

Date 08/08/2022

1 UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster. United Kingdom. LA14AP.

2 U.S. President’s Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road
NE, Atlanta, GA, 30329. USA.

3 Institut National de Recherche Biomédicale (INRB), Avenue de la Démocratie N⁰ 5345, Kinshasa –
Gombe, Democratic Republic of the Congo.

4 Edge Hill University, St Helens Road, Ormskirk, Lancashire L394QP, United Kingdom.

5 Department of Chrono-Environment, University of Bourgogne Franche-Comte/CNRS, La Bouloie,
25030 Besançon CEDEX, France

Earth observation for malaria modelling: a
practical toolkit for satellite-based
prediction of mosquito distributions using

Google Earth Engine and R

Christopher G. Marston1, Clare S. Rowland1, Aneurin W.
O’Neil1, Seth Irish2, Francis Wat’senga3, Pilar Martin-
Gallego4, Patrick Giraudoux5, Clare Strode4.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 2

Dataset documentation

Version 1.0, 08/08/2022

Version Date Updates

1.0 08/08/2022 Original release

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 1

Contents

1. Introduction 3

2. Software installation and registration 5

2.1 Installing QGIS 5

2.2 Installing R 7

2.3 Installing RStudio 8

2.4 Registration for Google Earth Engine 10

2.4.1 Registration for Google Drive 10

2.4.2 Registration for Google Earth Engine 11

3. Study area 14

4. Dataset generation – QGIS 15

4.1 Creating a validation point shapefile 16

4.2 Creating a training polygon shapefile 18

4.3 To create the study area extent shapefile 23

5. Google Earth Engine - satellite date pre-processing 24

5.1 GEE interface / GUI 24

5.2 Uploading assets 25

5.3 GEE scripts 26

5.4 Importing assets 29

5.3 Description of the script 30

5.3.1 Functions and display parameters 30

5.3.2 Sentinel-1 SAR processing for land cover classification 32

5.3.3 Topographical data processing 36

5.3.4 Sentinel-2 imagery collection processing 37

5.3.5 Random forest land cover classification 39

5.3.6 Calculate proportional areas of individual land cover classes using
moving window 43

5.3.7 Calculate 'distance to' rasters 44

5.3.8 Vegetation indices 45

5.3.9 CHIRPS data extraction and smoothing 45

5.3.10 Scale and convert data to integer, compile bands and export 47

5.3.11 Import mosquito sampling data and extract band data 50

5.4. Running the script 53

6. R – feature selection 55

6.1 Load required packages and set working directory 57

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 2

7. Google Earth Engine - modelling 63

8. Google Earth Engine - data visualisation 68

9. Disclaimer 73

10. Acknowledgements 74

11. References 75

12. Glossary 76

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 3

1. Introduction

This user-guide accompanies the publication Marston et al. (2023). It provides a user-

friendly introduction to implementing the satellite-based analysis and random forest

modelling to identify the key bio-geographical variables that influence mosquito

distributions and abundance. It is intended to be a resource for users with limited

prior knowledge of analysis of this nature and presents step-by-step instructions for

users to perform predictive modelling of mosquito distributions; sample datasets

and analysis scripts are provided.

This guide uses three software packages, Google Earth Engine, R (with RStudio)

and QGIS for data pre-processing, modelling and visualisation, all of which are

cost-free for non-commercial use. Scripts are provided to perform data processing

and analysis in both Google Earth Engine (GEE) and R, and although these scripts are

designed to automate the analysis to a large degree, they are currently optimised for

the study area and time period used in the worked example (i.e. Lodja, Democratic

Republic of the Congo, see page 14). It will require user input to adapt the scripts to

different study areas and time-periods of interest, and this will also require suitable

mosquito survey data with associated location coordinates (i.e. latitude and longitude

decimal degrees) and dates to be provided by the user. Users are free to adapt and

build on this to suit their own purposes.

This user manual includes the following sections:

2. Software installation and registration

3. Study area

4. Dataset generation – QGIS

5. GEE - satellite data pre-processing

6. R – feature selection

7. GEE - data modelling

8. GEE - data visualisation

This user handbook comes with the following files:

✔ R script

✔ CSV file containing mosquito data from Lodja, DRC (supplied as an asset
in the GEE script)

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 4

✔ Three Google Earth Engine (GEE) scripts

✔ Land cover training data (supplied as an asset in the GEE script)

By following the instructions, the user will learn to apply the methods, but will also

produce key files necessary for subsequent stages of the methods. These may be

useful should the user wish to apply these methods to different datasets, areas and

scenarios of their choosing. The data processing workflow will involve moving between

software packages at different stages of analysis, with a broad overview of the main

processing stages and the corresponding software used presented in Figure 1.

Figure 1. Broad overview of the main data processing stages and the corresponding

software used

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 5

2. Software installation and registration

To implement the functionality in this user manual, it is necessary to install QGIS and

RStudio on a local computer and register for a user account for Google Earth Engine

for cloud-processing. The following documentation is for a 64-bit Windows operating

system. Installation instructions for other operating systems may differ - in this case,

please refer to the installation instructions for the respective software packages for your

specific operating system. The processing and analysis contained in this guide required

a significant amount of storage space. We would recommend ensuring at least 10gb of

free space is available prior to performing the analysis.

2.1 Installing QGIS

1. Go to the QGIS website – https://www.qgis.org/en/site/ (Figure 2.1) and click on

the ‘Download Now’ button.

Figure 2.1. QGIS Website

2. In the download window that opens (Figure 2.2), select the appropriate

download option for the platform that you are using. Here, we will select the most

https://www.qgis.org/en/site/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 6

recent QGIS standalone Installer Version 3.20 (64 bit). QGIS updates are

released at regular updates, so the most recent version available may differ from

the 3.20 version used here. Click the link ‘QGIS Standalone Installer Version

3.20’.

Figure 2.2. QGIS download options.

3. Select ‘Save As’ on the Save drop down menu and select a target directory on

the computer for the QGIS application to run from. Depending on the operating

system you are using, the download may start automatically.

4. Navigate to the folder in which the installation file was saved and double-click on

it to begin the installation process. If the download started automatically, the file

should be saved in the ‘Downloads’ folder. Alternatively, an option may appear

to click ‘Run’ at the bottom of the web browser. The QGIS installation wizard will

then start up and guide you through the installation process. There is an option

to download three sample datasets (North Carolina Data Set, South Dakota

(Spearfish) and Alaska Data Set). You do not need to download these to run the

methods presented in this user guide, however they may be useful as test

datasets for exploring the broader functionality of QGIS.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 7

Further useful documentation can be found at: https://www.qgis.org/en/site/

2.2 Installing R

1. Go to the R website https://cran.rstudio.com/, and select the ‘Download R for

Windows’ link (Figure 2.3).

Figure 2.3. Cran.rstudio website with download options.

2. Select the ‘base’ subdirectory for installing R (Figure 2.4).

Figure 2.4. R download base subdirectories.

3. Select the ‘Download R 4.1.1 for Windows’ link (or the most recent version

available if version 4.1.1 has been superseded at the time of reading) (Figure 2.5).

https://www.qgis.org/en/site/
https://cran.rstudio.com/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 8

Figure 2.5. R download link.

4. When the installation file has downloaded, double-click on the file to begin the

installation process. The installation wizard will then guide you through the

installation steps.

2.3 Installing RStudio

RStudio operates as a front-end to R, offering R functionality through a more user-

friendly interface. RStudio must be installed separately, after you have installed R.

Installation

1. Go to the ‘Download RStudio’ website -

https://www.rstudio.com/products/rstudio/download/

2. A number of download options are available, but it is the RStudio Desktop (Open

Source Licence) that is required here. This option is free to download. Click on the

‘Download’ icon under this option (Figure 2.6).

https://www.rstudio.com/products/rstudio/download/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 9

Figure 2.6. RStudio download webpage.

3. On the next window, click the ‘Download RStudio for Windows’ icon (Figure 2.7).

Figure 2.7. Download RStudio of windows link.

4. Save the installation file to an appropriate location. Once downloaded, navigate to

the location where it is saved to, and double-click on the installation file to begin the

installation. Alternatively, depending on the web browser being used, an option may

appear to run the installation at the bottom of the web browser page.

5. The RStudio installation wizard will then guide you through the installation steps.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 10

Further useful documentation can be found at: www.rstudio.com and https://cran.r-

project.org/bin/windows/Rtools/

2.4 Registration for Google Earth Engine

User registration is required to use Google Earth Engine, although this is free for non-

commercial applications. To do this, it is necessary to register for a Google Drive

account.

2.4.1 Registration for Google Drive

1. Open a web browser and navigate to:

accounts.google.com/SignUpWithoutGmail

2. Enter your name, email address and set a password (Figure 2.8).

Figure 2.8. Google account registration webpage.

3. Enter the verification code sent to the email account.

http://www.rstudio.com/
https://cran.r-project.org/bin/windows/Rtools/
https://cran.r-project.org/bin/windows/Rtools/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 11

4. Adding a mobile phone number is required at this stage as another method of

verification. Upon receiving a text message with the verification code, enter that

into the second box.

5. Fill out the personal information box to finish the account creation. Following this,

agree to the Terms & Conditions, alongside the Privacy Policy to finish creating

an account.

To then access your Google Drive account, enter the following URL into the web browser

– https://www.google.co.uk/drive/ and select the ‘Go to Google Drive’ option. Sign in

with your newly created login details. You will then have access to your Google Drive

and the contents within it. It is here that the datasets that you subsequently create in

Google Earth Engine will be exported to.

2.4.2 Registration for Google Earth Engine

1. If you are not logged in already, log in to Google with your Google Account, and

enter the following URL into the URL bar https://earthengine.google.com/.

2. Click on the ‘Sign up’ button in the top right of the page (Figure 2.9).

Figure 2.9. Google Earth Engine ‘Sign-up’ button.

3. Complete the form shown in Figure 2.10 with your relevant information.

https://www.google.co.uk/drive/
https://earthengine.google.com/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 12

Figure 2.10. Google Earth Engine sign-up form.

4. A registration confirmation email will be sent to the email account used to register

the account. Open the registration email and click on the ‘Earth Engine Code

Editor’ link contained in it to access the code editor. This registration email may

take some time to come through, so we would encourage users to allow ample time

between submitting the registration and the time at which you need to conduct the

analysis.

The registration email (Figure 2.11) contains links to the Earth Engine Code Editor in

which the analysis will be performed, but also the Earth Engine API, which contains a

wealth of reference information about GEE functionality and datasets. It also contains a

variety of other links including frequently asked questions and additional tutorials and

documentation. It is worthwhile users taking some time to explore these resources for a

broader introduction to the capabilities of GEE.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 13

Figure 2.11. GEE registration email with relevant links.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 14

3. Study area

The example presented in this user guide focuses on a study area of the medium-sized

town of Lodja (population c. 80,000) (latitude: -3.524661⁰, longitude: 23.596669⁰) and

surrounds in the Democratic Republic of the Congo, which is meso-endemic for

malaria (Figure 3.1). The area surrounding Lodja is typified by a mix of land cover

components including traditional small holder shifting cultivation (cleared land, active

field, fallow fields) along with settlements, grassy and bare areas, and a permeable

interface area with forest. The Lukene river flows immediately to the south of Lodja.

Mean monthly rainfall (between 1991-2015) was <100 mm for June and July and 100-

220 mm/month for the other months of the year, with mean temperatures of 24-26 ⁰C all

year round.

Mosquito survey data provided in the .csv file details Anopheles gambiae abundance

collected monthly from 8 houses over 2015 and 2016.

Figure 3.1 Lodja study area location.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 15

4. Dataset generation – QGIS

Most of the workflow in this user manual draws on the ingested data archives of GEE,

but other input data, specific to the study area of interest, are also required. This

includes:

1) Coordinates, or a shapefile delineating the study area of interest.

2) A polygon shapefile corresponding to training areas for generating a land cover

classification of the study area. Each training polygon requires an integer

code/attribute corresponding to the appropriate land cover class for that polygon

(e.g.1 forest, 2 grassland etc. see table 4.1).

3) A validation data set of locations of known land cover types to perform accuracy

assessment of the land cover classification. This shapefile should have points

containing integer code/attributes that correspond to the land cover class at that

location. The integer codes used for each land cover class must be consistent

between the training (polygon) and validation (point) shapefiles.

4) Mosquito survey data including survey location coordinates, survey date and

mosquito species and abundance for each location.

It is expected that the mosquito count data will be available as a .csv file (viewable and

editable in Excel), with columns corresponding to different data attributes, and rows

corresponding to individual survey records (Figure 4.1). Data survey locations recorded

with X and Y coordinates as different attributes are a pre-requisite for analysis.

Figure 4.1. Example of mosquito survey data format.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 16

4.1 Creating a validation point shapefile

Here, we will create a point shapefile for validation comprising locations of known land

cover types to assess the accuracy of the land cover classification that we will produce.

Point shapefiles can be created manually (see the section below where a shapefile is

created and populated; note that for the validation data, a point rather than polygon

shapefile would be used) or generated from pre-existing ground reference points

typically in spreadsheet format. We will create a point shapefile of validation data from

a pre-existing dataset saved in .csv format. To import from a spreadsheet, follow these

steps:

● Open QGIS and create a new project by clicking on the icon under the main

toolbar.

● On the main ‘Layer’ toolbar, select ‘Add Layer’, then ‘Add Delimited Text

Layer’ (Figure 4.2). Select the .csv file to import in the ‘File name’ box.

● Click on the ‘Geometry Definition’ option. Make sure ‘Point coordinates’ is

selected, then for the ‘X field’ select ‘Long_dd’, and for ‘Y field’ select

‘Lat_dd’.

● Ensure X and Y co-ordinates are in the correct columns and keep the default

parameters.

Figure 4.2. QGIS ‘Create a layer from a delimited text file’ window.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 17

● Next, we check that the appropriate coordinate reference system (CRS) is being

used. As our coordinates here are in decimal degrees, we use the CRS

EPSG:4326 – WGS84. Check that this is selected as the ‘Geometry CRS’. If it

is not, set the appropriate coordinate reference system by clicking the icon

next to the ‘Geometry CRS’ drop-down box. This will open the ‘Coordinate

Reference System Selector’ window (Figure 4.3).

Figure 4.3. The coordinate reference system selector window.

● Here, we can use the ‘Filter’ search tab at the top of the window to find the

required coordinate system. Type 4326 into the search filter, and the WGS84

EPSG:4326 option will appear below the filter bar. Select this and click ‘OK’.

● Returning to the ‘Data Source Manager’ window, click ‘Add’ then close, and the

locations in the .csv file should then be displayed (Figure 4.4). The layer name

‘mosquito_survey_data’ should be displayed in the ‘Layers’ panel.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 18

Figure 4.4. The locations contained in the .csv file displayed in QGIS.

● To then save the mosquito_survey_data layer as a shapefile, right-click on the

layer in the ‘Layers’ panel, select ‘Export’ then ‘Save Features As…’. Specify

the File Format as ‘ESRI Shapefile’ and then specify the file name of the

shapefile to be saved (you can retain the mosquito_survey_data file name),

and specify the location where the file is to be saved using the icon.

4.2 Creating a training polygon shapefile

One of the steps in this tutorial is to generate a land cover classification of the study

area. Depending on the specific nature of the study area, the land cover classes

appropriate to map may differ. In this example, an eight-class classification

nomenclature will be used with these classes and the corresponding land cover codes

displayed in Table 4.1. This user guide comes complete with training and validation

data for the classification for the study example Lodja but if users wish to create

their own for their area of interest sections 4.2 and 4.3 describe the steps on how to do

this.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 19

Table 4.1. Land cover classes and corresponding codes.

Land cover class Code

Forest 1

Grassland 2

Clearing 3

Fallow 4

Built-up 5

Flowing water 6

Static water 7

Burnt 8

Ideally, land cover classification training and validation data will be based on field-

collected data where locations of known land cover type are recorded with a GPS. This

can, where appropriate, be supplemented with additional training / validation data

derived from very-high resolution (VHR) imagery of the area of interest derived via

public portals such as Google Earth or Bing Aerial. Users must be aware of the

limitations of using these data sources especially where there is a temporal mismatch

between the acquisition dates of the satellite data that is being classified, and the VHR

imagery being used as the reference. We do not offer a review of classification or

training/validation data collection methodology here, but we would encourage users to

engage with appropriate background literature on these topics to improve their

understanding of the process, and how differing approaches can impact the quality of

the output land cover classifications.

The training dataset for the land cover classification that will be performed in Google

Earth Engine will be a point vector dataset containing an equal number of training

points (locations) for each land cover class. Initially, a polygon shapefile will be created

with multiple polygons corresponding to areas of known land cover types. These

training polygons will be created for each land cover class that we wish to classify. As

the distribution of land cover class across a study area varies with some land cover

types scarcer than others, and as the size and number of polygons created for each

land cover class is likely to vary, we then create a subset of training data from these

polygons. This process takes the existing training polygons and selects a defined

number of randomly located points within the spatial extent of the polygons for each

land cover class. This ensures that a balanced training dataset is used for the

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 20

classification, with each land cover class equally represented in the training data. The

training polygon dataset will be imported into GEE as an asset, and the sub-setting and

conversion to a point dataset will be performed within GEE.

Here, reference VHR imagery layers available in QGIS will be used as a reference data

source for creating the initial polygon training shapefile.

● Open QGIS and install the ‘QuickMapServices’ plugin, which contains a

variety of data sources including VHR imagery that can be used as a

basemap for contextualisation, and for reference data collection. To do this,

click ‘Plugins’ on the main toolbar, then ‘Manage and install plugins’.

● The ‘Plugins’ pop-up box should open (Figure 4.5). In the search bar, search

for ‘QuickMapServices’, the install the plugin.

Figure 4.5. QGIS Plugins window.

● Once installed, the QuickMapServices option should appear in the ‘Web’ tab

on the main toolbar. If you select this, it will display the layers that are

currently available to display as base maps (Figure 4.6). This currently only

gives a limited number of options – we can increase these options by

downloading additional contributed packs.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 21

Figure 4.6 QGIS QuickMapServices layer options.

● To do this, open the ‘QuickMapServices’ option from the main toolbar, and

click the ‘settings’ option. On the pop-up box that opens, select the ‘More

services’ tab, then click on ‘Get contributed pack’. Click ‘Save’. There

should now be a larger range of base maps and imagery products available

via QuickMapServices, including VHR imagery from the Google Satellite and

Bing satellite layers. Select ‘Google Satellite’ and this should appear as a

basemap, and as an option in the ‘Layers panel’, which can be switched on

or off. If no other data is loaded in the QGIS session then the basemap will

initially display for the full globe, however you can use the pan and zoom

functions to focus on your area of interest at a much higher level of detail.

● Next, create a new project by clicking on the icon under the main toolbar.

Then, click on the ‘New Shapefile Layer’ icon under the main toolbar,

and the ‘New Shapefile Layer’ window should open (Figure 4.7).

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 22

Figure 4.7. New shapefile window.

● Fill out the menu box, ensuring you set the geometry ‘Type’ to ‘Polygon’ and

select the appropriate Coordinate Reference System. You then need to add

a column for the land cover classes in the ‘New field’ section. In the ‘Name’

box type ‘Class’. Make sure the ‘Type’ drop down menu is set to ‘Whole

number’. Press ‘Add to fields list’ to add this to the polygon.

● Save the polygon into an appropriate directory. It should then be added as a

layer in the ‘Layers’ tab.

● Select the shapefile in the Table of Contents, and then click the ‘Toggle

Editing’ button on the toolbar on the top panel. Then select the ‘Add

Feature’ button underneath.

● Draw around an area of interest for a particular land cover class, using the

left mouse button to add vertices and a right click to complete the polygon.

When the polygon is finished, the ‘Feature Attributes’ box required details to

be added (Figure 4.8). Add the polygon id and the class number that

corresponds to the land cover class (Table 4.1) being digitized.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 23

Figure 4.8. Feature Attributes window.

● Continue adding more training polygons until a full training dataset is

complete.

● To finish editing, save the polygons by hitting the ‘Save’ button and then

finish editing by clicking the ‘Toggle Editing’ button. It is recommended

that you save your edits at regular intervals throughout this process.

4.3 To create the study area extent shapefile

We also need to create a shapefile delineating the study area of interest to constrain

the area of data processed in, and exported from, Google Earth Engine. To do this,

follow the steps set out in the ‘4.2 Creating a training polygon shapefile’ section to

create a new shapefile. Then add a single polygon corresponding to the area of interest

and save the polygon. It is not necessary to add further attributes to this shapefile,

although you can do if you so wish.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 24

5. Google Earth Engine - satellite date pre-
processing

5.1 GEE interface / GUI

Google Earth Engine (GEE) is the cloud-processing platform through which much of

the data pre-processing is performed prior to the subsequent modelling stage. Before

getting started with the analysis, lets familiarise ourselves with the GEE interface.

First, open a web-browsing session in Google Chrome and navigate to

https://code.earthengine.google.com. The GEE interface appears as in Figure 5.1, here

with an example script and analysis output displayed.

Figure 5.1. Google Earth Engine interface.

GEE works via command-line using the programming language Javascript, with specific

commands given as lines of code corresponding to different data processing

https://code.earthengine.google.com/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 25

applications. Multiple commands can be linked together for more complex multi-stage

data processing tasks, with scripts sharable with other users. It is advised to save

revisions made to scripts at regular intervals. If you would like to share scripts that you

have developed with other users you can do this by clicking ‘Get Link’, then in the pop-

up window that opens click the ‘Click to copy link’ icon. You can then distribute the

link as appropriate to other users who will be able to access the script. If the script

relies on assets that have been uploaded to a user account, it will be necessary to

share those assets. To do this, navigate to the appropriate location in the ‘Assets’ tab,

hover the cursor over the appropriate asset filename and click on the ‘share’ icon. In

the pop-up box that opens tick the ‘Anyone can read’ check box, then click ‘Done’.

The asset will then be available for other users to access when they are running the

script that you have distributed.

To open a GEE script that has been shared with you, simply paste the link into a

Chrome web browser session or double-click the hyperlink. You will then be taken to a

GEE code editor session displaying the script which you will then be able to run.

Although this tutorial uses a script developed to run analysis similar to that contained in

Marston et al. 2023, a far broader range of functionality and datasets are available

within GEE and users are encouraged to investigate these via the GEE website at

https://earthengine.google.com/.

5.2 Uploading assets

Some of the datasets that will be modelled in response to mosquito abundance can be

directly exported from GEE, however others (such as land cover proportional coverage

and distance to nearest patch of a given land cover type) will be generated by the user

within GEE. To do this, it is necessary to upload additional datasets into GEE to

perform and validate the land cover classifications. These datasets must be uploaded

as assets and will include shapefiles delineation of the area of interest (AOI), training

areas of known land cover type for performing land cover classification, and validation

locations for assessing the accuracy of the land cover classifications performed. Points

and/or polygons can be added directly vie the GEE, however, as datasets such as

these are often collected in advance during fieldwork campaigns and are often large in

number, a more practical way to add this data into GEE is to load an existing shapefile

https://earthengine.google.com/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 26

containing the required data as an asset. To upload an asset, in the GEE session

select the ‘Assets’ tab (top left), click ‘New’ then ‘Shapefiles’. Click ‘Select’, navigate

to the location where the shapefile is saved. Although shapefiles are viewed as a single

file in a GIS, they are actually comprised of several files, which will have the same

prefix (filename), but different file extensions, for example .shp, .shx, .dbf and others.

These multiple files work in combination to define the geometry and attributes of the

data to be displayed or analysed. When uploading a shapefile to GEE, all the

constituent files forming the shapefile must be selected, with the exception of the .sbx

file. If the .sbx file is selected, then the upload process will fail. If this occurs, try

uploading the shapefile again without including the individual file with the file extension

that causes the problem.

On this occasion, we will require training data identifying locations of known land cover

types for performing a land cover classification, and a separate validation dataset to

perform and accuracy assessment of the classification. These have already been

uploaded as two separate assets and shared, the training data as a polygon shapefile,

and the validation data as a point shapefile.

5.3 GEE scripts

Three Google Earth Engine scripts have been provided accompanying this user

manual and are used for the following sequential stages;

1. Data preparation (page 26)

2. Data modelling (page 63)

3. Data visualisation (page 71)

The scripts are made available via the hyperlinks provided in the relevant sections of

this user manual. If you use ctrl and click, this link it will open a GEE code editor

session containing the script. Alternatively, this link can be copied and pasted into a

web browser session.

Script 1: Data pre-processing

https://code.earthengine.google.com/d1e89a3d439d14e84df704a7c81d442c

The code will appear similar to that displayed in Figure 5.2.

https://code.earthengine.google.com/d1e89a3d439d14e84df704a7c81d442c

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 27

Figure 5.2. Google Earth Engine code editor with script displayed.

The following sections provide an explanation for the various stages of the data

processing and modelling. Instructions on running the scripts is found in section 5.5

(p.52)

The GEE data processing requires several steps, which are outlined below. The code

required to run these steps is described below but note that where an example is given

(for example to perform a stage of data analysis for a particular land cover class), this

may need repeating for other variables of interest (e.g., other land cover classes). For

brevity, a single example is provided and described in this document, however the

accompanying GEE script contains the complete code. The GEE script is divided into

sections as following:

2 Functions and display parameters

3 Sentinel-1 SAR processing for land cover classification

4 Topographical data processing

5 Sentinel-2 imagery collection processing

6 Random Forest land cover classification

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 28

7 Calculate proportional areas of individual land cover classes using moving

window

8 Calculate 'distance to' rasters

9 Calculate vegetation and water indices

10 CHIRPS (precipitation) data extraction and smoothing

11 Scale and convert data to integer, compile bands and export

12 Import mosquito sampling data and extract band data

Sections of the script denoted by // are ‘commented out’, these are recognised by GEE

as being inert code i.e. descriptive text rather than a command to run (e.g. Figure 5.3).

This is useful for adding in comments or notes to describe what the commands do at

certain stages of the script, or for disabling commands without deleting them from the

script where this would be useful. Sections of the script that are commented out are

displayed in green text.

Figure 5.3. Example of the script with ‘//’ and green text denoting comments

Although the content of this user-manual and the code therein are based on the

research contained in Marston et al. (2023), there are slight differences in the methods

and implementation of that paper and this user guide. These adaptations are deliberate

and designed to utilise the richer abundance of satellite Earth Observation dataset

available since the time period of field data collection involved in Marston et al. (2023),

with a view to the future implementation of these methods across other malaria

endemic regions. Principally, whereas Marston et al. (2023) utilised single cloud free

images, the methods presented in this user guide instead use collections of images in

combination to generate cloud-free composites, offering improved flexibility and

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 29

opportunity for practical application of these methods in areas where opportunities to

obtain single cloud-free images are low.

5.4 Importing assets

Section 5.2 described how you can upload assets for analysis in GEE should you need

to do this for your own study sites and applications. To view the assets have been

uploaded and are available, click on the ‘Assets’ tab towards the top-left of the GEE

window (Figure 5.4). This will display the assets that are available for analysis.

Figure 5.4. Assets tab on the GEE console

If your assets are saved in sub-directories, you can expand the sub-directory to view its

contents. When the cursor if hovered over the asset of interest, three icons will appear,

these being ‘Share’, ‘Rename’ and ‘Import into script’. To make an asset available for

analysis using the GEE script, you must import it by clicking on the ‘Import into script’

icon. When imported, the asset will then appear at the top of the code window and will

be available as an asset that can be called by the code. The name of the asset is also

given, for example in Figure 5.5 three assets are imported and have been assigned

have the names table, table2 and table3.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 30

Figure 5.5. Assets imported into the GEE script.

For the purposes of this training exercise, the required assets have already been

uploaded and are read in at the beginning of the relevant GEE script.

5.3 Description of the script

5.3.1 Functions and display parameters

To run a particular command on every feature within a collection, we first define the

operation that we wish to apply to every element in the collection as a function. We are

then able to apply, or ‘map’ that specified function over every object or image in a

specified collection using the map() command. For example, if the function is to generate

a Normalised Difference Vegetation Index (NDVI) layer for a particular image, and

the collection contains all Sentinel-2 images for a location over a year, then mapping

the function over the collection will generate NDVI layers for each image in the

collection.

In this example, the functions used within the script do not require editing. As such,

they are not examined in detail here other than to list what the functions do:

● Calculate a ratio (VV/VH) layer from Sentinel-1 VV and VH polarisation bands;

● Cloud-mask the Sentinel-2 imagery and mask image edges

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 31

● Calculate Normalised Difference Vegetation Index (NDVI)

● Calculate Soil-adjusted Vegetation Index (SAVI)

● Calculate Normalised Difference Water Index (NDWI)

● Calculate Modified Normalised Difference Water Index (MNDWI)

These functions will be mapped across data collections at appropriate stages

throughout the script.

Next, we pre-define a colour palette that can be used to display the land cover

classification that we will generate for inspection. A specific colour is defined for each

class that will be mapped using the code below. The command var instructs GEE to

create a new object, and this followed by the name of the object to be created which

here we will call palette. The following code then specifies what the object created will be

– here it will comprise a series of hex codes each of which correspond to a colour. As

there will be eight land cover classes in the classification, eight hex codes are

specified. Each code is then followed by commented out text identifying which class the

specific colour applies to, what that class is, and the colour that will be displayed. As

this text is commented out these are not commands that GEE will run, but they do

provide a useful reference note to the user. More details on hex codes and the

corresponding colours can be found at Colour HEX codes can be found at

https://cloford.com/resources/colours/500col.htm

var palette = [

 '008000', // Class 1, forest, green

 'FFFF00', // Class 2, grassland, yellow

 'C0C0C0', // Class 3, clearing, silver

 '800000', // Class 4, fallow, maroon

 '000000', // Class 5, built-up, black

 '00FFFF', // Class 6, flowing water, cyan

 '0000FF', // Class 7, static water, blue

 '800080', // Class 8, burnt, purple

];

https://cloford.com/resources/colours/500col.htm

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 32

Next, we specify the established flight distance of the mosquito species that we are

modelling here, Anopheles gambiae. This is specified as 846 m in Verdonschot and

Besse-Lototskaya (2014).

var flight_distance = 846;

Having defined the functions, display parameters and flight distance that are required

within the GEE script, we move on to the data preparation stages.

5.3.2 Sentinel-1 SAR processing for land cover classification

The next set of commands selects a collection of Sentinel-1 Synthetic Aperture

Radar (SAR) images, extracts the VV and VH polarisation data from this collection,

calculates a ratio data product, and generates median pixel value data sets for each of

the VV, VH and ratio data products. First, we create the collection of Sentinel-1 images.

// Get the Sentinel-1 collection.

var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD')

.filter(ee.Filter.eq('instrumentMode', 'IW'))

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))

.filterBounds(table)

.filterDate('2016-10-08', '2017-10-08')

Let us break what these commands do down line by line. The first commented out line

simply identifies to the user what actions the following block of commands performs.

// Get the Sentinel-1 collection.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 33

The next line instructs GEE to create a collection of Sentinel-1 SAR images. var

denotes that a new object is being created by the following command(s). collectionS1 is

the name of the object (the collection of images) that is being created. = denotes that

the collection is being created based on the following command(s).

ee.ImageCollection('COPERNICUS/S1_GRD') denotes that the image collection that we are creating

will draw on the GEE ingested archives of Sentinel-1 SAR imagery which has the GEE

dataset identifier of 'COPERNICUS/S1_GRD'. A wide range of pre-ingested datasets

are available within GEE each with its own identifier. If we wished to perform this

function on a different dataset, we would need to change the dataset identifier in this

command to the identifier of the alternative dataset that we wished to use. Further

information on the various datasets available within GEE and their respective identifiers

is available at the GEE website (https://earthengine.google.com/) if required.

var collectionS1 = ee.ImageCollection('COPERNICUS/S1_GRD')

Currently the command will create an object containing all the Sentinel-1 images

available in the GEE archives. We then need to perform a series of filtering operations

to select only the images for the data products, geographical area and time periods that

we are interested in. Firstly, we specify that we only require the Interferometric Wide

Swath data acquisition mode. Sentinel-1 acquires data in multiple data acquisition

modes however here we are only interested in the Interferometric Wide Swath mode.

We do not go into detail here about the different data acquisition modes and data

characteristics of Sentinel-1 but would encourage the user to familiarise themselves

with the literature on this topic. The following line specifies that the collection will be

filtered to retain only the instrument mode = Interferometric Wide Swath, identified in

the code as IW.

.filter(ee.Filter.eq('instrumentMode', 'IW'))

The Sentinel-1 SAR data is acquired in two polarisations, VV and VH. We require both

of these polarisations for the subsequent data analysis and here we perform further

https://earthengine.google.com/

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 34

filtering steps to retain only the images that contain firstly the VV, then secondly the VH

polarisations. We also filter the collection to retain images acquired only in a

descending orbital path.

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))

.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))

.filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING'))

Next, we will further filter the collection to retain images intersecting our area of interest.

The area of interest here is defined by the object table, which is the area of interest

bounding box shapefile that was imported as an asset at an earlier stage. This will

retain only the images that intersect this area. Note that some of the images retained

may not cover the full extent of the area of interest, and the coverage of some images

may extend beyond the boundary of the area of interest.

.filterBounds(table)

Finally, we will filter to retain images acquired only during our time period of interest. To

do this we simply specify firstly the start and secondly the end dates of the time period

that we are interested in. Here we have specified a time period of the 8th October 2016

to the 8th October 2017. For this command, dates are entered in the format YYYY-MM-

DD.

.filterDate('2016-10-08', '2017-10-08')

The filter commands will run sequentially to produce the image collection for our

location, time period and data characteristics of interest. Next, we will take this

collection and perform further analysis steps on it.

The image collection will contain a large number of images acquired on different dates.

For some applications, however, we do not want many images but instead just a single

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 35

image, which represents the ‘typical’ characteristics of the area of interest over the full

time period, rather than just at a single snapshot in time. GEE uses ‘Reducers’ to

convert a collection of images into a single output image based on parameters that the

user defines. We do not explore reducers in depth here, however we will apply a

median reducer to the data collection that we have created. This will, for a given

location, calculate the median value of all the unmasked pixels within the collection for

a pixel location. This median value the forms the pixel value for that location in the

output image. This is repeated for all pixels within the extent of the image collection,

producing the output raster band.

We generate the median layer using the code below. Here we combine two commands

in the same line of code, with the commands applied sequentially in the order that they

are written to create a new image named VVonly_med containing the median pixel values

of the VV polarisation data from the Sentinel-1 collection previously created. The first

command selects only the VV polarisation data from the collectionS1 collection. The

second command creates a new image that contains the median VV pixel values. Note

that this creates an individual image, rather than a collection of images as we have

done earlier.

var VVonly_med = collectionS1.select('VV').median();

Next, we repeat this process for the VH polarisation.

var VHonly_med = collectionS1.select('VH').median();

Finally, we calculate the ratio band. We cannot select this in the same way that we did

for the VV and VH bands as the ratio band does not yet exist – we need to calculate it.

To do this, we need to map the vh_vv function that was defined in the functions section

of the code over the collectionS1 collection, and then apply a median reducer.

var ratio_med = collectionS1.map(vh_vv).median();

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 36

The function is mapped here using the command collectionS1.map(vh_vv) where collectionS1 is

the collection on which the function will be mapped, .map() is the command to map the

function, and vh_vv is the name of the function that is being mapped. We then apply a

median reducer to generate a single median ratio layer as we did earlier for the VV and

VH layers.

5.3.3 Topographical data processing

Topographical data is utilised within this analysis in two ways, for inclusion in the land

cover classification stage, and also to be analysed as independent variables in relation

to mosquito abundance. We are interested in four topographical data products, these

being elevation, aspect, slope and Topographic Position Index (TPI). All these products

use the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM)

dataset already ingested in GEE. First, we use the SRTM DEM data, here denoted by

'USGS/SRTMGL1_003' to create a new image called dataset. Note that as we are just using a

single DEM dataset rather than a number of different satellite images as we have done

previously, we are creating an image object rather than an image collection.

var dataset = ee.Image('USGS/SRTMGL1_003');

We then select elevation from dataset and use this to create a new elevation_int image. We

use the .toInt() command to convert the image to integer values.

var elevation_int = dataset.select('elevation').toInt();

From the elevation_int image, we then calculate slope and aspect and save them as

separate images. Again, both slope and aspect images are converted to integer values,

however as converting decimal slope to integer values directly would result in loss of

detail within this data, we first multiply the slope values by 10000.

var slopex10k_int= ee.Terrain.slope(elevation).multiply(10000).toInt();

var aspect_int= ee.Terrain.aspect(elevation).toInt();

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 37

Next, we calculate the Topographic Position Index (TPI). To do this, we calculate the

elevation for each pixel, and subtract this from the mean elevation of the surrounding

area in this case over a 15-pixel radius circular area. This creates the tpi_15_pixel_int

image, where elevation is the DEM specified earlier and 15 is the number of pixels

defined as the radius of the circular area over which the mean elevation value will be

calculated. We then apply the .toInt() command to specify that the dataset generated will

be in integer format.

var tpi_15_pixel_int = elevation_int.subtract(elevation_int.focal_mean(15)).toInt();

5.3.4 Sentinel-2 imagery collection processing

Next, we create a new image collection for the Sentinel-2 optical images that will be

used in combination with the Sentinel-1 and topographical datasets to perform the land

cover classification, and to generate vegetation index data products. The commands

below create an image collection by selecting data from the Sentinel-2 surface

reflectance data archive (identified in GEE as 'COPERNICUS/S2_SR'), and filters the

collection based on the extent of the study area as specified in the asset ‘table’, and by

the date range specified. Sentinel-2 optical data, unlike the Sentinel-1 SAR data, is

affected by cloud. This is problematic in many parts of the world including many

malaria-endemic regions. Fortunately, the functionality of GEE enables a new

composite image to be generated from a series of images that may be partially cloud

affected, increasing the area of cloud-free coverage for analysis. Cloud masking of the

Sentinel-2 imagery is also performed using the Sentinel-2 Cloud Probability product.

First, we specify the imagery and cloud probability data products that we wish to use,

and set a maximum cloud probability threshold value, here 65, that we wish to apply.

var s2Sr = ee.ImageCollection('COPERNICUS/S2_SR');

var s2Clouds = ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY');

var MAX_CLOUD_PROBABILITY = 65;

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 38

We then specify the .filterBounds extent and date range that will be applied to filter both

datasets.

var criteriaS2 = ee.Filter.and(

 ee.Filter.bounds(table), ee.Filter.date('2018-06-20', '2019-06-24'));

We then apply these filtering criteria to both the S2_SR and Cloud Probability data that

we wish to use. For the S2_SR collection, we also map the maskEdges() function here.

var s2Sr = s2Sr.filter(criteriaS2).map(maskEdges);

var s2Clouds = s2Clouds.filter(criteriaS2);

Next we join the S2_SR collection with the Cloud Probability dataset to add the cloud

mask, creating the new image collection s2SrWithCloudMask.

var s2SrWithCloudMask = ee.Join.saveFirst('cloud_mask').apply({

 primary: s2Sr,

 secondary: s2Clouds,

 condition:

 ee.Filter.equals({leftField: 'system:index', rightField: 'system:index'})

});

Next, we create a new image collection from the s2SrWithCloudMask collection by mapping

the maskClouds() function, and retaining only the spectral bands in those images that we

require for the land cover classification. Here, we retain bands 2, 3, 4, 5, 6, 7, 8, 8A, 11

and 12. Bands 1, 9, 10 and 11 are optimised for atmospheric applications, which are

not relevant in the context of this work and are therefore disregarded here.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 39

var S2_bandsubset =

ee.ImageCollection(s2SrWithCloudMask).map(maskClouds).select('B2','B3','B4','B5','B6','B7','B8','B8A','B

11','B12');

We then apply a median reducer to the S2_bandsubset image collection to create the

median image S2_med_bandsubset .

var S2_med_bandsubset = S2_bandsubset.median();

Finally, we combine the Sentinel-2, Sentinel-1 and topographical datasets into a single

multi-band image on which we will perform the land cover classification. The new image

we will create will be called data_stack, with the S2_med_bandsubset image forming the first

bands. To this, we add the VVonly_med, VHonly_med, collection_ratio_run_med, elevation, slope and

aspect bands in that order.

var data_stack =

S2_med_bandsubset.addBands(VVonly_med).addBands(VHonly_med).addBands(ratio_med).addBands(

elevation_int).addBands(slopex10k_int).addBands(aspect_int);

5.3.5 Random forest land cover classification

Now we have created the data stack, we can perform the land cover classification.

First, we create a new feature collection named polygons from the table2 asset that we

imported earlier. This contains a series of polygons corresponding to areas of known

land cover types that will be used to train the classifier. Each polygon contains the

attribute ‘classcode’, which is an integer code where each value corresponds to a

different land cover type (Table 1).

var polygons = table2;

Next, we extract the pixel values for each band in the data stack for the training

polygon locations. In the following commands, classification_training is the name of the

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 40

object containing the training data that we will create, data_stack is the name of the

imagery data stack that the pixel values are being extracted from, polygons corresponds

to the training polygon feature collection, and scale: 10, and specifies a spatial resolution

of 10m. tileScale: 16 is a parameter relating to the background processing of the datasets,

you do not need to change this.

var classification_training = data_stack.sampleRegions({

 collection: polygons,

 properties: ['classcode'],

 scale: 10,

 tileScale: 16

});

Next, we build the random forest classifier and train it with the training data we have

just extracted. The classifier that we create will be called RF_classifier, 500 sets the

number of trees to be used in the random forest classifier, classification_training is the

training data, and classcode specifies the classes that will be used in the classification.

500 trees are specified here, although if memory limit errors are encountered when

running the GEE code, this number can be reduced.

var RF_classifier = ee.Classifier.smileRandomForest(500)

 .train(classification_training, 'classcode');

Now that we have trained the classifier, we can classify the data stack.

land_cover_classification is the name of the output classification, data_stack is the input data

stack that will be classified, and RF_classifier is the random forest classifier that we have

just trained.

var land_cover_classification = data_stack.classify(RF_classifier);

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 41

We can then add the classification to the viewer panel to inspect it, displaying the

classification using the colour palette that was defined earlier. Map.addLayer() is the

command to display an object in the viewer panel. land_cover_classification is the object that

will be displayed, palette: palette specifies the name of the colour palette that we wish to

apply, and the min and max values set the range of data values to be displayed. Here

there are eight land cover classes present, with the values (1 to 8) denoting different

land cover classes. Map.centerObject() instructs the viewer panel to zoom to a bounding

box of the specified object, here the table extent with the zoom level set to 10.

Map.addLayer(land_cover_classification,{palette: palette, min:1,max:8});

Map.centerObject(table, 10)

As well as generating the land cover classification, it is also necessary to perform an

accuracy assessment to assess its quality. Random forest classifiers can produce out-

of-bag accuracy assessment statistics, although these typically over-inflate the reported

accuracy of the classification. An alternative that typically provides more realistic

accuracy figures for a classification, is to perform an accuracy assessment using an

independent validation dataset. Here, the code for both approaches is presented. First,

we will perform an accuracy assessment using the random forest out-of-bag approach.

The following commands will generate and return, in this order, an error matrix (often

also termed a confusion/correspondence matrix); the overall classification accuracy

figure, the Producer’s and User’s accuracy figures for each individual land cover class

and the Kappa coefficient. The print() command returns the result of the command to

the ‘Console’ tab. In the accompanying script these commands are commented out but

are included so that the user can implement the out-of-bag accuracy assessment if

they so wish.

var RF_classifier_rf_error_matrix = RF_classifier.confusionMatrix();

 print(‘RF error matrix: ‘, RF_classifier_rf_error_matrix);

var RF_classifier_rf_accuracy = RF_classifier.confusionMatrix().accuracy();

 print(‘RF accuracy: ‘, RF_classifier_rf_accuracy);

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 42

var RF_classifier_rf_producers_accuracy = RF_classifier.confusionMatrix().producersAccuracy();

 print(‘RF producers accuracy: ‘,RF_classifier_rf_producers_accuracy);

var RF_classifier_rf_users_accuracy = RF_classifier.confusionMatrix().consumersAccuracy();

 print(‘RF users accuracy: ‘,RF_classifier_rf_users_accuracy);

var RF_classifier_kappa = RF_classifier.confusionMatrix().kappa();

 print(‘RF kappa: ‘,RF_classifier_kappa);

Next, we will perform the accuracy assessment with the independent dataset, which

was previously imported as table3. First, we extract the land cover classes for the

independent validation point locations, creating an object called validation_extraction.

// Get the values for all pixels in the testing validation dataset.

var validation_extraction = data_stack.sampleRegions({

 collection: table3,

 properties: ['classcode'],

 scale: 10,

 tileScale: 16

 });

Next, we generate a confusion matrix, overall accuracy, Producer’s accuracy, User’s

accuracy and Kappa coefficient and return these to the ‘Console’ tab.

 // Accuracy assessment

var confusionMatrix = ee.ConfusionMatrix(validation_extraction.classify(RF_classifier)

 .errorMatrix({

 actual: 'classcode',

 predicted: 'classification'

 }));

 print('Confusion matrix:', confusionMatrix);

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 43

 print('Overall Accuracy:', confusionMatrix.accuracy());

 print('Producers Accuracy:', confusionMatrix.producersAccuracy());

 print('Users Accuracy:', confusionMatrix.consumersAccuracy());

 print('Kappa:', confusionMatrix.kappa());

5.3.6 Calculate proportional areas of individual land cover classes using moving
window

Next, we will calculate how the proportional coverage of each land cover class

varies across the study area. To do this requires a two-stage process. First, we take the

land cover classification and from this generate binary presence/absence layers for

each land cover class individually. Secondly, we use a moving window with a kernel

size corresponding to the flight range of An. gambiae (846 m) to calculate the

proportion of the kernel area occupied by the land cover class in question. The moving

window performs this calculation for every pixel in the binary presence/absence layers

– for a given pixel it creates a 846 m radius buffer around that pixel, calculates the area

where the land cover in question is present, then converts this to a proportional value of

the overall buffered area. The moving window then moves to the next pixel and repeats

the process, and so on until the calculation has been run on every pixel in the binary

presence/absence layer for a given land cover class.

The first stage ‘remaps’ the raster values in the land cover classification (where

different integer pixel values correspond to different land cover classes) into binary

values where ‘1’ is the land cover class of interest, and all other values (the other land

cover classes) are given a value of ‘0’. In the code below, we perform this for the forest

land cover class, which has the land cover class code ‘1’. Here, the output binary

presence/absence layer that will be generated will be called class1_only. In the input

land_cover_classification eight land cover classes are present, with corresponding class

codes 1, 2, 3, 4, 5, 6, 7 and 8. As we are only interested in class 1 (forest), we remap

the class values to 1 (retaining forest), then 0, 0, 0, 0, 0, 0, 0 to set the values of all

other classes to 0.

var class1_only = land_cover_classification.remap([1,2,3,4,5,6,7,8],[1,0,0,0,0,0,0,0]);

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 44

If we wished to repeat the process for grassland (land cover class code 2), we would

adapt the code as below

 var class2_only = land_cover_classification.remap([1,2,3,4,5,6,7,8],[0,1,0,0,0,0,0,0]);

In the accompanying GEE script this is performed for each land cover class, however

for brevity we just present these examples here. We then perform the moving window

calculation to generate the proportional coverage of the land cover class in question

(here forest, class 1). This produces the output object class1_mean_mw, specifies class1_only

as the input raster, focal_mean() is the command to run the moving window, flight_distance

corresponds to the 846 m flight distance of An. gambiae (this was specified earlier in

the script), 'circle' sets a circular (rather than square) kernel to be used, and 'meters'

specifies that the flight distance set is in metres, rather than pixels. Again, in the GEE

script this is performed for each land cover class although just an individual example is

presented here.

var class1_mean_mw = class1_only.focal_mean(flight_distance,'circle','meters');

5.3.7 Calculate 'distance to' rasters

Next, we will generate further raster data layers giving the distance from a pixel

location to the nearest patch of a specific land cover class of interest. This is of

particular interest for woodland edges (resting habitat for mosquitos) and water classes

(potential breeding habitat). The code below generates a distance product for the forest

class, with the output pixel values being distance from the location of that pixel to the

nearest woodland patch in metres. In the accompanying GEE script this is also

repeated for the fallow, forest and fallow combined, flowing water and static water land

cover classes.

 var dist_to_forest_m_int =

class1_only.fastDistanceTransform(500).sqrt().multiply(ee.Image.pixelArea().sqrt()).toInt();

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 45

5.3.8 Vegetation indices

Next, we generate a series of vegetation index (VI) and water index (WI) data

products. For the study area. VI and WI values for the study area will change

throughout the year in response to vegetation phenology and seasonal rainfall patterns.

Here, we are interested in generating ‘typical’ VI and WI values across the full year,

rather than calculating these values for a particular snapshot of dates within the year.

Therefore, we use the Sentinel-2 image collection that we created earlier and use

median reducers to calculate median values across the designated time-period. Two

VIs, the Normalised Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation

Index (SAVI) will be produced, along with two WIs, the Normalised Difference Water

Index (NDWI) and Modified Normalised Difference Water Index (MNDWI). The

functions to generate these VI and WI products are pre-defined at the beginning of the

GEE script, and here we map these functions over the S2_bandsubset image collection.

We then calculate the median values for each VI and WI separately.

var S2_NDVI_medx10k_int = S2_bandsubset.map(NDVI).median().multiply(10000).toInt();

var S2_SAVI_medx10k_int = S2_bandsubset.map(SAVI).median().multiply(10000).toInt();

var S2_NDWI_medx10k_int = S2_bandsubset.map(NDWI).median().multiply(10000).toInt();

var S2_MNDWI_medx10k_int = S2_bandsubset.map(MNDWI).median().multiply(10000).toInt();

After the functions are mapped, we perform a multiplication x10000, then convert the

resulting outputs to integer values using toInt(). The data is converted to integer format

to reduce the size of the data created (integer format data requires less storage

capacity than other formats such as float or double). For vegetation index values such

as NDVI, which frequently have a value range between -1 and 1, directly converting to

integer can truncate the data range resulting in data loss. To prevent this, the data

values are multiplied by 10000 before converting to integer, preserving the range of

data values. Users should note is subsequently inspecting the data that it has been

multiplied by 10000 from the original data values.

5.3.9 CHIRPS data extraction and smoothing

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 46

Finally, we will extract rainfall data for the study area for the period of, and several

months preceding the commencement of the mosquito data collection. Rainfall here is

used as a proxy for the availability of mosquito breeding habitat, with rainfall generating

ephemeral pools that are frequently used as breeding habitat. The precipitation dataset

that will be used is the CHIRPS Daily: Climate Hazards Group InfraRed Precipitation

with Station Data (version 2.0 final), identified in GEE as ‘'UCSB-CHG/CHIRPS/DAILY'.

The CHIRPS data to be used here - with one CHIRPS dataset for each calendar month

- are imported as assets at earlier in the script and do not require any further analysis

to within this script. However, should users wish to repeat this processing for alternative

sites or dates then the steps to produce these datasets are outlined below. This dataset

has a spatial resolution of 0.05 arc degrees and can exhibit a noticeable pixel edge

effect. Consequently, we apply a smoothing stage to the CHIRPS data to minimise

pixel-edge boundary effects of this dataset. A limit of this analysis is that there is a

maximum kernel size limit of 512 pixels that can be used for this smoothing, which at

10 m resolution is an insufficiently small kernel size to perform this smoothing. To work

around this limitation, the CHIRPS data can be processed separately and exported to

assets at a pixel size of 20 m (rather than 10 m), sufficiently increasing the size of the

kernel.

The commands below generate a monthly CHIRPS dataset for the calendar month of

August 2014 named Lodja_mean_2014_aug_smooth. A series of commands are applied

sequentially here. ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') specifies the appropriate GEE

dataset identifier from which we will generate a collection. The CHIRPS data is a daily

product, but for consistency with the monthly mosquito data collection periods, we will

convert this into a monthly mean precipitation per day product. This collection is then

filtered by date to retain data from the calender month of August 2014 using the

command .filter(ee.Filter.date('2014-08-01', '2014-08-31')) before generating a mean daily value

for that time period .reduce(ee.Reducer.mean()). The next command

.focal_mean(5000,'circle','meters'); performs the moving window smoothing, using a 5000

meter radius circular moving window. This is then multiplied by 10000 and converted to

integer format.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 47

var Lodja_mean_2014_aug_smoothx10k_int = ee.ImageCollection('UCSB-

CHG/CHIRPS/DAILY').filter(ee.Filter.date('2014-08-01', '2014-08-

31')).reduce(ee.Reducer.mean()).focal_mean(5000,'circle','meters').multiply(10000).toInt();

The Lodja_mean_2014_aug_smoothx10k_int object will next be exported to assets using the

code below. Here, image: corresponds to the object to be exported, description: is the name

of the output file, scale: is the spatial resolution of the output file (this is where we specify

20 m), maxPixels: sets the maximum number of pixels that can be exported, region: sets

the extent for which the analysis should be run and data exported (set here to the area

of interest defined in the ‘table’ polygon that was earlier imported as an asset), and crs:

specified the coordinate system / projection of the output file.

Export.image.toAsset({

 image: Lodja_mean_2014_aug_smoothx10k_int,

 description: Lodja_mean_2014_aug_smoothx10k_int,

 scale: 20,

 maxPixels: 1e13,

 region: table,

 crs: "EPSG:4326"

 });

This would be repeated for each calendar month required. These datasets will

subsequently be read back in as assets, stacked with the other environmental variable

datasets generated here, and exported as a stack at 10m resolution so all layers in the

stack have a consistent spatial resolution and projection.

5.3.10 Scale and convert data to integer, compile bands and export

We have now generated all the layers of data that we require from GEE. Next, we

compile the bands that we require for subsequent analysis and export the data to asset

as a multi-band raster, with each band in the stack corresponding to an explanatory

variable. It is advantageous to export all the data in this way (as opposed to exporting

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 48

each layer individually), as it guarantees that each layer has the same spatial extent,

pixel size, number of rows and columns of pixels, and coordinate system.

First, we convert any variables not already in integer format to integer including a

multiply by 10000 step to preserve the data ranges where required. This is done for the

individual land cover class moving window datasets with an example given below for

class 1 (Forest). The user should again be aware that some data layers will therefore

be 10000x the original data values in the exported dataset.

var class1_mean_mwx10k_int = class1_mean_mw.multiply(10000).toInt();

Next, we compile the bands required for export into a new image object called

GEE_data_for_exportx10k_int. We then display the names of the bands in

GEE_data_for_exportx10k_int to check that they are all present.

var GEE_data_for_exportx10k_int =

class1_mean_mwx10k_int.addBands(class2_mean_mwx10k_int).addBands(class3_mean_mwx10k_int).a

ddBands(class4_mean_mwx10k_int).addBands(class5_mean_mwx10k_int).addBands(class6_mean_mwx

10k_int).addBands(class7_mean_mwx10k_int).addBands(class8_mean_mwx10k_int).addBands(elevatio

n_int).addBands(aspect_int).addBands(slopex10k_int).addBands(tpi_15_pixel_int).addBands(dist_to_for

est_m_int).addBands(dist_to_fallow_m_int).addBands(dist_all_forest_and_fallow_classes_m_int).addBa

nds(dist_to_flowing_water_m_int).addBands(dist_to_static_water_m_int).addBands(S2_NDVI_medx10k

_int).addBands(S2_SAVI_medx10k_int).addBands(S2_NDWI_medx10k_int).addBands(S2_MNDWI_medx

10k_int).addBands(Lodja_mean_2014_aug_smoothx10k_int).addBands(Lodja_mean_2014_sept_smoot

hx10k_int).addBands(Lodja_mean_2014_oct_smoothx10k_int).addBands(Lodja_mean_2014_nov_smoo

thx10k_int).addBands(Lodja_mean_2014_dec_smoothx10k_int).addBands(Lodja_mean_2015_jan_smoo

thx10k_int).addBands(Lodja_mean_2015_feb_smoothx10k_int).addBands(Lodja_mean_2015_mar_smo

othx10k_int).addBands(Lodja_mean_2015_apr_smoothx10k_int).addBands(Lodja_mean_2015_may_sm

oothx10k_int).addBands(Lodja_mean_2015_june_smoothx10k_int).addBands(Lodja_mean_2015_july_s

moothx10k_int).addBands(Lodja_mean_2015_aug_smoothx10k_int).addBands(Lodja_mean_2015_sept

_smoothx10k_int).addBands(Lodja_mean_2015_oct_smoothx10k_int).addBands(Lodja_mean_2015_no

v_smoothx10k_int).addBands(Lodja_mean_2015_dec_smoothx10k_int).addBands(Lodja_mean_2016_ja

n_smoothx10k_int).addBands(Lodja_mean_2016_feb_smoothx10k_int).addBands(Lodja_mean_2016_m

ar_smoothx10k_int).addBands(Lodja_mean_2016_apr_smoothx10k_int).addBands(Lodja_mean_2016_

may_smoothx10k_int).addBands(Lodja_mean_2016_june_smoothx10k_int).addBands(Lodja_mean_201

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 49

6_july_smoothx10k_int).addBands(Lodja_mean_2016_aug_smoothx10k_int).addBands(Lodja_mean_20

16_sept_smoothx10k_int).addBands(Lodja_mean_2016_oct_smoothx10k_int).addBands(Lodja_mean_2

016_nov_smoothx10k_int).addBands(Lodja_mean_2016_dec_smoothx10k_int);

print(GEE_data_for_exportx10k_int.getInfo());

Next we rename the individual bands with more intuitive names.

 var GEE_data_for_exportx10k_int = GEE_data_for_exportx10k_int.select(['remapped', 'remapped_1',

'remapped_2', 'remapped_3', 'remapped_4', 'remapped_5', 'remapped_6', 'remapped_7', 'elevation',

'aspect', 'slope', 'elevation_1', 'distance', 'distance_1', 'distance_2', 'distance_3', 'distance_4', 'B8',

'constant', 'B3', 'B3_1', 'precipitation_mean', 'precipitation_mean_1', 'precipitation_mean_2',

'precipitation_mean_3', 'precipitation_mean_4', 'precipitation_mean_5','precipitation_mean_6',

'precipitation_mean_7', 'precipitation_mean_8', 'precipitation_mean_9', 'precipitation_mean_10',

'precipitation_mean_11', 'precipitation_mean_12', 'precipitation_mean_13', 'precipitation_mean_14',

'precipitation_mean_15','precipitation_mean_16', 'precipitation_mean_17', 'precipitation_mean_18',

'precipitation_mean_19', 'precipitation_mean_20', 'precipitation_mean_21', 'precipitation_mean_22',

'precipitation_mean_23', 'precipitation_mean_24', 'precipitation_mean_25', 'precipitation_mean_26',

'precipitation_mean_27','precipitation_mean_28'],

['proportion_forest', 'proportion_grassland', 'proportion_clearing', 'proportion_fallow',

'proportion_built_up', 'proportion_flowing_water', 'proportion_static_water', 'proportion_burnt',

'elevation', 'aspect', 'slope', 'TPI', 'distance_to_forest', 'distance_to_fallow',

'distance_to_forest_or_fallow', 'distance_to_flowing_water', 'distance_to_static_water', 'Median_NDVI',

'Median_SAVI', 'Median_NDWI', 'Median_MNDWI','CHIRPS_Aug_2014', 'CHIRPS_Sept_2014',

'CHIRPS_Oct_2014', 'CHIRPS_Nov_2014', 'CHIRPS_Dec_2014', 'CHIRPS_Jan_2015', 'CHIRPS_Feb_2015',

'CHIRPS_Mar_2015', 'CHIRPS_Apr_2015', 'CHIRPS_May_2015', 'CHIRPS_June_2015',

'CHIRPS_July_2015','CHIRPS_Aug_2015', 'CHIRPS_Sept_2015', 'CHIRPS_Oct_2015', 'CHIRPS_Nov_2015',

'CHIRPS_Dec_2015', 'CHIRPS_Jan_2016','CHIRPS_Feb_2016', 'CHIRPS_Mar_2016', 'CHIRPS_Apr_2016',

'CHIRPS_May_2016', 'CHIRPS_June_2016', 'CHIRPS_July_2016', 'CHIRPS_Aug_2016',

'CHIRPS_Sept_2016', 'CHIRPS_Oct_2016', 'CHIRPS_Nov_2016', 'CHIRPS_Dec_2016']);

We then again display the names of the bands in GEE_data_for_exportx10k_int to check that

they have been changed.

print(GEE_data_for_exportx10k_int.getInfo());

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 50

We then export the data stack to assets:

Export.image.toAsset({

 image: GEE_data_for_exportx10k_int,

 description: 'GEE_data_for_exportx10k_int',

 scale: 10,

 maxPixels: 1e13,

 region: table,

 crs: "EPSG:4326"

 });

5.3.11 Import mosquito sampling data and extract band data

Now that we have created the data stack comprising the explanatory environmental

variable bands, we need to extract the values from each band for the time and location

at which the mosquito sampling was performed. Firstly, we need to perform a filtering

operation to take the full mosquito dataset, and subset it into a series of month-specific

datasets. We do this as we do not wish to extract the rainfall values for every month,

instead we will only extract the rainfall values for the calendar month in which each

subset of mosquito data was collected, and the preceding five months. Consequently,

this data must be extracted on a month-by-month basis. The full mosquito dataset has

already been imported as an asset named mosquito_survey_data. The following code

subsets the mosquito dataset, creating a new data subset named

mosquito_survey_data_2015_jan which contains only the mosquito data collected in January

2015.

var mosquito_survey_data_2015_jan =

mosquito_survey_data.filter(ee.Filter.eq("Year",2015)).filter(ee.Filter.eq("Month",'January'));

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 51

This performs two filtering operations on the full mosquito dataset, firstly filtering by the

year attribute and retaining all records collected in 2015, and then by applying a second

filter to retain only the records identified as ‘January’ in the ‘Month’ attribute. This

process is repeated for each calendar month between January 2015 and December

2016.

Next, we create a series of month-specific data stacks comprising the non-CHIRPS

variable bands, and the CHIRPS precipitation bands for the month in question, and the

preceding five months. From these, we extract the band values for the mosquito

sample locations for the respective month. First, we create a new object named

static_variables which selects the all the non-CHIRPS bands from the

GEE_data_for_exportx10k_int data stack.

var static_variables = GEE_data_for_exportx10k_int.select(['proportion_forest', 'proportion_grassland',

'proportion_clearing', 'proportion_fallow', 'proportion_built_up', 'proportion_flowing_water',

'proportion_static_water', 'proportion_burnt', 'elevation', 'aspect', 'slope', 'TPI', 'distance_to_forest',

'distance_to_fallow', 'distance_to_forest_or_fallow', 'distance_to_flowing_water',

'distance_to_static_water', 'Median_NDVI', 'Median_SAVI', 'Median_NDWI', 'Median_MNDWI']);

Next, we use the command below to create new data stacks comprising the

static_variables data stack that we have just created, add to this further CHIRPS

precipitation bands corresponding to the month in question and the preceding five

months, then apply another command to sample the band values for the locations of

mosquito sampling for that given month. The example below is for January 2015, and

creates a new object containing the extracted variable data called training_2015_jan. A

single example is presented here, but in the accompanying GEE script this is

performed for all months in 2015 and 2016.

var training_2015_jan =

static_variables.addBands(Lodja_mean_2015_jan_smoothx10k_int).addBands(Lodja_mean_2014_dec_s

moothx10k_int).addBands(Lodja_mean_2014_nov_smoothx10k_int).addBands(Lodja_mean_2014_oct_

smoothx10k_int).addBands(Lodja_mean_2014_sept_smoothx10k_int).addBands(Lodja_mean_2014_aug

_smoothx10k_int).sampleRegions({collection: mosquito_survey_data_2015_jan,properties:

['An_gambiae'], scale: 10});

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 52

Once this has been performed for each calendar month, the 24 sets of extracted

variable data are then recombined back into a single feature collection object.

var training_all_months =

training_2015_jan.merge(training_2015_feb).merge(training_2015_mar).merge(training_2015_apr).mer

ge(training_2015_may).merge(training_2015_june).merge(training_2015_july).merge(training_2015_au

g).merge(training_2015_sept).merge(training_2015_oct).merge(training_2015_nov).merge(training_201

5_dec).merge(training_2016_jan).merge(training_2016_feb).merge(training_2016_mar).merge(training

_2016_apr).merge(training_2016_may).merge(training_2016_june).merge(training_2016_july).merge(tr

aining_2016_aug).merge(training_2016_sept).merge(training_2016_oct).merge(training_2016_nov).mer

ge(training_2016_dec);

We then export this merged dataset so that the next stage of analysis, feature selection

using the Boruta method, can be performed in R. The following commands will export

the training_all_months feature collection to a csv format file named extracted_data and save

this to the users Google Drive.

Export.table.toDrive({

 collection: training_all_months,

 description: ‘training_all_months',

 fileFormat: 'CSV'

});

From the users Google Drive this file can then be downloaded, saved locally and

processed in R.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 53

5.4. Running the script

This section so far has explained the GEE script content, but not how to run the script.

To do this, simply click on the ‘Run’ button towards the top-right on the GEE window.

This will run the full script except any text that has been commented out. Some

commands will write outputs to the ‘Console’ tab such as the accuracy assessment

results, while export to asset or drive tasks will appear under the ‘Tasks’ tab. Any

bands or datasets that are added to the map will appear in the viewer at the bottom of

the GEE window.

To switch between tabs simply click on the one you require. You can also resize the

different panels in the GEE window simply by clicking on the bars between them and

dragging. It is particularly useful to expand the map viewer window when inspecting

layers that you have displayed. You will need to zoom in on the map to see your area

of interest (e.g. Lodja, DRC) (Figure 5.6), this may take a little while to render.

Fig 5.6 Map viewer of Lodja in GEE with land classification shown.

When running export tasks either to asset or drive, as well as running the command to

do this in the script, you will also need to click on the ‘Tasks’ tab where a list of the

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 54

export tasks to be run will be given. There will be a ‘Run’ button next to each task –

click on this, and the ‘Task: Initiate table export’ box will open (Fig 5.7). Click ‘Run’ in

this window and the export will begin – this is not done automatically, so if you do not

click on ‘Run’ the export process will not begin. Depending on the size of the object

being exported and the volume of processing by other users being run on GEE at the

time, exports can take some time – possibly even hours – to complete. Multiple tasks

can however be set to run simultaneously, and further processing can also be

performed while previous export tasks are still running in the background.

Fig. 5.7 Initiate table export window.

Note that this script involves a large volume of data processing and analysis, so once

the script is set running it may take a couple of minutes to complete. You may receive a

‘Page Unresponsive’ notification – if you do, do not worry - this simply means the

processing is still running. Be patient and give the processing some time to run, the

warning box will vanish once the processing has completed.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 55

6. R – feature selection

The next stage of the analysis takes the environmental variable data extracted from the

data stack generated in GEE and perform feature selection analysis using the Boruta

method to identify which of this wider suite of variables are important in relation to An.

gambiae abundance. As per the GEE section, this stage of the analysis is

accompanied by a script that will enable the user to perform the analysis steps in

RStudio.

Before beginning the R analysis, we will create a working directory in which we will

save the data previously extracted and exported from Google Earth Engine. To do this,

open file explorer, navigate to an appropriate location on your computer and create a

new directory by right clicking, selecting ‘New’, then ‘Folder’. You can then give the

folder that you have created an appropriate name. Although the location and name of

the directory you create will vary, for this exercise we will use a directory with the route

path: ‘D:\R_mosquito_modelling’. Copy the data to be analysed and the R script that

we have provided into this folder. If the location and name of your working directory

differs, the R script should be adapted to specify the alternate working directory

location and name.

Next, open RStudio. You should see a window similar to that shown in Figure 6.1.

Figure 6.1. The RStudio window

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 56

If you are developing a new R script, you would click on ‘File’, then ‘New File’, then ‘R

Script’, and an additional window would open in the top left of RStudio where you

would write your code. As we have a pre-prepared script available to perform this

analysis, we can simply load in this script. Again, go to ‘File’, then ‘Open File’, and

navigate to the working directory (D:\R_mosquito_modelling). Select the relevant R

file containing the script and click ‘Open’. The script should now be displayed in the top

left window of RStudio similar to that displayed in Figure 6.2.

Figure 6.2. R Studio with an example R script loaded.

Similar to in GEE, sections of commands can also be commented out in an RStudio

script, with these sections preceded with # and usually displayed in green text.

To run the script, or a section of the script, first highlight the line(s) of code that you

wish to run by clicking the mouse and dragging. Once the correct section(s) of text

have been highlighted, click the ‘Run’ icon at the top-right of the window in which

the code is displayed.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 57

6.1 Load required packages and set working directory

R contains a wide range of functionality, much of which is available through add-on

packages. These packages must be installed and called to enable to functionality of the

commands within the package. Packages only need to be installed once but will need

to be called at the beginning of each RStudio session. Packages can be installed

manually via the ‘Packages’ tab to the bottom right of the RStudio window (Figure.

6.3).

Fig 6.3 Red arrow indicates where to select ‘packages’

Click on the ‘Packages’ tab if this is not already the active tab. Next, click ‘Install’ and

the install packages window should open (Figure 6.4).

Fig. 6.4. The install packages pop-up window.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 58

In this window, type the name of the package that you wish to install in the ‘Packages’

box. As you type, a drop-down list of the available packages should appear. Select the

appropriate package name, make sure that ‘Install dependencies’ is ticked, then click

‘Install’. Repeat this process until all the required packages have been installed.

Perform this for the following Boruta package.

We then load the Boruta package using the ‘library()’ command. The library command

is repeated for each of the packages that are required:

 #Load libraries

library(Boruta)

Next, we specify the working directory created earlier which (unless specified

otherwise) R will default to for reading data from and writing data to. If the working

directory location and name differs from the one given here, you will need to update the

code to reflect this.

setwd("D:/R_mosquito_modelling")

We then read in the .csv file that contains the mosquito and environmental variable

data that we previously exported from GEE. This use the command read.csv(), and read

in the file named training_all_months.csv that is saved in the working directory. As we have

already specified the working directory, we do not need to include the full file route path

here. This will read in the csv file and create the object data. Finally, we produce a

summary of the data that we have just imported using the summary() command. This will

generate basic summary statistics for each of the variables in the data dataset that will

appear in the console window (Figure 6.4).

data <- read.csv(file = "training_all_months.csv")

summary(data)

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 59

Fig. 6.4. Summary statistics of the attributes of data.

Next, we need to create an explanatory_variable_subset subset data set to retain only the

explanatory variables. This uses the subset command, specifying data as the source

dataset to subset from, and uses the select = -c(An_gambiae) command to remove the

An_gambiae attribute. We then again use the summary() function for the new

explanatory_variable_subset object to check that the An_gambiae attribute has been removed.

explanatory_variable_subset <- subset(data, select = -c(An_gambiae))

summary(explanatory_variable_subset)

We then create a new object called response containing only the An_gambiae response

variable.

response <- data$An_gambiae

Next, we run the Boruta feature selection analysis. First we set a seed value of 10. We

specify that the output results will be written to an object named boruta_results, specify

that the Boruta() command will be used, and specify the datasets containing the

explanatory and response variable datasets. A number of internal parameters are then

specified. Most of these you will not need to change, however there are options of

changing the pValue used, and also to number of runs performed in the feature selection

analysis. Increasing the number of results can be useful if variables are returned as

‘Tentative’, meaning that the feature selection is unable to confirm whether a variable is

important or unimportant. Here, a maximum number of 1000 runs is specified.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 60

set.seed(10)

boruta_results <- Boruta(x = explanatory_variable_subset, y = response, pValue = 0.01, doTrace = 2,

holdHistory = TRUE, getImp = getImpRfZ, maxRuns = 1000)

As the analysis runs, text will be printed to the console window. The process will end

either when all variables have either been confirmed or rejected as important, or if the

maximum number of specified runs has been reached. When the processing has

finished, we can view the results to see whether each explanatory variable has been

confirmed as important, unimportant, or is labelled as tentative. We can view a

summary of the results (Figure 6.5) using the command below:

print(boruta_results)

Fig. 6.5. Boruta feature selection results.

The results summary will be printed to the console window, and state how many

iterations were performed and the total run time for these iterations, and how many

attributes (variables) were confirmed as important, unimportant, or tentative, and list

some of the variables. Note that if there are a larger number of variables falling into

these categories then they may not all be listed here, so we may wish to look at the full

set of results using the command below.

attStats(boruta_results)

Finally, if we wish to get a list of the variables that are confirmed as important, we use

the commands below. We do have the option of also including variables that are

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 61

labelled as tentative using the withTentative = command and specifying either T (to include

tentative variables) or F (do not include tentative variables).

confirmed_variables = getSelectedAttributes(boruta_results, withTentative = T)

confirmed_variables

The Boruta feature selection results demonstrate that for An. gambiae abundance in

this case the variables in Table 6.1 are confirmed to be important, whereas the

remainder of the explanatory variables are confirmed to be unimportant and can

therefore be disregarded from further analysis. Having identified this parsimonious set

of variables, we return to GEE to continue the modelling stages focussing on only these

parsimonious variables.

Table 6.1. The explanatory variables retained after the Boruta feature selection.

Explanatory variable retained

Proportional coverage of forest

Proportional coverage of fallow

Proportional coverage of flowing water

Proportional coverage of static water

Distance to nearest patch of forest or fallow

Distance to nearest patch of flowing water

Median NDVI

Median SAVI

Median NDWI

Rainfall0

Rainfall-1

Rainfall-2

Rainfall-3

Rainfall-4

Rainfall-5

This feature selection process is demonstrated here as users may wish to adapt this

processing to different mosquito species in different regions, where an alternative

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 62

series of environmental variables to those identified here may exert a greater influence

on mosquito abundance.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 63

7. Google Earth Engine - modelling

The second GEE script performs the Random Forest modelling on the reduced set of

environmental variables that have been confirmed as important in relation to An.

gambiae abundance by the Boruta feature selection analysis. The GEE script for this

stage of the analysis can be accessed via the link below:

https://code.earthengine.google.com/167b371d166f68830ff02836bb83d7d0

As before, a number of assets are already imported for this stage of analysis. Again,

we import the AOI bounding box delineating our study area, the mosquito survey data,

monthly smoothed CHISPS precipitation data from august 2014 to December 2016,

and the data stack comprising all the explanatory variable bands

(GEE_data_for_exportx10k_int) that we exported to asset at the end of the first GEE

script.

Next, a number of parameters for the random forest analysis are set; ntrees (the number

of trees in the random forest), MinLeafPopulation (creates nodes whose training set

contains at least this many points), maxNodes (maximum number of leaf nodes in each

tree - if unspecified no limit is the default), variablesPerSplit (the number of variables per

split), and bagFraction (the fraction of input to bag per tree).

var ntrees = 200;

var MinLeafPopulation = 1;

var maxNodes = null; // (no limit)

var variablesPerSplit = null;

var bagFraction = 0.99;

We then take the mosquito survey data that has been loaded as an asset, and again

subset this data into a series of month-specific datasets as we did previously in the first

https://code.earthengine.google.com/167b371d166f68830ff02836bb83d7d0

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 64

GEE script. This is done for each calendar month, with example code given for January

2015 below.

var mosquito_survey_data_2015_jan =

mosquito_survey_data.filter(ee.Filter.eq("Year",2015)).filter(ee.Filter.eq("Month",'January'));

Next, we create a stack of the static (non-rainfall) raster bands identified by the feature

selection analysis to be important. We did this previously in the first GEE script,

however here we will use a reduced set of the static variables, disregarding those that

the feature selection analysis confirmed as being unimportant. We name the new data

stack static_variables and select the bands of interest from the GEE_data_for_exportx10k_int data

stack that we created in the first GEE script, and imported earlier as an asset.

var static_variables =

GEE_data_for_exportx10k_int.select(['proportion_forest','proportion_fallow','proportion_flowing_water

','proportion_static_water','distance_to_forest_or_fallow','distance_to_flowing_water','Median_NDVI','

Median_SAVI','Median_NDWI']);

We then create a series of month-specific data stacks comprised of the static_variables

data stack that we have just created, and the CHIRPS precipitation data bands for the

given month, and preceding five months. The precipitation bands have already been

imported as assets at the beginning of the script. The example below is for January

2015, however this is repeated for each calendar month between January 2015 and

December 2016.

var datastack_2015_jan =

static_variables.addBands(Lodja_mean_2015_jan_smoothx10k_int).addBands(Lodja_mean_2014_dec_s

moothx10k_int).addBands(Lodja_mean_2014_nov_smoothx10k_int).addBands(Lodja_mean_2014_oct_

smoothx10k_int).addBands(Lodja_mean_2014_sept_smoothx10k_int).addBands(Lodja_mean_2014_aug

_smoothx10k_int);

Whereas in the first GEE script the similar month-specific data stacks were used to

extract the variable values for the mosquito sample locations in a single step, this time

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 65

the data stacks serve two purposes. We will extract the mosquito sample locations as

before, but we will also predictively apply the random forest models that we generate

on these data stacks to produce predicted mosquito abundance maps for the month in

questions across the full extent of the study area. The commands above generate the

month-specific data stacks that we require to perform this predictive extrapolation.

Next, we use the sampleRegions() command to extract the values from all the raster bands

for the mosquito sample locations. This is again run for each calendar month with the

command for January 2015 given below.

var training_2015_jan = datastack_2015_jan.sampleRegions({collection:

mosquito_survey_data_2015_jan,properties: ['An_gambiae'], scale: 10});

This creates the object training_2015_jan, specifies that the datastack_2015_jan is the data

stack to extract the variable values from, that mosquito_survey_data_2015_jan is the mosquito

survey dataset for that month for which the sampling locations will be used to extract

the data, properties: ['An_gambiae'] instructs the An_gambiae attribute in

mosquito_survey_data_2015_jan (which is the An. gambiae count for the survey location in

question) to also be included in the output dataset, and scale: 10 specifies the spatial

resolution to perform the sampling at (here matching the 10 m resolution of the data

stack). We then merge the training data extracted for each month into a single object

called training_all_months using the command below.

var training_all_months =

training_2015_jan.merge(training_2015_feb).merge(training_2015_mar).merge(training_2015_apr).mer

ge(training_2015_may).merge(training_2015_june)

.merge(training_2015_july).merge(training_2015_aug).merge(training_2015_sept).merge(training_2015

_oct).merge(training_2015_nov).merge(training_2015_dec)

.merge(training_2016_jan).merge(training_2016_feb).merge(training_2016_mar).merge(training_2016_

apr).merge(training_2016_may).merge(training_2016_june)

.merge(training_2016_july).merge(training_2016_aug).merge(training_2016_sept).merge(training_2016

_oct).merge(training_2016_nov).merge(training_2016_dec);

Next, we identify the band names of the monthly data stacks that are a required

parameter of the random forest modelling. We extract the band names using the

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 66

command below for the datastack_2015_jan datastack. The band names should be identical

for each monthly data stack, so we only need to do this once here.

var bandNames = datastack_2015_jan.bandNames();

We then build the random forest model. The commands creates a model named

rf_regression, which runs the ee.Classifier.smileRandomForest command reading in the ntrees,

variablesPerSplit, MinLeafPopulation, bagFraction and maxNodes parameters set earlier in the script,

specifies the output mode as regression (rather than classification), sets

training_all_months as the training dataset to build the random forest regression model on,

An_gambiae as the response variable, and the bandNames as explanatory variable names

that we have just extracted from the data stack (above).

var rf_regression =

ee.Classifier.smileRandomForest(ntrees,variablesPerSplit,MinLeafPopulation,bagFraction,maxNodes).set

OutputMode('REGRESSION').train(training_all_months,"An_gambiae",bandNames);

This model is then applied predictively on each monthly data stack, producing a single

output raster for each month. The example below is for January 2015, however it is

repeated for each month changing the input data stack and output product name

accordingly. Here, the output name for the predicted raster is rf_2015_jan_predict,

datastack_2015_jan is the input data stack, and .classify() is the command to run the

rf_regression model predictively.

var rf_2015_jan_predict = datastack_2015_jan.classify(rf_regression);

Finally, we stack the monthly predicted bands into a single data stack named RF_predicted

and save this to assets. This will then be the input into the final GEE script which will be

used to visualise the An. gambiae predicted abundance maps.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 67

var RF_prediced =

rf_2015_jan_predict.addBands(rf_2015_feb_predict).addBands(rf_2015_mar_predict).addBands(rf_201

5_apr_predict).addBands(rf_2015_may_predict).addBands(rf_2015_june_predict).addBands(rf_2015_jul

y_predict).addBands(rf_2015_aug_predict).addBands(rf_2015_sept_predict).addBands(rf_2015_oct_pre

dict).addBands(rf_2015_nov_predict).addBands(rf_2015_dec_predict).addBands(rf_2016_jan_predict).a

ddBands(rf_2016_feb_predict).addBands(rf_2016_mar_predict).addBands(rf_2016_apr_predict).addBan

ds(rf_2016_may_predict).addBands(rf_2016_june_predict).addBands(rf_2016_july_predict).addBands(rf

_2016_aug_predict).addBands(rf_2016_sept_predict).addBands(rf_2016_oct_predict).addBands(rf_201

6_nov_predict).addBands(rf_2016_dec_predict);

Export.image.toAsset({

 image: RF_prediced,

 description: 'RF_prediced',

 scale: 10,

 maxPixels: 1e13,

 region: table,

 crs: "EPSG:4326"

 });

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 68

8. Google Earth Engine - data visualisation

To visualise the predicted An. gambiae data, the third GEE script has been developed

to display the monthly datasets and to enable sharing of the data within a GEE app.

The link for this script is below:

https://code.earthengine.google.com/5cbd6be91c69680e2ca8ec1f4cea0af1

This script reads in the RF_predicted data stack asset comprising the An. gambiae

predicted abundances for each calendar month. The first section of code renames the

bands to give them more intuitive names, specifying the month and year to which they

correspond, and stating whether the bands are the mean predicted abundance (pred)

or the standard deviation (stdev) output. The example below presents the code for

renaming the predicted abundance band for January 2015, although in the

accompanying GEE script this is performed for all months.

var RF_predicted = RF_predicted.select(['classification'],['January_2015_pred']);

We then display the predicted abundance for each month, with example code for

January 2015 below.

Map.addLayer(RF_predicted, {bands: ['January_2015_pred'], min:0 , max:100, palette: ['blue', 'green',

'red']}, "An gambiae predicted abundance January 2015", true);

Here, the command Map.addLayer displays the specified band in the viewer, RF_predicted

specifies the data stack that contains the data to be displayed, and ['January_2015_pred']

specifies the individual band within RF_predicted data stack that we wish to display. min:0 ,

max:100 specifies the data range to be displayed, and palette: ['blue', 'green', 'red'] gives the

colour palette to be used to display the data. Finally "An gambiae predicted abundance January

2015" gives the label to be displayed for that layer, and true specifies that the layer will be

https://code.earthengine.google.com/5cbd6be91c69680e2ca8ec1f4cea0af1

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 69

displayed automatically. This can also be set to false, in which case the band will not be

automatically displayed, although this can subsequently be displayed by ticking the

check-box for that layer which will appear if you hover the cursor over the Layers tab in

the viewer window. It is useful when displaying a large number of bands to initially set

this value to false as sometimes a large number of bands can take a while to render.

Any band that you do with to display can be switched on using its check-box.

Finally, we use the command below to zoom to and centre the viewer extent to

RF_predicted.

Map.centerObject(RF_predicted);

The remainder of the command text in the script corresponds to creating a legend to

display alongside the data that we have generated. You will not need to change this

code so we do not explore it in detail here.

Running the script will display the results in the map viewer; however ideally, we would

be able to disseminate the results to others in a convenient way. GEE allows us to do

this via its Apps functionality, which enables others to view the results of the analysis

via a web browser.

To publish the script as an app, click on the ‘Apps’ button at the top-right of the GEE

screen . On the ‘Manage Apps’ window that opens, click ‘New App’ (top right),

and the ‘Publish New App’ window will open (Figure 8.1)

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 70

Figure 8.1. The Publish New App window.

Give the app an appropriate name, check that under ‘Source Code’ current contents of

editor is checked, and click ‘Publish’. The App will then appear in the ‘Manage Apps’

window. If you subsequently make edits to the script, you will also need to update the

App. To do this, in the ‘Manage Apps’ window, under the ‘ID (click to update app)’

column click on the link for the app and the ‘App Details’ window will open. This looks

very similar to the ‘Publish New App’ window, however under ‘Source Code’ at the

bottom of this window, check ‘Current contents of editor’ then ‘Save’ and this will

update the App to include the changes made to the source code.

To then launch the App, click on the App name under the ‘App Name (click to

launch)’ column, and the app should open a web browser and display the data similar

to shown in Figure 8.2.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 71

Figure 8.2. Google Earth Engine App displaying the predicted mosquito abundance

data.

The App will display the data, but not give the viewer access to the assets or underlying

code. By hovering over the ‘Layers’ button (top-right) a drop-down list will appear of all

the layers available to display. Most of these are currently set not to display, although

the user can use the check-boxes for each band to switch on or off the display for each

individual band as they wish. They can also zoom in or out and pan around the study

area, and also change the base layer from the map displayed in Figure xx to a satellite

image layer. Note that the satellite base layer is not the satellite imagery used within

the analysis workflow that we have conducted, but is a higher resolution dataset made

available within GEE for context / visualisation but not analysis. Note also that there will

be temporal offsets between the acquisition dates of the satellite imagery we have

analysed, and the acquisition dates of the satellite basemap.

The app link as displayed in the web browser can then be distributed and viewed by

users with only the need for a web connection.

Note that to display data in this way the assets that are loaded and displayed (here the

RF_predicted stack of bands corresponding to the random forest predictions and standard

deviation products for each calendar month must be shared. To do this, return to the

GEE code editor containing the script, click on the ‘Assets’ tab, and then click again on

the asset that you wish to share. This should open a new window similar to the one in

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 72

Figure 8.3.

Figure 8.3. Asset information window.

 In this window, click on ‘Share’, tick the ‘Anyone can read’ check-box, then click

‘Done’. The asset should now be viewable to anyone via the App.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 73

9. Disclaimer

This user guide and sample datasets are provided "as is" without warranty of any kind,

including, but not limited to, the implied warranties of merchantability and fitness for a

particular purpose. The user assumes all responsibility for the accuracy and suitability

of this program for a specific application. In no event will the authors or affiliated

institutions be liable for any damages, including lost profits, lost savings, or other

incidental or consequential damages arising from the use of or the inability to use this

program.

Users are encouraged to engage with these training materials and adapt them for their

own purposes. Should publications be developed incorporating the methods presented

here, both this user guide and following journal article from which it was developed

should be cited.

This user guide should be cited as ‘Marston C.G., Rowland C.S., O’Neil A.W., Irish, S.,

Wat’senga F., Martin-Gallego P., Giraudoux P., and Strode C. 2022. Earth observation

for malaria modelling: a practical toolkit for satellite-based prediction of mosquito

distributions using Google Earth Engine and R. UK Centre for Ecology and Hydrology,

78pp.’

The journal article should be cited as ‘Marston C.G., Rowland C.S., O’Neil A.W., Irish,

S, Wat’senga F., Martín-Gallego P., Aplin P., Giraudoux, P. and Strode, C. 2023.

Developing the Role of Earth Observation in Spatio-Temporal Mosquito Modelling to

Identify Malaria Hot-Spots. Remote Sensing. 15, 43. https://doi.org/

10.3390/rs15010043’

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 74

10. Acknowledgements

This project was funded through a UKRI Collective Fund administered by Edge Hill

University as part of the Global Challenges Research Fund, the UK Centre for Ecology

and Hydrology (project number NEC07217), and the Natural Environment Research

Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering

National Capability. Seth Irish was supported by the U.S. President’s Malaria Initiative.

The findings and conclusions in this paper are those of the authors and do not

necessarily represent the official position of the Centers for Disease Control (CDC).

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 75

11. References

Marston C.G., Rowland C.S., O’Neil A.W., Irish, S, Wat’senga F., Martín-Gallego P.,

Aplin P., Giraudoux, P. and Strode, C. (2023). Spatio-temporal modelling of malaria

hotspots using Google Earth Engine and quantile regression forests. Remote Sensing.

15, 43. https://doi.org/ 10.3390/rs15010043.

Verdonschot, P. F., & Besse-Lototskaya, A. A. (2014). Flight distance of mosquitoes

(Culicidae): a metadata analysis to support the management of barrier zones around

rewetted and newly constructed wetlands. Limnologica, 45, 69-79.

doi.org/10.1016/j.limno.2013.11.002

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 76

12. Glossary

Land Cover Refers to the surface cover on the ground, whether vegetation, urban
infrastructure, water, bare soil or other

Modified Normalised Difference Water Index (MNDWI)

Uses green and short-wave infrared (SWIR) bands for the enhancement
of open water features. It also diminishes built-up area features that are
often correlated with open water in other indices

Normalised Difference Vegetation Index (NDVI)

Quantifies vegetation by measuring the difference between near-infrared
(NIR) (which vegetation strongly reflects) and red light (which vegetation
absorbs)

Normalised Difference Water Index (NDVI)

 Refers to one of at least two remote sensing-derived indexes related to
liquid water; either changes in water content in leaves using NIR and
SWIR or changes related to water content in water bodies, using green
and NIR wavelengths

Polarisations Polarisation is a way to give transmission signals a specific direction. It
makes the beam more concentrated. Signals transmitted by satellite can
be polarised in one of four different ways: linear (horizontal or vertical) or
circular (left-hand or right-hand)

Rasters A raster consists of a matrix of cells (or pixels) organized into rows and
columns (or a grid) where each cell contains a value representing
information, such as temperature. Rasters are digital aerial photographs,
imagery from satellites, digital pictures, or even scanned maps

Sentinel-1 Sentinel-1A and Sentinel-1B satellites share the same orbital plane.
Both use Synthetic Aperture Radar (SAR) has the advantage of
operating at wavelengths not impeded by cloud cover or a lack of
illumination and can acquire data over a site during day or night time
under all weather conditions. Sentinel-1, with its C-SAR instrument, can
offer reliable, repeated wide area monitoring. Resolution can be down to
5m and coverage up to 400km

Sentinel-2 Two identical SENTINEL-2 satellites operate simultaneously, phased at
180° to each other, in a sun-synchronous orbit at a mean altitude of 786
km. Sentinal-2 used Visible and Near-Infra-Red (VNIR) bands and Short

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/instrument-payload

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 77

Wave Infra-Red (SWIR) bands and monitors variability in land surface
conditions under cloud-free conditions

Shapefile A simple, nontopological format for storing the geometric location and
attribute information of geographic features. Geographic features in a
shapefile can be represented by points, lines, or polygons (areas)

Soil-Adjusted Vegetation Index (SAVI)

A vegetation index that attempts to minimise soil brightness influences
using a soil-brightness correction factor. This is often used in arid regions
where vegetative cover is low.

Earth observation for malaria modelling: a practical toolkit for satellite-based prediction of mosquito
distributions using Google Earth Engine and R

UKCEH report … version 1.0 78

