you need 

to do this for your own study sites and applications. To view the assets have been 

uploaded and are available, click on the ‘Assets’ tab towards the top-left of the GEE 

window (Figure 5.4). This will display the assets that are available for analysis. 

 

 

Figure 5.4. Assets tab on the GEE console 

 

If your assets are saved in sub-directories, you can expand the sub-directory to view its 

contents. When the cursor if hovered over the asset of interest, three icons will appear, 

these being ‘Share’, ‘Rename’ and ‘Import into script’. To make an asset available for 

analysis using the GEE script, you must import it by clicking on the ‘Import into script’ 

icon. When imported, the asset will then appear at the top of the code window and will 

be available as an asset that can be called by the code. The name of the asset is also 

given, for example in Figure 5.5 three assets are imported and have been assigned 

have the names table, table2 and table3. 
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Figure 5.5. Assets imported into the GEE script. 

 

For the purposes of this training exercise, the required assets have already been 

uploaded and are read in at the beginning of the relevant GEE script. 

 

5.3 Description of the script  

 

5.3.1 Functions and display parameters 

To run a particular command on every feature within a collection, we first define the 

operation that we wish to apply to every element in the collection as a function. We are 

then able to apply, or ‘map’ that specified function over every object or image in a 

specified collection using the map() command. For example, if the function is to generate 

a Normalised Difference Vegetation Index (NDVI) layer for a particular image, and 

the collection contains all Sentinel-2 images for a location over a year, then mapping 

the function over the collection will generate NDVI layers for each image in the 

collection.  

In this example, the functions used within the script do not require editing. As such, 

they are not examined in detail here other than to list what the functions do: 

● Calculate a ratio (VV/VH) layer from Sentinel-1 VV and VH polarisation bands; 

● Cloud-mask the Sentinel-2 imagery and mask image edges 
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● Calculate Normalised Difference Vegetation Index (NDVI) 

● Calculate Soil-adjusted Vegetation Index (SAVI) 

● Calculate Normalised Difference Water Index (NDWI) 

● Calculate Modified Normalised Difference Water Index (MNDWI) 

These functions will be mapped across data collections at appropriate stages 

throughout the script. 

 

Next, we pre-define a colour palette that can be used to display the land cover 

classification that we will generate for inspection. A specific colour is defined for each 

class that will be mapped using the code below. The command var instructs GEE to 

create a new object, and this followed by the name of the object to be created which 

here we will call palette. The following code then specifies what the object created will be 

– here it will comprise a series of hex codes each of which correspond to a colour. As 

there will be eight land cover classes in the classification, eight hex codes are 

specified. Each code is then followed by commented out text identifying which class the 

specific colour applies to, what that class is, and the colour that will be displayed. As 

this text is commented out these are not commands that GEE will run, but they do 

provide a useful reference note to the user. More details on hex codes and the 

corresponding colours can be found at Colour HEX codes can be found at 

https://cloford.com/resources/colours/500col.htm   

 

var palette = [ 

  '008000', // Class 1, forest, green 

  'FFFF00', // Class 2, grassland, yellow 

  'C0C0C0', // Class 3, clearing, silver 

  '800000', // Class 4, fallow, maroon 

  '000000', // Class 5, built-up, black 

  '00FFFF', // Class 6, flowing water, cyan 

  '0000FF', // Class 7, static water, blue 

  '800080', // Class 8, burnt, purple 

]; 

https://cloford.com/resources/colours/500col.htm
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Next, we specify the established flight distance of the mosquito species that we are 

modelling here, Anopheles gambiae. This is specified as 846 m in Verdonschot and 

Besse-Lototskaya (2014). 

 

var flight_distance = 846; 

 

Having defined the functions, display parameters and flight distance that are required 

within the GEE script, we move on to the data preparation stages. 

 

5.3.2 Sentinel-1 SAR processing for land cover classification 

The next set of commands selects a collection of Sentinel-1 Synthetic Aperture 

Radar (SAR) images, extracts the VV and VH polarisation data from this collection, 

calculates a ratio data product, and generates median pixel value data sets for each of 

the VV, VH and ratio data products. First, we create the collection of Sentinel-1 images. 

 

// Get the Sentinel-1 collection. 

var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD') 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

.filterBounds(table) 

.filterDate('2016-10-08', '2017-10-08') 

 

Let us break what these commands do down line by line. The first commented out line 

simply identifies to the user what actions the following block of commands performs. 

 

// Get the Sentinel-1 collection. 
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The next line instructs GEE to create a collection of Sentinel-1 SAR images. var 

denotes that a new object is being created by the following command(s). collectionS1 is 

the name of the object (the collection of images) that is being created. = denotes that 

the collection is being created based on the following command(s). 

ee.ImageCollection('COPERNICUS/S1_GRD') denotes that the image collection that we are creating 

will draw on the GEE ingested archives of Sentinel-1 SAR imagery which has the GEE 

dataset identifier of 'COPERNICUS/S1_GRD'. A wide range of pre-ingested datasets 

are available within GEE each with its own identifier. If we wished to perform this 

function on a different dataset, we would need to change the dataset identifier in this 

command to the identifier of the alternative dataset that we wished to use. Further 

information on the various datasets available within GEE and their respective identifiers 

is available at the GEE website (https://earthengine.google.com/) if required. 

 

var collectionS1 = ee.ImageCollection('COPERNICUS/S1_GRD') 

 

Currently the command will create an object containing all the Sentinel-1 images 

available in the GEE archives. We then need to perform a series of filtering operations 

to select only the images for the data products, geographical area and time periods that 

we are interested in. Firstly, we specify that we only require the Interferometric Wide 

Swath data acquisition mode. Sentinel-1 acquires data in multiple data acquisition 

modes however here we are only interested in the Interferometric Wide Swath mode. 

We do not go into detail here about the different data acquisition modes and data 

characteristics of Sentinel-1 but would encourage the user to familiarise themselves 

with the literature on this topic. The following line specifies that the collection will be 

filtered to retain only the instrument mode = Interferometric Wide Swath, identified in 

the code as IW. 

 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 

 

The Sentinel-1 SAR data is acquired in two polarisations, VV and VH. We require both 

of these polarisations for the subsequent data analysis and here we perform further 

https://earthengine.google.com/
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filtering steps to retain only the images that contain firstly the VV, then secondly the VH 

polarisations. We also filter the collection to retain images acquired only in a 

descending orbital path.  

 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

 

Next, we will further filter the collection to retain images intersecting our area of interest. 

The area of interest here is defined by the object table, which is the area of interest 

bounding box shapefile that was imported as an asset at an earlier stage. This will 

retain only the images that intersect this area. Note that some of the images retained 

may not cover the full extent of the area of interest, and the coverage of some images 

may extend beyond the boundary of the area of interest. 

 

.filterBounds(table) 

 

Finally, we will filter to retain images acquired only during our time period of interest. To 

do this we simply specify firstly the start and secondly the end dates of the time period 

that we are interested in. Here we have specified a time period of the 8th October 2016 

to the 8th October 2017. For this command, dates are entered in the format YYYY-MM-

DD. 

 

.filterDate('2016-10-08', '2017-10-08') 

 

The filter commands will run sequentially to produce the image collection for our 

location, time period and data characteristics of interest. Next, we will take this 

collection and perform further analysis steps on it.  

The image collection will contain a large number of images acquired on different dates. 

For some applications, however, we do not want many images but instead just a single 
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image, which represents the ‘typical’ characteristics of the area of interest over the full 

time period, rather than just at a single snapshot in time. GEE uses ‘Reducers’ to 

convert a collection of images into a single output image based on parameters that the 

user defines. We do not explore reducers in depth here, however we will apply a 

median reducer to the data collection that we have created. This will, for a given 

location, calculate the median value of all the unmasked pixels within the collection for 

a pixel location. This median value the forms the pixel value for that location in the 

output image. This is repeated for all pixels within the extent of the image collection, 

producing the output raster band. 

We generate the median layer using the code below. Here we combine two commands 

in the same line of code, with the commands applied sequentially in the order that they 

are written to create a new image named VVonly_med containing the median pixel values 

of the VV polarisation data from the Sentinel-1 collection previously created. The first 

command selects only the VV polarisation data from the collectionS1 collection. The 

second command creates a new image that contains the median VV pixel values. Note 

that this creates an individual image, rather than a collection of images as we have 

done earlier. 

 

var VVonly_med = collectionS1.select('VV').median(); 

 

Next, we repeat this process for the VH polarisation. 

 

var VHonly_med = collectionS1.select('VH').median(); 

 

Finally, we calculate the ratio band. We cannot select this in the same way that we did 

for the VV and VH bands as the ratio band does not yet exist – we need to calculate it. 

To do this, we need to map the vh_vv function that was defined in the functions section 

of the code over the collectionS1 collection, and then apply a median reducer.  

 

var ratio_med = collectionS1.map(vh_vv).median(); 
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The function is mapped here using the command collectionS1.map(vh_vv) where collectionS1 is 

the collection on which the function will be mapped, .map() is the command to map the 

function, and vh_vv is the name of the function that is being mapped. We then apply a 

median reducer to generate a single median ratio layer as we did earlier for the VV and 

VH layers.  

 

5.3.3 Topographical data processing  

Topographical data is utilised within this analysis in two ways, for inclusion in the land 

cover classification stage, and also to be analysed as independent variables in relation 

to mosquito abundance. We are interested in four topographical data products, these 

being elevation, aspect, slope and Topographic Position Index (TPI). All these products 

use the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) 

dataset already ingested in GEE. First, we use the SRTM DEM data, here denoted by 

'USGS/SRTMGL1_003' to create a new image called dataset. Note that as we are just using a 

single DEM dataset rather than a number of different satellite images as we have done 

previously, we are creating an image object rather than an image collection. 

 

var dataset = ee.Image('USGS/SRTMGL1_003'); 

 

We then select elevation from dataset and use this to create a new elevation_int image. We 

use the .toInt() command to convert the image to integer values. 

 

var elevation_int = dataset.select('elevation').toInt(); 

 

From the elevation_int image, we then calculate slope and aspect and save them as 

separate images. Again, both slope and aspect images are converted to integer values, 

however as converting decimal slope to integer values directly would result in loss of 

detail within this data, we first multiply the slope values by 10000.  

 

var slopex10k_int= ee.Terrain.slope(elevation).multiply(10000).toInt(); 

var aspect_int= ee.Terrain.aspect(elevation).toInt(); 
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Next, we calculate the Topographic Position Index (TPI). To do this, we calculate the 

elevation for each pixel, and subtract this from the mean elevation of the surrounding 

area in this case over a 15-pixel radius circular area. This creates the tpi_15_pixel_int 

image, where elevation is the DEM specified earlier and 15 is the number of pixels 

defined as the radius of the circular area over which the mean elevation value will be 

calculated. We then apply the .toInt() command to specify that the dataset generated will 

be in integer format.   

 

var tpi_15_pixel_int = elevation_int.subtract(elevation_int.focal_mean(15)).toInt(); 

 

5.3.4 Sentinel-2 imagery collection processing 

Next, we create a new image collection for the Sentinel-2 optical images that will be 

used in combination with the Sentinel-1 and topographical datasets to perform the land 

cover classification, and to generate vegetation index data products. The commands 

below create an image collection by selecting data from the Sentinel-2 surface 

reflectance data archive (identified in GEE as 'COPERNICUS/S2_SR'), and filters the 

collection based on the extent of the study area as specified in the asset ‘table’, and by 

the date range specified. Sentinel-2 optical data, unlike the Sentinel-1 SAR data, is 

affected by cloud. This is problematic in many parts of the world including many 

malaria-endemic regions. Fortunately, the functionality of GEE enables a new 

composite image to be generated from a series of images that may be partially cloud 

affected, increasing the area of cloud-free coverage for analysis. Cloud masking of the 

Sentinel-2 imagery is also performed using the Sentinel-2 Cloud Probability product. 

First, we specify the imagery and cloud probability data products that we wish to use, 

and set a maximum cloud probability threshold value, here 65, that we wish to apply. 

 

var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR'); 

var s2Clouds = ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY'); 

var MAX_CLOUD_PROBABILITY = 65; 
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We then specify the .filterBounds extent and date range that will be applied to filter both 

datasets. 

 

var criteriaS2 = ee.Filter.and( 

    ee.Filter.bounds(table), ee.Filter.date('2018-06-20', '2019-06-24')); 

 

We then apply these filtering criteria to both the S2_SR and Cloud Probability data that 

we wish to use. For the S2_SR collection, we also map the maskEdges() function here. 

 

var s2Sr = s2Sr.filter(criteriaS2).map(maskEdges); 

var s2Clouds = s2Clouds.filter(criteriaS2); 

 

Next we join the S2_SR collection with the Cloud Probability dataset to add the cloud 

mask, creating the new image collection s2SrWithCloudMask. 

 

var s2SrWithCloudMask = ee.Join.saveFirst('cloud_mask').apply({ 

  primary: s2Sr, 

  secondary: s2Clouds, 

  condition: 

      ee.Filter.equals({leftField: 'system:index', rightField: 'system:index'}) 

}); 

 

Next, we create a new image collection from the s2SrWithCloudMask collection by mapping 

the maskClouds() function, and retaining only the spectral bands in those images that we 

require for the land cover classification. Here, we retain bands 2, 3, 4, 5, 6, 7, 8, 8A, 11 

and 12. Bands 1, 9, 10 and 11 are optimised for atmospheric applications, which are 

not relevant in the context of this work and are therefore disregarded here.  
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var S2_bandsubset = 

ee.ImageCollection(s2SrWithCloudMask).map(maskClouds).select('B2','B3','B4','B5','B6','B7','B8','B8A','B

11','B12'); 

 

We then apply a median reducer to the S2_bandsubset image collection to create the 

median image S2_med_bandsubset . 

 

var S2_med_bandsubset = S2_bandsubset.median(); 

 

Finally, we combine the Sentinel-2, Sentinel-1 and topographical datasets into a single 

multi-band image on which we will perform the land cover classification. The new image 

we will create will be called data_stack, with the  S2_med_bandsubset image forming the first 

bands. To this, we add the VVonly_med, VHonly_med, collection_ratio_run_med, elevation, slope and 

aspect bands in that order.  

 

var data_stack = 

S2_med_bandsubset.addBands(VVonly_med).addBands(VHonly_med).addBands(ratio_med).addBands(

elevation_int).addBands(slopex10k_int).addBands(aspect_int); 

 

5.3.5 Random forest land cover classification 

Now we have created the data stack, we can perform the land cover classification. 

First, we create a new feature collection named polygons from the table2 asset that we 

imported earlier. This contains a series of polygons corresponding to areas of known 

land cover types that will be used to train the classifier. Each polygon contains the 

attribute ‘classcode’, which is an integer code where each value corresponds to a 

different land cover type (Table 1). 

 

var polygons = table2; 

 

Next, we extract the pixel values for each band in the data stack for the training 

polygon locations. In the following commands, classification_training is the name of the 
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object containing the training data that we will create, data_stack is the name of the 

imagery data stack that the pixel values are being extracted from, polygons corresponds 

to the training polygon feature collection, and scale: 10, and specifies a spatial resolution 

of 10m. tileScale: 16 is a parameter relating to the background processing of the datasets, 

you do not need to change this. 

 

var classification_training = data_stack.sampleRegions({ 

  collection: polygons, 

  properties: ['classcode'], 

  scale: 10, 

  tileScale: 16 

}); 

 

Next, we build the random forest classifier and train it with the training data we have 

just extracted. The classifier that we create will be called RF_classifier, 500 sets the 

number of trees to be used in the random forest classifier, classification_training is the 

training data, and classcode specifies the classes that will be used in the classification. 

500 trees are specified here, although if memory limit errors are encountered when 

running the GEE code, this number can be reduced. 

 

var RF_classifier = ee.Classifier.smileRandomForest(500) 

    .train(classification_training, 'classcode'); 

 

Now that we have trained the classifier, we can classify the data stack. 

land_cover_classification is the name of the output classification, data_stack is the input data 

stack that will be classified, and RF_classifier is the random forest classifier that we have 

just trained. 

 

var land_cover_classification = data_stack.classify(RF_classifier); 
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We can then add the classification to the viewer panel to inspect it, displaying the 

classification using the colour palette that was defined earlier. Map.addLayer() is the 

command to display an object in the viewer panel. land_cover_classification is the object that 

will be displayed, palette: palette specifies the name of the colour palette that we wish to 

apply, and the min and max values set the range of data values to be displayed. Here 

there are eight land cover classes present, with the values (1 to 8) denoting different 

land cover classes. Map.centerObject() instructs the viewer panel to zoom to a bounding 

box of the specified object, here the table extent with the zoom level set to 10. 

 

Map.addLayer(land_cover_classification,{palette: palette, min:1,max:8}); 

Map.centerObject(table, 10) 

 

As well as generating the land cover classification, it is also necessary to perform an 

accuracy assessment to assess its quality. Random forest classifiers can produce out-

of-bag accuracy assessment statistics, although these typically over-inflate the reported 

accuracy of the classification. An alternative that typically provides more realistic 

accuracy figures for a classification, is to perform an accuracy assessment using an 

independent validation dataset. Here, the code for both approaches is presented. First, 

we will perform an accuracy assessment using the random forest out-of-bag approach. 

The following commands will generate and return, in this order, an error matrix (often 

also termed a confusion/correspondence matrix); the overall classification accuracy 

figure, the Producer’s and User’s accuracy figures for each individual land cover class 

and the Kappa coefficient. The print() command returns the result of the command to 

the ‘Console’ tab. In the accompanying script these commands are commented out but 

are included so that the user can implement the out-of-bag accuracy assessment if 

they so wish. 

 

var RF_classifier_rf_error_matrix = RF_classifier.confusionMatrix(); 

   print(‘RF error matrix: ‘, RF_classifier_rf_error_matrix); 

var RF_classifier_rf_accuracy = RF_classifier.confusionMatrix().accuracy(); 

   print(‘RF accuracy: ‘, RF_classifier_rf_accuracy); 
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var RF_classifier_rf_producers_accuracy = RF_classifier.confusionMatrix().producersAccuracy(); 

   print(‘RF producers accuracy: ‘,RF_classifier_rf_producers_accuracy); 

var RF_classifier_rf_users_accuracy = RF_classifier.confusionMatrix().consumersAccuracy(); 

   print(‘RF users accuracy: ‘,RF_classifier_rf_users_accuracy);   

var RF_classifier_kappa = RF_classifier.confusionMatrix().kappa(); 

   print(‘RF kappa: ‘,RF_classifier_kappa);   

  

Next, we will perform the accuracy assessment with the independent dataset, which 

was previously imported as table3. First, we extract the land cover classes for the 

independent validation point locations, creating an object called validation_extraction. 

 

// Get the values for all pixels in the testing validation dataset. 

var validation_extraction = data_stack.sampleRegions({ 

   collection: table3, 

   properties: ['classcode'], 

   scale: 10, 

   tileScale: 16 

 }); 

  

Next, we generate a confusion matrix, overall accuracy, Producer’s accuracy, User’s 

accuracy and Kappa coefficient and return these to the ‘Console’ tab. 

 

 // Accuracy assessment 

var confusionMatrix = ee.ConfusionMatrix(validation_extraction.classify(RF_classifier) 

     .errorMatrix({ 

       actual: 'classcode', 

       predicted: 'classification' 

     })); 

 print('Confusion matrix:', confusionMatrix); 
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 print('Overall Accuracy:', confusionMatrix.accuracy()); 

 print('Producers Accuracy:', confusionMatrix.producersAccuracy()); 

 print('Users Accuracy:', confusionMatrix.consumersAccuracy()); 

 print('Kappa:', confusionMatrix.kappa()); 

 

5.3.6 Calculate proportional areas of individual land cover classes using moving 
window 

Next, we will calculate how the proportional coverage of each land cover class 

varies across the study area. To do this requires a two-stage process. First, we take the 

land cover classification and from this generate binary presence/absence layers for 

each land cover class individually. Secondly, we use a moving window with a kernel 

size corresponding to the flight range of An. gambiae (846 m) to calculate the 

proportion of the kernel area occupied by the land cover class in question. The moving 

window performs this calculation for every pixel in the binary presence/absence layers 

– for a given pixel it creates a 846 m radius buffer around that pixel, calculates the area 

where the land cover in question is present, then converts this to a proportional value of 

the overall buffered area. The moving window then moves to the next pixel and repeats 

the process, and so on until the calculation has been run on every pixel in the binary 

presence/absence layer for a given land cover class. 

The first stage ‘remaps’ the raster values in the land cover classification (where 

different integer pixel values correspond to different land cover classes) into binary 

values where ‘1’ is the land cover class of interest, and all other values (the other land 

cover classes) are given a value of ‘0’. In the code below, we perform this for the forest 

land cover class, which has the land cover class code ‘1’. Here, the output binary 

presence/absence layer that will be generated will be called class1_only. In the input 

land_cover_classification eight land cover classes are present, with corresponding class 

codes 1, 2, 3, 4, 5, 6, 7 and 8. As we are only interested in class 1 (forest), we remap 

the class values to 1 (retaining forest), then 0, 0, 0, 0, 0, 0, 0 to set the values of all 

other classes to 0. 

 

var class1_only = land_cover_classification.remap([1,2,3,4,5,6,7,8],[1,0,0,0,0,0,0,0]); 
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If we wished to repeat the process for grassland (land cover class code 2), we would 

adapt the code as below 

 

 var class2_only = land_cover_classification.remap([1,2,3,4,5,6,7,8],[0,1,0,0,0,0,0,0]); 

 

In the accompanying GEE script this is performed for each land cover class, however 

for brevity we just present these examples here. We then perform the moving window 

calculation to generate the proportional coverage of the land cover class in question 

(here forest, class 1). This produces the output object class1_mean_mw, specifies class1_only 

as the input raster, focal_mean() is the command to run the moving window, flight_distance 

corresponds to the 846 m flight distance of An. gambiae (this was specified earlier in 

the script), 'circle' sets a circular (rather than square) kernel to be used, and 'meters' 

specifies that the flight distance set is in metres, rather than pixels. Again, in the GEE 

script this is performed for each land cover class although just an individual example is 

presented here. 

 

var class1_mean_mw = class1_only.focal_mean(flight_distance,'circle','meters'); 

  

5.3.7 Calculate 'distance to' rasters 

Next, we will generate further raster data layers giving the distance from a pixel 

location to the nearest patch of a specific land cover class of interest. This is of 

particular interest for woodland edges (resting habitat for mosquitos) and water classes 

(potential breeding habitat). The code below generates a distance product for the forest 

class, with the output pixel values being distance from the location of that pixel to the 

nearest woodland patch in metres. In the accompanying GEE script this is also 

repeated for the fallow, forest and fallow combined, flowing water and static water land 

cover classes. 

 

 var dist_to_forest_m_int = 

class1_only.fastDistanceTransform(500).sqrt().multiply(ee.Image.pixelArea().sqrt()).toInt(); 
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5.3.8 Vegetation indices 

Next, we generate a series of vegetation index (VI) and water index (WI) data 

products. For the study area. VI and WI values for the study area will change 

throughout the year in response to vegetation phenology and seasonal rainfall patterns. 

Here, we are interested in generating ‘typical’ VI and WI values across the full year, 

rather than calculating these values for a particular snapshot of dates within the year. 

Therefore, we use the Sentinel-2 image collection that we created earlier and use 

median reducers to calculate median values across the designated time-period. Two 

VIs, the Normalised Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation 

Index (SAVI) will be produced, along with two WIs, the Normalised Difference Water 

Index (NDWI) and Modified Normalised Difference Water Index (MNDWI). The 

functions to generate these VI and WI products are pre-defined at the beginning of the 

GEE script, and here we map these functions over the S2_bandsubset image collection. 

We then calculate the median values for each VI and WI separately. 

 

var S2_NDVI_medx10k_int = S2_bandsubset.map(NDVI).median().multiply(10000).toInt(); 

var S2_SAVI_medx10k_int = S2_bandsubset.map(SAVI).median().multiply(10000).toInt(); 

var S2_NDWI_medx10k_int = S2_bandsubset.map(NDWI).median().multiply(10000).toInt(); 

var S2_MNDWI_medx10k_int = S2_bandsubset.map(MNDWI).median().multiply(10000).toInt(); 

 

After the functions are mapped, we perform a multiplication x10000, then convert the 

resulting outputs to integer values using toInt(). The data is converted to integer format 

to reduce the size of the data created (integer format data requires less storage 

capacity than other formats such as float or double). For vegetation index values such 

as NDVI, which frequently have a value range between -1 and 1, directly converting to 

integer can truncate the data range resulting in data loss. To prevent this, the data 

values are multiplied by 10000 before converting to integer, preserving the range of 

data values. Users should note is subsequently inspecting the data that it has been 

multiplied by 10000 from the original data values. 

  

5.3.9 CHIRPS data extraction and smoothing 
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Finally, we will extract rainfall data for the study area for the period of, and several 

months preceding the commencement of the mosquito data collection. Rainfall here is 

used as a proxy for the availability of mosquito breeding habitat, with rainfall generating 

ephemeral pools that are frequently used as breeding habitat. The precipitation dataset 

that will be used is the CHIRPS Daily: Climate Hazards Group InfraRed Precipitation 

with Station Data (version 2.0 final), identified in GEE as ‘'UCSB-CHG/CHIRPS/DAILY'.  

The CHIRPS data to be used here - with one CHIRPS dataset for each calendar month 

- are imported as assets at earlier in the script and do not require any further analysis 

to within this script. However, should users wish to repeat this processing for alternative 

sites or dates then the steps to produce these datasets are outlined below. This dataset 

has a spatial resolution of 0.05 arc degrees and can exhibit a noticeable pixel edge 

effect. Consequently, we apply a smoothing stage to the CHIRPS data to minimise 

pixel-edge boundary effects of this dataset. A limit of this analysis is that there is a 

maximum kernel size limit of 512 pixels that can be used for this smoothing, which at 

10 m resolution is an insufficiently small kernel size to perform this smoothing. To work 

around this limitation, the CHIRPS data can be processed separately and exported to 

assets at a pixel size of 20 m (rather than 10 m), sufficiently increasing the size of the 

kernel. 

The commands below generate a monthly CHIRPS dataset for the calendar month of 

August 2014 named Lodja_mean_2014_aug_smooth. A series of commands are applied 

sequentially here. ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') specifies the appropriate GEE 

dataset identifier from which we will generate a collection. The CHIRPS data is a daily 

product, but for consistency with the monthly mosquito data collection periods, we will 

convert this into a monthly mean precipitation per day product. This collection is then 

filtered by date to retain data from the calender month of August 2014 using the 

command .filter(ee.Filter.date('2014-08-01', '2014-08-31')) before generating a mean daily value 

for that time period .reduce(ee.Reducer.mean()). The next command 

.focal_mean(5000,'circle','meters'); performs the moving window smoothing, using a 5000 

meter radius circular moving window. This is then multiplied by 10000 and converted to 

integer format. 
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var Lodja_mean_2014_aug_smoothx10k_int = ee.ImageCollection('UCSB-

CHG/CHIRPS/DAILY').filter(ee.Filter.date('2014-08-01', '2014-08-

31')).reduce(ee.Reducer.mean()).focal_mean(5000,'circle','meters').multiply(10000).toInt(); 

 

The Lodja_mean_2014_aug_smoothx10k_int object will next be exported to assets using the 

code below. Here, image: corresponds to the object to be exported, description: is the name 

of the output file, scale:  is the spatial resolution of the output file (this is where we specify 

20 m), maxPixels: sets the maximum number of pixels that can be exported, region: sets 

the extent for which the analysis should be run and data exported (set here to the area 

of interest defined in the ‘table’ polygon that was earlier imported as an asset), and crs: 

specified the coordinate system / projection of the output file. 

 

Export.image.toAsset({ 

  image: Lodja_mean_2014_aug_smoothx10k_int,  

  description: Lodja_mean_2014_aug_smoothx10k_int, 

  scale: 20,  

  maxPixels: 1e13,  

  region: table,  

  crs: "EPSG:4326" 

  }); 

 

This would be repeated for each calendar month required. These datasets will 

subsequently be read back in as assets, stacked with the other environmental variable 

datasets generated here, and exported as a stack at 10m resolution so all layers in the 

stack have a consistent spatial resolution and projection. 

 

5.3.10 Scale and convert data to integer, compile bands and export 

We have now generated all the layers of data that we require from GEE. Next, we 

compile the bands that we require for subsequent analysis and export the data to asset 

as a multi-band raster, with each band in the stack corresponding to an explanatory 

variable. It is advantageous to export all the data in this way (as opposed to exporting 
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each layer individually), as it guarantees that each layer has the same spatial extent, 

pixel size, number of rows and columns of pixels, and coordinate system.  

First, we convert any variables not already in integer format to integer including a 

multiply by 10000 step to preserve the data ranges where required. This is done for the 

individual land cover class moving window datasets with an example given below for 

class 1 (Forest). The user should again be aware that some data layers will therefore 

be 10000x the original data values in the exported dataset. 

 

var class1_mean_mwx10k_int = class1_mean_mw.multiply(10000).toInt(); 

 

Next, we compile the bands required for export into a new image object called 

GEE_data_for_exportx10k_int. We then display the names of the bands in 

GEE_data_for_exportx10k_int to check that they are all present.  

 

var GEE_data_for_exportx10k_int = 

class1_mean_mwx10k_int.addBands(class2_mean_mwx10k_int).addBands(class3_mean_mwx10k_int).a

ddBands(class4_mean_mwx10k_int).addBands(class5_mean_mwx10k_int).addBands(class6_mean_mwx

10k_int).addBands(class7_mean_mwx10k_int).addBands(class8_mean_mwx10k_int).addBands(elevatio

n_int).addBands(aspect_int).addBands(slopex10k_int).addBands(tpi_15_pixel_int).addBands(dist_to_for

est_m_int).addBands(dist_to_fallow_m_int).addBands(dist_all_forest_and_fallow_classes_m_int).addBa

nds(dist_to_flowing_water_m_int).addBands(dist_to_static_water_m_int).addBands(S2_NDVI_medx10k

_int).addBands(S2_SAVI_medx10k_int).addBands(S2_NDWI_medx10k_int).addBands(S2_MNDWI_medx

10k_int).addBands(Lodja_mean_2014_aug_smoothx10k_int).addBands(Lodja_mean_2014_sept_smoot

hx10k_int).addBands(Lodja_mean_2014_oct_smoothx10k_int).addBands(Lodja_mean_2014_nov_smoo

thx10k_int).addBands(Lodja_mean_2014_dec_smoothx10k_int).addBands(Lodja_mean_2015_jan_smoo

thx10k_int).addBands(Lodja_mean_2015_feb_smoothx10k_int).addBands(Lodja_mean_2015_mar_smo

othx10k_int).addBands(Lodja_mean_2015_apr_smoothx10k_int).addBands(Lodja_mean_2015_may_sm

oothx10k_int).addBands(Lodja_mean_2015_june_smoothx10k_int).addBands(Lodja_mean_2015_july_s

moothx10k_int).addBands(Lodja_mean_2015_aug_smoothx10k_int).addBands(Lodja_mean_2015_sept

_smoothx10k_int).addBands(Lodja_mean_2015_oct_smoothx10k_int).addBands(Lodja_mean_2015_no

v_smoothx10k_int).addBands(Lodja_mean_2015_dec_smoothx10k_int).addBands(Lodja_mean_2016_ja

n_smoothx10k_int).addBands(Lodja_mean_2016_feb_smoothx10k_int).addBands(Lodja_mean_2016_m

ar_smoothx10k_int).addBands(Lodja_mean_2016_apr_smoothx10k_int).addBands(Lodja_mean_2016_

may_smoothx10k_int).addBands(Lodja_mean_2016_june_smoothx10k_int).addBands(Lodja_mean_201
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6_july_smoothx10k_int).addBands(Lodja_mean_2016_aug_smoothx10k_int).addBands(Lodja_mean_20

16_sept_smoothx10k_int).addBands(Lodja_mean_2016_oct_smoothx10k_int).addBands(Lodja_mean_2

016_nov_smoothx10k_int).addBands(Lodja_mean_2016_dec_smoothx10k_int); 

print(GEE_data_for_exportx10k_int.getInfo()); 

 

Next we rename the individual bands with more intuitive names. 

 

 var GEE_data_for_exportx10k_int = GEE_data_for_exportx10k_int.select(['remapped', 'remapped_1', 

'remapped_2', 'remapped_3', 'remapped_4', 'remapped_5', 'remapped_6', 'remapped_7', 'elevation', 

'aspect', 'slope', 'elevation_1', 'distance', 'distance_1', 'distance_2', 'distance_3', 'distance_4', 'B8', 

'constant', 'B3', 'B3_1', 'precipitation_mean', 'precipitation_mean_1', 'precipitation_mean_2', 

'precipitation_mean_3', 'precipitation_mean_4', 'precipitation_mean_5','precipitation_mean_6', 

'precipitation_mean_7', 'precipitation_mean_8', 'precipitation_mean_9', 'precipitation_mean_10', 

'precipitation_mean_11', 'precipitation_mean_12', 'precipitation_mean_13', 'precipitation_mean_14', 

'precipitation_mean_15','precipitation_mean_16', 'precipitation_mean_17', 'precipitation_mean_18', 

'precipitation_mean_19', 'precipitation_mean_20', 'precipitation_mean_21', 'precipitation_mean_22', 

'precipitation_mean_23', 'precipitation_mean_24', 'precipitation_mean_25', 'precipitation_mean_26', 

'precipitation_mean_27','precipitation_mean_28'], 

['proportion_forest', 'proportion_grassland', 'proportion_clearing', 'proportion_fallow', 

'proportion_built_up', 'proportion_flowing_water', 'proportion_static_water', 'proportion_burnt', 

'elevation', 'aspect', 'slope', 'TPI', 'distance_to_forest', 'distance_to_fallow', 

'distance_to_forest_or_fallow', 'distance_to_flowing_water', 'distance_to_static_water', 'Median_NDVI', 

'Median_SAVI', 'Median_NDWI', 'Median_MNDWI','CHIRPS_Aug_2014', 'CHIRPS_Sept_2014', 

'CHIRPS_Oct_2014', 'CHIRPS_Nov_2014', 'CHIRPS_Dec_2014', 'CHIRPS_Jan_2015', 'CHIRPS_Feb_2015', 

'CHIRPS_Mar_2015', 'CHIRPS_Apr_2015', 'CHIRPS_May_2015', 'CHIRPS_June_2015', 

'CHIRPS_July_2015','CHIRPS_Aug_2015', 'CHIRPS_Sept_2015', 'CHIRPS_Oct_2015', 'CHIRPS_Nov_2015', 

'CHIRPS_Dec_2015', 'CHIRPS_Jan_2016','CHIRPS_Feb_2016', 'CHIRPS_Mar_2016', 'CHIRPS_Apr_2016', 

'CHIRPS_May_2016', 'CHIRPS_June_2016', 'CHIRPS_July_2016', 'CHIRPS_Aug_2016', 

'CHIRPS_Sept_2016', 'CHIRPS_Oct_2016', 'CHIRPS_Nov_2016', 'CHIRPS_Dec_2016']); 

 

We then again display the names of the bands in GEE_data_for_exportx10k_int to check that 

they have been changed. 

 

print(GEE_data_for_exportx10k_int.getInfo()); 
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We then export the data stack to assets: 

 

Export.image.toAsset({ 

  image: GEE_data_for_exportx10k_int,  

  description: 'GEE_data_for_exportx10k_int', 

  scale: 10,  

  maxPixels: 1e13,  

  region: table,  

  crs: "EPSG:4326" 

  }); 

 

5.3.11 Import mosquito sampling data and extract band data 

Now that we have created the data stack comprising the explanatory environmental 

variable bands, we need to extract the values from each band for the time and location 

at which the mosquito sampling was performed. Firstly, we need to perform a filtering 

operation to take the full mosquito dataset, and subset it into a series of month-specific 

datasets. We do this as we do not wish to extract the rainfall values for every month, 

instead we will only extract the rainfall values for the calendar month in which each 

subset of mosquito data was collected, and the preceding five months. Consequently, 

this data must be extracted on a month-by-month basis. The full mosquito dataset has 

already been imported as an asset named mosquito_survey_data. The following code 

subsets the mosquito dataset, creating a new data subset named 

mosquito_survey_data_2015_jan which contains only the mosquito data collected in January 

2015.  

 

var mosquito_survey_data_2015_jan = 

mosquito_survey_data.filter(ee.Filter.eq("Year",2015)).filter(ee.Filter.eq("Month",'January'));  

 



Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito 
distributions using Google Earth Engine and R 

UKCEH report … version 1.0                                      51 

 

This performs two filtering operations on the full mosquito dataset, firstly filtering by the 

year attribute and retaining all records collected in 2015, and then by applying a second 

filter to retain only the records identified as ‘January’ in the ‘Month’ attribute. This 

process is repeated for each calendar month between January 2015 and December 

2016. 

Next, we create a series of month-specific data stacks comprising the non-CHIRPS 

variable bands, and the CHIRPS precipitation bands for the month in question, and the 

preceding five months. From these, we extract the band values for the mosquito 

sample locations for the respective month. First, we create a new object named 

static_variables which selects the all the non-CHIRPS bands from the 

GEE_data_for_exportx10k_int data stack. 

 

var static_variables = GEE_data_for_exportx10k_int.select(['proportion_forest', 'proportion_grassland', 

'proportion_clearing', 'proportion_fallow', 'proportion_built_up', 'proportion_flowing_water', 

'proportion_static_water', 'proportion_burnt', 'elevation', 'aspect', 'slope', 'TPI', 'distance_to_forest', 

'distance_to_fallow', 'distance_to_forest_or_fallow', 'distance_to_flowing_water', 

'distance_to_static_water', 'Median_NDVI', 'Median_SAVI', 'Median_NDWI', 'Median_MNDWI']); 

 

Next, we use the command below to create new data stacks comprising the 

static_variables data stack that we have just created, add to this further CHIRPS 

precipitation bands corresponding to the month in question and the preceding five 

months, then apply another command to sample the band values for the locations of 

mosquito sampling for that given month. The example below is for January 2015, and 

creates a new object containing the extracted variable data called training_2015_jan. A 

single example is presented here, but in the accompanying GEE script this is 

performed for all months in 2015 and 2016. 

 

var training_2015_jan = 

static_variables.addBands(Lodja_mean_2015_jan_smoothx10k_int).addBands(Lodja_mean_2014_dec_s

moothx10k_int).addBands(Lodja_mean_2014_nov_smoothx10k_int).addBands(Lodja_mean_2014_oct_

smoothx10k_int).addBands(Lodja_mean_2014_sept_smoothx10k_int).addBands(Lodja_mean_2014_aug

_smoothx10k_int).sampleRegions({collection: mosquito_survey_data_2015_jan,properties: 

['An_gambiae'],  scale: 10}); 
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Once this has been performed for each calendar month, the 24 sets of extracted 

variable data are then recombined back into a single feature collection object. 

 

var training_all_months = 

training_2015_jan.merge(training_2015_feb).merge(training_2015_mar).merge(training_2015_apr).mer

ge(training_2015_may).merge(training_2015_june).merge(training_2015_july).merge(training_2015_au

g).merge(training_2015_sept).merge(training_2015_oct).merge(training_2015_nov).merge(training_201

5_dec).merge(training_2016_jan).merge(training_2016_feb).merge(training_2016_mar).merge(training

_2016_apr).merge(training_2016_may).merge(training_2016_june).merge(training_2016_july).merge(tr

aining_2016_aug).merge(training_2016_sept).merge(training_2016_oct).merge(training_2016_nov).mer

ge(training_2016_dec); 

 

We then export this merged dataset so that the next stage of analysis, feature selection 

using the Boruta method, can be performed in R. The following commands will export 

the training_all_months feature collection to a csv format file named extracted_data and save 

this to the users Google Drive.  

 

Export.table.toDrive({ 

  collection: training_all_months, 

  description: ‘training_all_months', 

  fileFormat: 'CSV' 

}); 

 

From the users Google Drive this file can then be downloaded, saved locally and 

processed in R. 
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5.4. Running the script 

 

This section so far has explained the GEE script content, but not how to run the script. 

To do this, simply click on the ‘Run’ button towards the top-right on the GEE window. 

This will run the full script except any text that has been commented out. Some 

commands will write outputs to the ‘Console’ tab such as the accuracy assessment 

results, while export to asset or drive tasks will appear under the ‘Tasks’ tab. Any 

bands or datasets that are added to the map will appear in the viewer at the bottom of 

the GEE window.  

To switch between tabs simply click on the one you require. You can also resize the 

different panels in the GEE window simply by clicking on the bars between them and 

dragging. It is particularly useful to expand the map viewer window when inspecting 

layers that you have displayed. You will need to zoom in on the map to see your area 

of interest (e.g. Lodja, DRC) (Figure 5.6), this may take a little while to render. 

 

 

Fig 5.6 Map viewer of Lodja in GEE with land classification shown. 

 

When running export tasks either to asset or drive, as well as running the command to 

do this in the script, you will also need to click on the ‘Tasks’ tab where a list of the 
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export tasks to be run will be given. There will be a ‘Run’ button next to each task – 

click on this, and the ‘Task: Initiate table export’ box will open (Fig 5.7). Click ‘Run’ in 

this window and the export will begin – this is not done automatically, so if you do not 

click on ‘Run’ the export process will not begin. Depending on the size of the object 

being exported and the volume of processing by other users being run on GEE at the 

time, exports can take some time – possibly even hours – to complete. Multiple tasks 

can however be set to run simultaneously, and further processing can also be 

performed while previous export tasks are still running in the background. 

 

 

Fig. 5.7 Initiate table export window. 

 

Note that this script involves a large volume of data processing and analysis, so once 

the script is set running it may take a couple of minutes to complete. You may receive a 

‘Page Unresponsive’ notification – if you do, do not worry - this simply means the 

processing is still running. Be patient and give the processing some time to run, the 

warning box will vanish once the processing has completed. 
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6. R – feature selection 

The next stage of the analysis takes the environmental variable data extracted from the 

data stack generated in GEE and perform feature selection analysis using the Boruta 

method to identify which of this wider suite of variables are important in relation to An. 

gambiae abundance. As per the GEE section, this stage of the analysis is 

accompanied by a script that will enable the user to perform the analysis steps in 

RStudio.  

Before beginning the R analysis, we will create a working directory in which we will 

save the data previously extracted and exported from Google Earth Engine. To do this, 

open file explorer, navigate to an appropriate location on your computer and create a 

new directory by right clicking, selecting ‘New’, then ‘Folder’. You can then give the 

folder that you have created an appropriate name. Although the location and name of 

the directory you create will vary, for this exercise we will use a directory with the route 

path: ‘D:\R_mosquito_modelling’. Copy the data to be analysed and the R script that 

we have provided into this folder. If the location and name of your working directory 

differs, the R script should be adapted to specify the alternate working directory 

location and name. 

Next, open RStudio. You should see a window similar to that shown in Figure 6.1. 

 

Figure 6.1. The RStudio window 
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If you are developing a new R script, you would click on ‘File’, then ‘New File’, then ‘R 

Script’, and an additional window would open in the top left of RStudio where you 

would write your code. As we have a pre-prepared script available to perform this 

analysis, we can simply load in this script. Again, go to ‘File’, then ‘Open File’, and 

navigate to the working directory (D:\R_mosquito_modelling). Select the relevant R 

file containing the script and click ‘Open’. The script should now be displayed in the top 

left window of RStudio similar to that displayed in Figure 6.2. 

 

 

 

Figure 6.2. R Studio with an example R script loaded. 

 

Similar to in GEE, sections of commands can also be commented out in an RStudio 

script, with these sections preceded with # and usually displayed in green text.  

To run the script, or a section of the script, first highlight the line(s) of code that you 

wish to run by clicking the mouse and dragging. Once the correct section(s) of text 

have been highlighted, click the ‘Run’ icon  at the top-right of the window in which 

the code is displayed. 
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6.1 Load required packages and set working directory 

R contains a wide range of functionality, much of which is available through add-on 

packages. These packages must be installed and called to enable to functionality of the 

commands within the package. Packages only need to be installed once but will need 

to be called at the beginning of each RStudio session. Packages can be installed 

manually via the ‘Packages’ tab to the bottom right of the RStudio window (Figure. 

6.3).  

 

Fig 6.3 Red arrow indicates where to select ‘packages’ 

 

Click on the ‘Packages’ tab if this is not already the active tab. Next, click ‘Install’ and 

the install packages window should open (Figure 6.4). 

 

 

Fig. 6.4. The install packages pop-up window. 
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In this window, type the name of the package that you wish to install in the ‘Packages’ 

box. As you type, a drop-down list of the available packages should appear. Select the 

appropriate package name, make sure that ‘Install dependencies’ is ticked, then click 

‘Install’. Repeat this process until all the required packages have been installed. 

Perform this for the following Boruta package. 

We then load the Boruta package using the ‘library()’ command. The library command 

is repeated for each of the packages that are required: 

 

 #Load libraries 

library(Boruta) 

 

Next, we specify the working directory created earlier which (unless specified 

otherwise) R will default to for reading data from and writing data to. If the working 

directory location and name differs from the one given here, you will need to update the 

code to reflect this. 

 

setwd("D:/R_mosquito_modelling") 

 

We then read in the .csv file that contains the mosquito and environmental variable 

data that we previously exported from GEE. This use the command read.csv(), and read 

in the file named training_all_months.csv that is saved in the working directory. As we have 

already specified the working directory, we do not need to include the full file route path 

here. This will read in the csv file and create the object data. Finally, we produce a 

summary of the data that we have just imported using the summary() command. This will 

generate basic summary statistics for each of the variables in the data dataset that will 

appear in the console window (Figure 6.4). 

 

data <- read.csv(file = "training_all_months.csv") 

summary(data) 
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Fig. 6.4. Summary statistics of the attributes of data. 

 

Next, we need to create an explanatory_variable_subset subset data set to retain only the 

explanatory variables. This uses the subset command, specifying data as the source 

dataset to subset from, and uses the select = -c(An_gambiae) command to remove the 

An_gambiae attribute. We then again use the summary() function for the new 

explanatory_variable_subset object to check that the An_gambiae attribute has been removed. 

 

explanatory_variable_subset <- subset(data, select = -c(An_gambiae)) 

summary(explanatory_variable_subset) 

 

We then create a new object called response containing only the An_gambiae response 

variable.  

 

response <- data$An_gambiae 

 

Next, we run the Boruta feature selection analysis. First we set a seed value of 10. We 

specify that the output results will be written to an object named boruta_results, specify 

that the Boruta() command will be used, and specify the datasets containing the 

explanatory and response variable datasets. A number of internal parameters are then 

specified. Most of these you will not need to change, however there are options of 

changing the pValue used, and also to number of runs performed in the feature selection 

analysis. Increasing the number of results can be useful if variables are returned as 

‘Tentative’, meaning that the feature selection is unable to confirm whether a variable is 

important or unimportant. Here, a maximum number of 1000 runs is specified. 
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set.seed(10) 

boruta_results <- Boruta(x = explanatory_variable_subset, y = response, pValue = 0.01, doTrace = 2, 

holdHistory = TRUE, getImp = getImpRfZ, maxRuns = 1000) 

 

As the analysis runs, text will be printed to the console window. The process will end 

either when all variables have either been confirmed or rejected as important, or if the 

maximum number of specified runs has been reached. When the processing has 

finished, we can view the results to see whether each explanatory variable has been 

confirmed as important, unimportant, or is labelled as tentative. We can view a 

summary of the results (Figure 6.5) using the command below: 

 

print(boruta_results)   

 

 

Fig. 6.5. Boruta feature selection results. 

 

The results summary will be printed to the console window, and state how many 

iterations were performed and the total run time for these iterations, and how many 

attributes (variables) were confirmed as important, unimportant, or tentative, and list 

some of the variables. Note that if there are a larger number of variables falling into 

these categories then they may not all be listed here, so we may wish to look at the full 

set of results using the command below. 

 

attStats(boruta_results) 

 

Finally, if we wish to get a list of the variables that are confirmed as important, we use 

the commands below. We do have the option of also including variables that are 
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labelled as tentative using the withTentative = command and specifying either T (to include 

tentative variables) or F (do not include tentative variables). 

 

confirmed_variables = getSelectedAttributes(boruta_results, withTentative = T) 

confirmed_variables 

 

The Boruta feature selection results demonstrate that for An. gambiae abundance in 

this case the variables in Table 6.1 are confirmed to be important, whereas the 

remainder of the explanatory variables are confirmed to be unimportant and can 

therefore be disregarded from further analysis. Having identified this parsimonious set 

of variables, we return to GEE to continue the modelling stages focussing on only these 

parsimonious variables.  

 

Table 6.1. The explanatory variables retained after the Boruta feature selection. 

Explanatory variable retained 

Proportional coverage of forest 

Proportional coverage of fallow 

Proportional coverage of flowing water 

Proportional coverage of static water 

Distance to nearest patch of forest or fallow 

Distance to nearest patch of flowing water 

Median NDVI 

Median SAVI 

Median NDWI 

Rainfall0 

Rainfall-1 

Rainfall-2 

Rainfall-3 

Rainfall-4 

Rainfall-5 

 

This feature selection process is demonstrated here as users may wish to adapt this 

processing to different mosquito species in different regions, where an alternative 
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series of environmental variables to those identified here may exert a greater influence 

on mosquito abundance. 
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7. Google Earth Engine - modelling 

 

The second GEE script performs the Random Forest modelling on the reduced set of 

environmental variables that have been confirmed as important in relation to An. 

gambiae abundance by the Boruta feature selection analysis. The GEE script for this 

stage of the analysis can be accessed via the link below: 

 

https://code.earthengine.google.com/167b371d166f68830ff02836bb83d7d0 

 

As before, a number of assets are already imported for this stage of analysis. Again, 

we import the AOI bounding box delineating our study area, the mosquito survey data, 

monthly smoothed CHISPS precipitation data from august 2014 to December 2016, 

and the data stack comprising all the explanatory variable bands 

(GEE_data_for_exportx10k_int) that we exported to asset at the end of the first GEE 

script. 

Next, a number of parameters for the random forest analysis are set; ntrees (the number 

of trees in the random forest), MinLeafPopulation (creates nodes whose training set 

contains at least this many points), maxNodes (maximum number of leaf nodes in each 

tree - if unspecified no limit is the default), variablesPerSplit (the number of variables per 

split), and bagFraction (the fraction of input to bag per tree). 

 

var ntrees = 200; 

var MinLeafPopulation = 1; 

var maxNodes = null;  // (no limit) 

var variablesPerSplit = null;  

var bagFraction = 0.99; 

 

We then take the mosquito survey data that has been loaded as an asset, and again 

subset this data into a series of month-specific datasets as we did previously in the first 

https://code.earthengine.google.com/167b371d166f68830ff02836bb83d7d0
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GEE script. This is done for each calendar month, with example code given for January 

2015 below. 

 

var mosquito_survey_data_2015_jan = 

mosquito_survey_data.filter(ee.Filter.eq("Year",2015)).filter(ee.Filter.eq("Month",'January')); 

 

Next, we create a stack of the static (non-rainfall) raster bands identified by the feature 

selection analysis to be important. We did this previously in the first GEE script, 

however here we will use a reduced set of the static variables, disregarding those that 

the feature selection analysis confirmed as being unimportant. We name the new data 

stack static_variables and select the bands of interest from the GEE_data_for_exportx10k_int data 

stack that we created in the first GEE script, and imported earlier as an asset. 

 

var static_variables = 

GEE_data_for_exportx10k_int.select(['proportion_forest','proportion_fallow','proportion_flowing_water

','proportion_static_water','distance_to_forest_or_fallow','distance_to_flowing_water','Median_NDVI','

Median_SAVI','Median_NDWI']); 

 

We then create a series of month-specific data stacks comprised of the static_variables 

data stack that we have just created, and the CHIRPS precipitation data bands for the 

given month, and preceding five months. The precipitation bands have already been 

imported as assets at the beginning of the script. The example below is for January 

2015, however this is repeated for each calendar month between January 2015 and 

December 2016. 

 

var datastack_2015_jan = 

static_variables.addBands(Lodja_mean_2015_jan_smoothx10k_int).addBands(Lodja_mean_2014_dec_s

moothx10k_int).addBands(Lodja_mean_2014_nov_smoothx10k_int).addBands(Lodja_mean_2014_oct_

smoothx10k_int).addBands(Lodja_mean_2014_sept_smoothx10k_int).addBands(Lodja_mean_2014_aug

_smoothx10k_int); 

 

Whereas in the first GEE script the similar month-specific data stacks were used to 

extract the variable values for the mosquito sample locations in a single step, this time 
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the data stacks serve two purposes. We will extract the mosquito sample locations as 

before, but we will also predictively apply the random forest models that we generate 

on these data stacks to produce predicted mosquito abundance maps for the month in 

questions across the full extent of the study area. The commands above generate the 

month-specific data stacks that we require to perform this predictive extrapolation. 

Next, we use the sampleRegions() command to extract the values from all the raster bands 

for the mosquito sample locations. This is again run for each calendar month with the 

command for January 2015 given below. 

 

var training_2015_jan = datastack_2015_jan.sampleRegions({collection: 

mosquito_survey_data_2015_jan,properties: ['An_gambiae'],  scale: 10}); 

 

This creates the object training_2015_jan, specifies that the datastack_2015_jan is the data 

stack to extract the variable values from, that mosquito_survey_data_2015_jan is the mosquito 

survey dataset for that month for which the sampling locations will be used to extract 

the data, properties: ['An_gambiae'] instructs the An_gambiae attribute in 

mosquito_survey_data_2015_jan (which is the An. gambiae count for the survey location in 

question) to also be included in the output dataset, and scale: 10 specifies the spatial 

resolution to perform the sampling at (here matching the 10 m resolution of the data 

stack). We then merge the training data extracted for each month into a single object 

called training_all_months using the command below. 

 

var training_all_months = 

training_2015_jan.merge(training_2015_feb).merge(training_2015_mar).merge(training_2015_apr).mer

ge(training_2015_may).merge(training_2015_june) 

.merge(training_2015_july).merge(training_2015_aug).merge(training_2015_sept).merge(training_2015

_oct).merge(training_2015_nov).merge(training_2015_dec) 

.merge(training_2016_jan).merge(training_2016_feb).merge(training_2016_mar).merge(training_2016_

apr).merge(training_2016_may).merge(training_2016_june) 

.merge(training_2016_july).merge(training_2016_aug).merge(training_2016_sept).merge(training_2016

_oct).merge(training_2016_nov).merge(training_2016_dec); 

 

Next, we identify the band names of the monthly data stacks that are a required 

parameter of the random forest modelling. We extract the band names using the 
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command below for the datastack_2015_jan datastack. The band names should be identical 

for each monthly data stack, so we only need to do this once here. 

 

var bandNames = datastack_2015_jan.bandNames(); 

 

We then build the random forest model. The commands creates a model named 

rf_regression, which runs the ee.Classifier.smileRandomForest command reading in the ntrees, 

variablesPerSplit, MinLeafPopulation, bagFraction and maxNodes parameters set earlier in the script, 

specifies the output mode as regression (rather than classification), sets 

training_all_months as the training dataset to build the random forest regression model on, 

An_gambiae as the response variable, and the bandNames as explanatory variable names 

that we have just extracted from the data stack (above). 

 

var rf_regression  = 

ee.Classifier.smileRandomForest(ntrees,variablesPerSplit,MinLeafPopulation,bagFraction,maxNodes).set

OutputMode('REGRESSION').train(training_all_months,"An_gambiae",bandNames); 

 

This model is then applied predictively on each monthly data stack, producing a single 

output raster for each month. The example below is for January 2015, however it is 

repeated for each month changing the input data stack and output product name 

accordingly. Here, the output name for the predicted raster is rf_2015_jan_predict, 

datastack_2015_jan is the input data stack, and .classify() is the command to run the  

rf_regression model predictively. 

 

var rf_2015_jan_predict = datastack_2015_jan.classify(rf_regression); 

 

Finally, we stack the monthly predicted bands into a single data stack named RF_predicted 

and save this to assets. This will then be the input into the final GEE script which will be 

used to visualise the An. gambiae predicted abundance maps. 
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var RF_prediced = 

rf_2015_jan_predict.addBands(rf_2015_feb_predict).addBands(rf_2015_mar_predict).addBands(rf_201

5_apr_predict).addBands(rf_2015_may_predict).addBands(rf_2015_june_predict).addBands(rf_2015_jul

y_predict).addBands(rf_2015_aug_predict).addBands(rf_2015_sept_predict).addBands(rf_2015_oct_pre

dict).addBands(rf_2015_nov_predict).addBands(rf_2015_dec_predict).addBands(rf_2016_jan_predict).a

ddBands(rf_2016_feb_predict).addBands(rf_2016_mar_predict).addBands(rf_2016_apr_predict).addBan

ds(rf_2016_may_predict).addBands(rf_2016_june_predict).addBands(rf_2016_july_predict).addBands(rf

_2016_aug_predict).addBands(rf_2016_sept_predict).addBands(rf_2016_oct_predict).addBands(rf_201

6_nov_predict).addBands(rf_2016_dec_predict); 

 

Export.image.toAsset({ 

  image: RF_prediced,  

  description: 'RF_prediced', 

  scale: 10,  

  maxPixels: 1e13,  

  region: table,  

  crs: "EPSG:4326" 

  }); 
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8. Google Earth Engine - data visualisation 

 

To visualise the predicted An. gambiae data, the third GEE script has been developed 

to display the monthly datasets and to enable sharing of the data within a GEE app. 

The link for this script is below: 

https://code.earthengine.google.com/5cbd6be91c69680e2ca8ec1f4cea0af1 

This script reads in the RF_predicted data stack asset comprising the An. gambiae 

predicted abundances for each calendar month. The first section of code renames the 

bands to give them more intuitive names, specifying the month and year to which they 

correspond, and stating whether the bands are the mean predicted abundance (pred) 

or the standard deviation (stdev) output. The example below presents the code for 

renaming the predicted abundance band for January 2015, although in the 

accompanying GEE script this is performed for all months. 

 

var RF_predicted = RF_predicted.select(['classification'],['January_2015_pred']); 

 

We then display the predicted abundance for each month, with example code for 

January 2015 below. 

 

Map.addLayer(RF_predicted, {bands: ['January_2015_pred'], min:0 , max:100, palette: ['blue', 'green', 

'red']}, "An gambiae predicted abundance January 2015", true); 

 

Here, the command Map.addLayer displays the specified band in the viewer, RF_predicted 

specifies the data stack that contains the data to be displayed, and ['January_2015_pred'] 

specifies the individual band within RF_predicted data stack that we wish to display. min:0 , 

max:100 specifies the data range to be displayed, and palette: ['blue', 'green', 'red'] gives the 

colour palette to be used to display the data. Finally "An gambiae predicted abundance January 

2015" gives the label to be displayed for that layer, and true specifies that the layer will be 

https://code.earthengine.google.com/5cbd6be91c69680e2ca8ec1f4cea0af1
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displayed automatically. This can also be set to false, in which case the band will not be 

automatically displayed, although this can subsequently be displayed by ticking the 

check-box for that layer which will appear if you hover the cursor over the Layers tab in 

the viewer window. It is useful when displaying a large number of bands to initially set 

this value to false as sometimes a large number of bands can take a while to render. 

Any band that you do with to display can be switched on using its check-box. 

Finally, we use the command below to zoom to and centre the viewer extent to 

RF_predicted. 

Map.centerObject(RF_predicted); 

 

The remainder of the command text in the script corresponds to creating a legend to 

display alongside the data that we have generated. You will not need to change this 

code so we do not explore it in detail here. 

Running the script will display the results in the map viewer; however ideally, we would 

be able to disseminate the results to others in a convenient way. GEE allows us to do 

this via its Apps functionality, which enables others to view the results of the analysis 

via a web browser. 

To publish the script as an app, click on the ‘Apps’ button at the top-right of the GEE 

screen . On the ‘Manage Apps’ window that opens, click ‘New App’ (top right), 

and the ‘Publish New App’ window will open (Figure 8.1) 
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Figure 8.1. The Publish New App window. 

 

Give the app an appropriate name, check that under ‘Source Code’ current contents of 

editor is checked, and click ‘Publish’. The App will then appear in the ‘Manage Apps’ 

window. If you subsequently make edits to the script, you will also need to update the 

App. To do this, in the ‘Manage Apps’ window, under the ‘ID (click to update app)’ 

column click on the link for the app and the ‘App Details’ window will open. This looks 

very similar to the ‘Publish New App’ window, however under ‘Source Code’ at the 

bottom of this window, check ‘Current contents of editor’ then ‘Save’ and this will 

update the App to include the changes made to the source code. 

To then launch the App, click on the App name under the ‘App Name (click to 

launch)’ column, and the app should open a web browser and display the data similar 

to shown in Figure 8.2.  



Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito 
distributions using Google Earth Engine and R 

UKCEH report … version 1.0                                      71 

 

 

Figure 8.2. Google Earth Engine App displaying the predicted mosquito abundance 

data. 

The App will display the data, but not give the viewer access to the assets or underlying 

code. By hovering over the ‘Layers’ button (top-right) a drop-down list will appear of all 

the layers available to display. Most of these are currently set not to display, although 

the user can use the check-boxes for each band to switch on or off the display for each 

individual band as they wish. They can also zoom in or out and pan around the study 

area, and also change the base layer from the map displayed in Figure xx to a satellite 

image layer. Note that the satellite base layer is not the satellite imagery used within 

the analysis workflow that we have conducted, but is a higher resolution dataset made 

available within GEE for context / visualisation but not analysis. Note also that there will 

be temporal offsets between the acquisition dates of the satellite imagery we have 

analysed, and the acquisition dates of the satellite basemap. 

The app link as displayed in the web browser can then be distributed and viewed by 

users with only the need for a web connection. 

Note that to display data in this way the assets that are loaded and displayed (here the 

RF_predicted stack of bands corresponding to the random forest predictions and standard 

deviation products for each calendar month must be shared. To do this, return to the 

GEE code editor containing the script, click on the ‘Assets’ tab, and then click again on 

the asset that you wish to share. This should open a new window similar to the one in 
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Figure 8.3.  

 

Figure 8.3. Asset information window. 

 In this window, click on ‘Share’, tick the ‘Anyone can read’ check-box, then click 

‘Done’. The asset should now be viewable to anyone via the App. 
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9. Disclaimer 

This user guide and sample datasets are provided "as is" without warranty of any kind, 

including, but not limited to, the implied warranties of merchantability and fitness for a 

particular purpose. The user assumes all responsibility for the accuracy and suitability 

of this program for a specific application. In no event will the authors or affiliated 

institutions be liable for any damages, including lost profits, lost savings, or other 

incidental or consequential damages arising from the use of or the inability to use this 

program. 

Users are encouraged to engage with these training materials and adapt them for their 

own purposes. Should publications be developed incorporating the methods presented 

here, both this user guide and following journal article from which it was developed 

should be cited.  

This user guide should be cited as ‘Marston C.G., Rowland C.S., O’Neil A.W., Irish, S., 

Wat’senga F., Martin-Gallego P., Giraudoux P., and Strode C. 2022. Earth observation 

for malaria modelling: a practical toolkit for satellite-based prediction of mosquito 

distributions using Google Earth Engine and R. UK Centre for Ecology and Hydrology, 

78pp.’ 

The journal article should be cited as ‘Marston C.G., Rowland C.S., O’Neil A.W., Irish, 

S, Wat’senga F., Martín-Gallego P., Aplin P., Giraudoux, P. and Strode, C. 2023. 

Developing the Role of Earth Observation in Spatio-Temporal Mosquito Modelling to 

Identify Malaria Hot-Spots. Remote Sensing. 15, 43. https://doi.org/ 

10.3390/rs15010043’ 
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12. Glossary 

 

Land Cover Refers to the surface cover on the ground, whether vegetation, urban 
infrastructure, water, bare soil or other 

 

Modified Normalised Difference Water Index (MNDWI) 

Uses green and short-wave infrared (SWIR) bands for the enhancement 
of open water features. It also diminishes built-up area features that are 
often correlated with open water in other indices 

 

Normalised Difference Vegetation Index (NDVI)   

Quantifies vegetation by measuring the difference between near-infrared 
(NIR) (which vegetation strongly reflects) and red light (which vegetation 
absorbs) 

 

Normalised Difference Water Index (NDVI) 

 Refers to one of at least two remote sensing-derived indexes related to 
liquid water; either changes in water content in leaves using NIR and 
SWIR or changes related to water content in water bodies, using green 
and NIR wavelengths  

 

Polarisations   Polarisation is a way to give transmission signals a specific direction. It 
makes the beam more concentrated. Signals transmitted by satellite can 
be polarised in one of four different ways: linear (horizontal or vertical) or 
circular (left-hand or right-hand) 

 

Rasters     A raster consists of a matrix of cells (or pixels) organized into rows and 
columns (or a grid) where each cell contains a value representing 
information, such as temperature. Rasters are digital aerial photographs, 
imagery from satellites, digital pictures, or even scanned maps 

 

Sentinel-1 Sentinel-1A and Sentinel-1B satellites share the same orbital plane. 
Both use Synthetic Aperture Radar (SAR) has the advantage of 
operating at wavelengths not impeded by cloud cover or a lack of 
illumination and can acquire data over a site during day or night time 
under all weather conditions. Sentinel-1, with its C-SAR instrument, can 
offer reliable, repeated wide area monitoring. Resolution can be down to 
5m and coverage up to 400km  

Sentinel-2 Two identical SENTINEL-2 satellites operate simultaneously, phased at 
180° to each other, in a sun-synchronous orbit at a mean altitude of 786 
km. Sentinal-2 used Visible and Near-Infra-Red (VNIR) bands and Short 

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/instrument-payload
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Wave Infra-Red (SWIR) bands and monitors variability in land surface 
conditions under cloud-free conditions 

 

Shapefile A simple, nontopological format for storing the geometric location and 
attribute information of geographic features. Geographic features in a 
shapefile can be represented by points, lines, or polygons (areas) 

 

Soil-Adjusted Vegetation Index (SAVI) 

A vegetation index that attempts to minimise soil brightness influences 
using a soil-brightness correction factor. This is often used in arid regions 
where vegetative cover is low. 
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