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Abstract

Our expectations of Explainable AI have grown together with its popularity. So far, the in-

terpretability technique of Layer-Wise Relevance Propagation (LRP) has been adopted with

mostly qualitative evaluation of its rules. Therefore, a quantitative and qualitative evalua-

tion of LRP rules is conducted to determine which hyperparameters provide the best scoring

heatmaps according to the Pixel-Flipping and Area Under the Curve evaluation framework.

It can be concluded from the experiment results that the choice of evaluation metrics and

visualization of heatmaps has a significant impact on explanations. Additionally, due to the

inherent subjectivity of visual explanations the requirements should be defined on a case-by-

case basis.

Zusammenfassung

Unsere Erwartungen an Erklärbare KI sind zusammen mit ihrer Popularität gestiegen. Bisher

wurden die Regeln der Interpretierbarkeitsmethode Layer-Wise Relevance Propagation (LRP)

überwiegend qualitativ bewertet. Im Rahmen dieser Arbeit wird eine quantitative und quali-

tative Untersuchung der LRP-Regeln durchgeführt, um die Hyperparameter herauszufinden,

die die am besten bewerteten Erklärungen liefern. Aus den Ergebnissen lässt sich schlussfol-

gern, dass die Wahl der Bewertungsmetriken und die Einstellungen der Visualisierung von

Heatmaps einen erheblichen Einfluss auf die Erklärungen haben. Zudem liegen visuelle Er-

klärungen im Auge des Betrachters, was auf die eigene Komplexität der Aufgabe hinweist. Die

Anforderungen an Erklärungen sollten im Einzelfall definiert werden.
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1. Introduction

Artificial Intelligence (AI) has gained momentum in the past decade and its usage has been

increasingly expanded to real-world applications. The first AI algorithms were traditionally

accepted as black boxes. With time, the desiderata of these systems grew together with their

complexity. This motivated looking inside these black boxes to verify that the decisions were

well-founded. Also, because the Machine Learning (ML) models became intrinsically more

complex, additional, more elaborate training was needed; Explainable AI (XAI) allowed to

conscientiously expand these systems by verifying the results and correcting existing errors.

XAI not only allows to demystify these systems which have been mistrusted, but also

to conscientiously extend and incorporate them into highly-regulated areas like medicine

or construction. Scrutinizing AI has allowed to shine light on ethical topics—e.g., fairness

and bias in these systems. These issues originate from the sheer datasets on which these

algorithms are trained. After decades of development on these foundations, bias has now

been intertwined with these architectures.

XAI has also allowed to uncover Clever Hans predictions (Lapuschkin et al., 2017, 2019;

Bykov et al., 2022; Anders et al., 2022; Kauffmann et al., 2020; Samek and Müller, 2019) , which

often give the impression of accuracy in these systems by correlating non-relevant features.

Furthermore, this also allows to improve datasets used for training and evaluation. XAI helps

take these systems accountable and gain a broader acceptance by explaining how they work.

Acceptance is particularly important for their further development. However, a discussion

about bias, ethics, and compliance is out-of-scope for this thesis.

Neural Networks (NNs) are especially challenging to explain due to their tendency to have

deep architectures (see Deep Neural Networks (DNNs)). The LRP algorithm is one proposal to

explain NNs results and decompose NN decisions by tracing the output of the network back

to the input to identify the input features—pixels, in the case of images—responsible for the

network result. This propagation-based explanation framework (Montavon et al., 2019) is not

limited to images but in this work we will focus on image classification. The explanations for

such systems are given as heatmaps, also called saliency or relevance maps (Tjoa and Guan,

2021).

The main goal of this thesis is to conduct an in-depth exploration of the hyperparameter

space of selected LRP rules for DNN using a systematic approach. A by-product is the proposal

to standardize the techniques for this specific purpose. In further chapters the challenges in

doing so are presented, together with existing options and their shortcomings.

So far, there has been predominantly qualitative evidence, however, we need a quantita-

tive comparison of LRP rules and hyperparameters. This motivates the need of an objective

comparison of existing LRP heuristics and a systematic approach to benchmarking visual
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Chapter 1. Introduction

explanations.

Outline

The further chapters of this thesis are structured as follows:

• Chapter 2 (Explainability Background): We review taxonomies of explanations with

a focus on LRP. Besides, we will discuss the most commonly used LRP rules and where

are they applicable. Most commonly used rules with hyperparameters will be presented

together with their corresponding heuristics.

• Chapter 3 (Benchmarking Visual Explanations): In the methodology chapter, we

present LRP-PF-AUC, the benchmarking framework for generating and quantitatively

evaluating heatmaps. It offers a systematic approach to investigate heuristics for LRP

explanations; the approach will be validated on sample images.

• Chapter 4 (Results): In the evaluation chapter, we evaluate multiple LRP hyperpa-

rameters using the benchmarking framework Pixel-Flipping (PF) and Area Under the

Curve (AUC). Next, we look at the structure of experiments and interpret the results.

Afterwards, we also look at limitations faced in this thesis and how they could be over-

come in future work. Finally, recommendations for LRP rules based on quantitative

results are presented.

Main Contributions

The core of this thesis includes the approach on exploring the extensive hyperparameter space

at hand and how it is reduced to a feasible and yet meaningful space. The expected result of

this thesis are recommendations on the optimal choice of parameters for a given architecture

based on a comprehensive evaluation of the alternatives. In other words, the core is to develop

a systematic approach to convert this problem into a feasible one.

Concisely, this work provides two key contributions:

• Implementation of framework for streamlined generation and evaluation of heatmaps

qualitatively and quantitatively using LRP, PF, and AUC.

• Extensive hyperparameter search based on maximizing PF scores under different con-

straints.

2



2. Explainability Background

The main focus of this chapter lies on DNN for image classification to review existing ex-

plainability methods and how to evaluate them. For added context, we start by providing

an overview of explainability approaches depending on their usage to make a case for the

inherent difficulty of producing accurate explanations. In Section 2.1 primarily focuses on

LRP; we will present widely used LRP rules together with commonly used heuristics to set

their hyperparameters and will show why their choice is not straightforward. Then, proposed

techniques to evaluate them objectively will be presented in Section 2.2, together with their

shortcomings in Section 2.3.

First, to rate an explanation the requirements for a good explanation need to be clearly

defined. The desiderata of an explanation consists of fidelity, understandability, sufficiency,

low construction overhead, and efficiency (Swartout and Moore, 1993). In other terms, the

explanation should accurately represent how the system works, it should be intelligible, infor-

mative, fairly straightforward to integrate, and computationally feasible, respectively.

A taxonomy helps choose the right interpretability approach for the respective use case.

Moreover, categorization helps understand the limitations of each type. Therefore, a brief

overview of interpretability approaches will be given to situate our use case and provide con-

text. Interpretability is especially important in Medical XAI (Tjoa and Guan, 2021), where the

requirements for such systems are much higher due to the risks of each potentially wrong deci-

sion; after all, to trust these methods, they need to be held accountable (Swartout and Moore,

1993). The categories are not exclusive—i.e., one algorithm can be categorized multiple times

according to its properties.

A proposal to categorize interpretability methods is according to either how they are per-

ceived by the user or their mathematical structure (Tjoa and Guan, 2021). Depending on how

the explanation is presented to the user, the perceptive interpretations can be subdivided into

saliency, signal or verbal. Saliency methods result in an explanation which reflects the contri-

butions of the input. Precisely, LRP (Bach et al., 2015) is considered a saliency method within

the perceptive interpretability category. LRP decomposes the DNN decision layer-by-layer to

produce the explanation.

LRP falls into the category of saliency methods by producing explanations as heatmaps—also

called saliency maps—(Tjoa and Guan, 2021), which assign positive or negative values to the

contributions in favor or against the network result, respectively. Within the saliency cate-

gory, LRP corresponds to the decomposition methods because to explain a given NN result,

it traces the attributions back through the network to the input to assign the respective rele-

vances, decomposing in its way the original result (Tjoa and Guan, 2021). An alternative LRP

is Rate-Distortion Explanation (Macdonald et al., 2020).

3



Chapter 2. Explainability Background

LRP is classified as an attribution method within the saliency category because, similarly

as in the taxonomy above from Tjoa and Guan (2021), the result is traced back to the original

input, decomposing the attribution using a specific set of rules; LRP attributions are called

relevances. It can also be classified as a structure-based explanation method (Samek, 2019).

Another example of a global explanation technique would be Activation Maximization (AM)

(Erhan et al., 2009).

2.1. Layer-Wise Relevance Propagation

As previously mentioned, LRP helps generate interpretations of the output of DNNs, these

explanations are highly customizable. We will first define LRP, then, a subset of widely used

rules in Subsection 2.1.1.

The focus of this section is the explainability algorithm, rather than the choice of NN, thus,

the NN will be abstracted by a function f : Rd → R. The input for this function f will be x =
(x1, . . . , xd ). The prediction of the DNN will be f (x)—further notation included in Table 2.1. R

refers to the relevance. z j k is the relevance contribution of j to neuron k. f (x) is the prediction.

Heatmaps are also called attribution maps or relevance mappings (Macdonald et al., 2020).

A non-extensive overview of these rules will be provided, focusing primarily on the ones

we will investigate in-depth. An extensive investigation of all rules is beyond the scope of this

thesis due to the computational resources this would require. In Chapter 3, we will explain the

methodology used and present our approach to reduce the hyperparameter space for feasible

computation.

Mainly, we will introduce the rules investigated, effectively starting with the general rule

(Montavon et al., 2019). A requirement for propagating relevance in LRP rules is the conser-

vation principle (Bach et al., 2015), which requires the same magnitude of relevance to be

distributed across the network neurons to avoid losing information when tracing back the

relevance from the network decision back to the input. The denominator in Equation 2.2

enforces the conservation property; Equation 2.3 is the general case. Relevance can also be

written as the product of activations times factors, as in Equation 2.1.

R j = a j · c j

Rk = ak · ck
(2.1)

where c j =
∑
k

(
w j k +γw+

j k

) max
(
0,

∑
0, j a j w j k

)
∑

0, j a j

(
w j k +γw+

j k

)ck

Equation 2.1: Alternative Definition of Relevance.
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2.1 Layer-Wise Relevance Propagation

∑
j

R j =
∑
k

Rk∑
i

Ri = f (x)
(2.2)

Equation 2.2: Layer-Wise and Global Conservation Property.

Notation Description

x Input

f (x) Prediction

R Relevance

w j k Weights and biases

w0k Neuron bias

ak Neuron activations

a0 = 1 By definition(
a j

)
j Lower-layer activations

Notation Description

z j k Rel. contr. of neuron j to k

l , h bounds used by first layer in zB

∇̂ gradient of f (x) with detached terms

f +
1 , f −

1 forward passes on copies of first layer

whose parameters were processed

by max(0, ·) and min(0, ·)
θ 7→ ρ(θ) Hyperparameters

Table 2.1: LRP Notation.

2.1.1. LRP for Deep Rectifier Networks

In this subsection, we will summarize the work in Montavon et al. (2019). The definition of

LRP rules is model-dependent; these rules are also different depending on the layer where

they are implemented (Kauffmann et al., 2019). Examples of different layer types are linear,

pooling, pixel, and fully-connected layers. We will focus on feed-forward NNs because we

understand them relatively well.

First, we will define an abstraction for DRN neurons in Equation 2.4. Although there are

multiple LRP rules, we will focus on a subset of rules, which will allow us to conduct an in-

depth evaluation given the time and resource constraints of this thesis. The rules we will use

are defined in Table 2.2. LRPε extends LRP0 by the additional term ε to avoid division by zero

and reduce noise inversely proportional to the magnitude of ε, thus, absorbing low-relevance

scores. In LRPγ, γ favors positive contributions over negative ones and has a smoothing prop-

erty (Montavon et al., 2019). The zB rule(Montavon et al., 2017)—pronounced box rule—is

designed for the first layer, also called the pixel layer. The terms li , hi refer to the lowest and

highest pixel values of xi , where xi is the input image to the NN.

2.1.2. Recommendations for LRP Rules

There are different terms to refer to the position of layers in the network. The pixel layer is re-

ferred to as upper layer or first layer. The middle layer is self-explanatory. The term lower layer

refers to layers next to output, also called last layers; it is important to make this distinction

5



Chapter 2. Explainability Background

R j =
∑
k

z j k∑
j z j k

Rk (2.3)

Equation 2.3: General LRP Rule.

ak = max
(
0,

∑
0, j a j w j k

)
(2.4)

Equation 2.4: Neurons in Deep Rectifier Network (DRN).

because LRP backpropagates the relevance, which can lead to confusion when referring to

the position of layers because the order is reversed as opposed to producing an output from

the input. In Table 2.4, n refers to all subsequent layers in the model.

Before we proceed to the rules, we need to define the vocabulary to refer to different

combinations of LRP rules. A uniform LRP rule refers to the application of only one rule to

the whole network. In contrast, a composite in the context of LRP refers to a combination of

rules; these can be defined via layer index or layer type (see Table 2.4, Table 2.3, Table 2.4).

For the sake of completion, Figure 2.1 shows the application of LRP to a random input

image. The basic explanation technique Gradient × Input—shown in Figure 2.2b—is equiva-

lent to LRPγ=0, LRPε=0, and LRP0 (Shrikumar et al., 2016). The castle image (Montavon, 2021)

depicted in Figure 2.2a is used to compare qualitatively the equivalence Gradient × Input

in Figure 2.2b with Uniform LRP0 in Figure 2.2c (Samek et al., 2019). However, applying the

zB rule for the pixel layer modifies the equality above and reduces the noise of the explana-

tion significantly, as seen in Figure 2.2d. Table 2.5 is a summary of (Kohlbrenner et al., 2020;

Montavon et al., 2019; Andéol et al., 2021).

(a) Random Input (b) Uniform LRP0

Figure 2.1: LRP on Random Image.

2.1.3. Advantages and Limitations of LRP

The advantages of LRP are that it provides global, continuous, image-specific explanations

with positive and negative evidence and it allows for aggregation over regions or datasets and

its mathematical relationship between network output and explanation (Samek et al., 2017).

LRP offers a trade-off between computation and robustness; methods relying on gradients

are often not robust. Perturbation/sampling methods are robust but slow, whereas LRP is fast

and robust. The challenge of LRP is the implementation overhead of rules, which depends on

6



2.1 Layer-Wise Relevance Propagation

LRP Rule Definition ρ
(
w j k

)
ε

Generic LRP0/ε/γ R j =∑
k

a j ·ρ(w j k )
ε+∑

0, j a j ·ρ(w j k ) Rk

LRP0 R j =∑
k

a j w j k∑
0, j a j w j k

Rk w j k 0

LRPε R j =∑
k

a j w j k

ε+∑
0, j a j w j k

Rk w j k

LRPγ R j =∑
k

a j ·(w j k+γw+
j k )∑

0, j a j ·(w j k+γw+
j k ) Rk w j k +γw+

j k 0

zB Ri =∑
j

xi wi j−li w+
w j−h j w−

j k∑
i xi wi j−li w+

i j−h j w−
i j

R j

Table 2.2: Definition of LRP Rules for DRN.

Layer index Rule Hyperparameters

0 (pixel) zB low, high

2-10 LRPγ γ= 0.5

11-17 LRPγ γ= 0.25

18-24 LRPγ γ= 0.1

25-31 LRPγ γ= 0

Table 2.3: Definition of LRPDecreasing−γ (Eberle et al., 2022).

the architecture. LRP is an advanced explainability method, hence, when a simple explanation

would suffice, other methods might be better suited for the task—see Figure 2.2—but LRP is

able to provide a performance boost for more complex tasks.

2.1.4. Practical Considerations

Neural Network Canonization

An implicit requirement for generating LRP explanations is that the NN should be in canonical

form; to the best of our knowledge, there is no formal definition of canonical form. This,

however, has been briefly mentioned before in (Binder, 2020; Letzgus et al., 2021). In this

section, a literature review on canonization of DNNs for LRP was conducted and a summary of

implicit assumptions is given. For a NN to be in canonical form there has to be an alternation

of linear/convolution, Rectified Linear Unit (ReLU), and pooling layers (Letzgus et al., 2021).

It is not always possible to convert a NN into a canonical form. The VGG model without

7



Chapter 2. Explainability Background

Layer index Rule Hyperparameters

0 (pixel) zB low, high

1-16 LRPγ γ= 0.25

17-30 LRPε ε= 0.25

31-n LRP0

Table 2.4: Definition of LRPTutorial.

(a) Input (b) Gradient × Input (c) Uniform LRP0 (d) zB and LRP0

Figure 2.2: Comparing Basic Explanations.

batch normalization layers is already in canonical form. To bring a model into its canonical

form, we can convert layers into an equivalent form without altering their output—e.g., the

LRPTutorial implementation (Montavon, 2021) converts dense layers to convolutional during

canonization. Furthermore, canonization is implemented in (Anders et al., 2021).

Numerical Stability

LRP is robust against gradient shattering (Montavon et al., 2018). Heuristics are required when

implementing LRP to ensure numerical stability (Montavon et al., 2019). We will provide a

brief overview of common pitfalls when implementing LRP and we will also show how they

can be solved and the steps we took to ratify our LRP implementation used in Chapter 3 and

Chapter 4.

We need to ensure numerical stability when implementing LRP (Montavon et al., 2017).

The ε-stabilized denominator was first proposed by Bach et al. (2015); a concise overview

of the possible stabilizer terms will be provided. We encountered that only setting ε > 0 in

the denominator does not result in a numerically stable implementation in several cases, as

shown in Figures 2.3, 2.4, 2.5.

For brevity, we will add annotations as exponents to the composites in this section—e.g.,

LRPvanilla
Tutorial for an implementation without heuristics, hence vanilla. In Figure 2.3 we observe

how numerical instability becomes evident in the heatmap if no heuristic is used to imple-

ment the generic LRP0/ε/γ rules, which are all part of the LRPTutorial composite. However,

we encounter that this is image-dependent, as the same implementation (without heuris-

tics) calculates a valid heatmap in Figure 2.4 with a different input. Numerical instability

8



2.1 Layer-Wise Relevance Propagation

Rule Layer Hyperparameters

LRP0 Upper

LRPε Middle ε< 1 , ε= 0.25

LRPγ Lower γ< 1 , γ= 0.25

zB First (pixels)

Table 2.5: Overview of LRP Recommendations (Montavon et al., 2019).

can also occur when applying the zennit implementation of LRP; ongoing discussion under

https://github.com/chr5tphr/zennit/issues/148.

The numerical instability is manifested by patches in the heatmap where the relevance

scores concentrate by several orders of magnitude. This happens when the conservation

property of LRP is violated but it can be prevented by using a heuristic in the implementation

of the rules LRP0/ε/γ. While certain heuristics are numerically stable in a specific setup, it is

important to integrate automated verification into the implementation.

In our initial investigation into how to automate this verification, we calculated the stan-

dard deviation of the ImageNet dataset, explored different parameter values for hyperparam-

eter γ to verify if the choice of hyperparameter had an influence on the occurrence of numeri-

cal instability. The patches in the heatmap are reproducible with different composites—e.g.,

uniform LRPvanilla
γ or composite LRPvanilla

Tutorial with variable γ values. These patches might be

reproduced for ε, analogously. Figure 2.3c shows the influence the plotting settings have on

the display of patches.

The grid search in Figure 2.5 showcases different heatmaps from the same LRP implemen-

tation without heuristics in the denominator of LRPvanilla
0/ε/γ in Equation 2.5.

(a) Input (b) Heatmap (c) Heatmap

Figure 2.3: LRPvanilla
Tutorial for castle image.

2.1.5. Heuristics in Denominator of Relevance Calculation

To improve numerical stability in LRP, several heuristics have been proposed; the implemen-

tation of LRPTutorial (Montavon, 2021) uses quadratic mean, the zennit framework (Anders

et al., 2021) sets all zero elements in denominator to an ε value. The heuristic used in the defi-

nition of the LRPε rule in the composite LRPTutorial to scale z proportionally to ε is to replace

9
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Chapter 2. Explainability Background

(a) Input (b) Heatmap

Figure 2.4: LRPvanilla
Tutorial for castle2 image.

Figure 2.5: Numerical instability in grid search for castle2 image without heuristics.

it by ε ·
√

z2.mean(). A non-exhaustive list of heuristics in pseudocode for the denominator in

Equation 2.5:

1. Vanilla. No heuristics:

epsilon + dividend

2. Zennit. Add epsilon to the absolute value of the dividend conserving the sign:

dividend + ((dividend == 0.).to(dividend)+ dividend.sign())* epsilon

3. LRPTutorial. Scale epsilon according to dividend’s magnitude using quadratic mean:

dividend + epsilon * (dividend**2).mean()**.5 + 1e - 9

2.2. Pixel-Flipping and Region Perturbation

There have been attempts to define a universal metric for heatmaps—e.g., file size metric

(Samek et al., 2021), rate-distortion (Macdonald et al., 2020)—but the search continues, in

10



2.2 Pixel-Flipping and Region Perturbation

R j =
∑
k

a j w j k

ε+∑
0, j a j w j k

Rk (2.5)

Equation 2.5: Denominator where numerical stability should be enforced.

Relevances

224×224

1

Patchify

8×8

28×28

2

Sort by
! 3 2

1 4

3

Flip

Figure 2.6: Pixel-Flipping Algorithm

part, due to the intrinsic complexity of the problem. Depending on the audience, the expla-

nation requirements vary. Rating NN explanations using perturbation has become a popular

approach (Fong and Vedaldi, 2017; Agarwal and Nguyen, 2021; Macdonald et al., 2020). Pixel-

Flipping (Bach et al., 2015; Samek et al., 2017), also called relevance ordering based test—is an

iterative metric for faithfulness/sufficiency of heatmaps, which measures the rate of decay of

the classification score of a NN when the explanation is progressively destroyed or flipped.

The algorithm has developed multiple variants, pixels can be either flipped—i.e., replaced—

by a constant or random value or can be replaced using generative models—e.g., inpainting—,

as an improvement to avoid deviating too strongly from the input image. Initial versions of PF

flipped pixels to gray color—i.e., the intermediate value in the range of values allowed for the

pixels. Another parameter of the algorithm is how to sort the relevance scores of the heatmap,

in other words, in which order should the pixels be destroyed.

The available sorts for PF are Most Relevant First (MoRF), Least Relevant First (LRF), and

Random, and neutrally predicted first, where values with absolute value closest to zero are

flipped first (Bach et al., 2015). The most widely used modes are inpainting and random. The

PF algorithm is described in Figure 2.6 for an image of 224×224 dimensions and patch size

of 8×8. The term patchify refers to the process of dividing the relevance scores into a grid of

patches of a certain size.

There is yet to be a consensus on the standard name of PF, which is why we will give an

overview of the different terms used for this algorithm with slight degrees of variation. First,

the notation we will adopt for specifying the PF mode and sort is PFMode
Sor t . E.g., for PF mode

inpainting and sort MoRF we will write PFInpai nti ng
MoRF .

PF is also called Region Perturbation (RP), originally for perturbation sizes larger than a

single pixel, although in literature the term PF is frequently used interchangeably for different

perturbation sizes. PFMoRF is also called pruning curve, PFLRF activation curve; PFLRF focuses

11



Chapter 2. Explainability Background

predominantly on negative features, contrary to PFMoRF, which focuses on positive ones and

controls how simple an explanation is. For a given number of pixels, decrease of function is a

trade-off between faithfulness and interpretability.

In case there are relevances of the same magnitude in the array of relevance scores, they

need to be replaced individually to accurately measure perturbations. Sampling range for

flipped values must include also negative values, otherwise, positive relevances are favored,

which results in an artificial image. The preferred method for flipping values is by inpainting

instead of by random sampling because inpainting is more natural and avoids creating arti-

facts (Samek et al., 2021). In the last perturbation step, we choose to flip all pixels to gray color

to ensure that the last classification score is closest to zero.

Flipping individual patches creates an artificial image, patches in RP resemble natural

occlusion. One of the decisions is whether the patches should be overlapping or not. Flipping

patches requires heuristics to be implemented and cover the edge cases, e.g., patch size which

is not equally divisible by the dimensions of the input.

Code Listing 2.1 shows the pseudocode from Samek et al. (2019), Code Listing 2.2 shows

the implementation with masks; flip_value refers to the value to replace pixels in the origi-

nal image.

Code Listing 2.1: Pseudocode PF (Samek et al., 2019).

1 Sort pixels / patches by relevance
2 Iterate
3 destroy pixel / patch
4 evaluate f(x)
5 Measure decrease of f(x)

Code Listing 2.2: Mask PF.

1 s = sort(R)
2 x[R > s[i]] = flip_ value

The term flipping refers to the replacement of pixels in the original image at the indices

corresponding to the relevance scores in all three channels for the case of RGB colors. E.g.:

RGB(i , j ,k) → RGB(a, a, a). The value a is the value to replace the pixels with, its calculation

depends on the perturbation mode. For perturbation mode random, an option is to sample

from the uniform distribution. An alternative is to sample from the existing minimum and

maximum bounds of the input.

To define RP for perturbation sizes larger than one, there is a detail to consider. Defining

perturbation size as k, a heatmap is considered to be a matrix of relevance scores m ×n. To

divide a heatmap into a grid of patches, we proceed to check if it can be evenly divided by the

dimensions of the heatmap. Then, each patch of size k receives a score which is the sum of

individual scores in that region. Next, sort patches according to pixel-flipping objective (e.g.,

MoRF, as shown in Figure 2.6. Finally, progressively remove patches and measure delta in NN

results.

12



2.3 Comparing Visual Explanations

It is more efficient to remove multiple steps at once in a logarithmic manner than a linear

scale to skip uninteresting parts and optimize for interesting ones in the perturbation process.

For sort MoRF, the most interesting part of the flipping curve is the beginning, where we

expect the curve to fall the fastest. Quite the contrary for the sort LRF, where we expect the

flipping curve to remain constant for most of the perturbation process and fall drastically at

the end, where positive relevances of largest magnitude are perturbed. Another argument in

favor of flipping multiple patches per step is the amount of computational resources needed

to evaluate the classification function at every step otherwise.

To motivate the perturbation curve to remove as much from the original image as possible

for MoRF sorting, previously perturbed regions should be flipped repeatedly in subsequent

perturbation steps.

2.2.1. Inpainting

The perturbation mode inpainting comes from the term with the same name, originally refer-

ring to reconstructing damaged or lost parts of images. It aims to provide an accurate filling

for the regions to inpaint. It uses image information to fill the regions (Telea, 2004). Figure 2.7

shows an example of a damaged picture in Figure 2.7a, damaged regions are displayed in red,

and the inpainting result in Figure 2.7b. Figure 2.8 showcases the effects of inpainting on our

reference image, castle. Inpainting contains desirable properties for a perturbation technique

because regions are flipped in a more natural way than with random sampling.

(a) Damaged (b) Inpainted

Figure 2.7: Damaged picture inpainted with Telea (2004).

2.3. Comparing Visual Explanations

Our aim is to compare multiple visual explanations with each other. We reviewed PF and RP

in Section 2.2, which produce a perturbation curve for each explanation based on the delta of

classification scores after perturbing the input based on the relevance scores obtained with an

XAI algorithm such as LRP. Naturally, we can average between multiple perturbation curves

but to compare between explanations, ideally, we would like to grade each one by score.

13



Chapter 2. Explainability Background

(a) Quarter (b) Patch

Figure 2.8: Inpainted castle image using algorithm by Telea (2004).

In this section we will talk about previously proposed benchmarks and the state-of-the-

art. Area Over the Perturbation Curve (AOPC), also called Area Over the Curve (AOC), (Samek

et al., 2017) was coined as a metric to compare different heatmaps with MoRF sort. However,

this quantity is not inherently bounded and requires further heuristics in practice. Area Under

the Perturbation Curve (AUPC) or AUC provides an alternative which is naturally bounded by

zero. Related terms are Area Under the Activation Curve (AUAC) and Area Under the Flipping

Curve (AUFC).

PFMoRF is sometimes also referred to as pruning and the resulting perturbation curve as

pruning curve. Analogously, PFLRF is also called activation. Less AUAC is better for pruning

curves, and higher AUAC is better for activation curve (Ali et al., 2022). We will refer to this

metric as AUC because the term is applicable to different sorts of PF.
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3. Benchmarking Visual Explanations

In this chapter we will introduce our evaluation framework for benchmarking visual explana-

tions. It consists of existing algorithms and metrics with custom modifications to improve

their performance. Also, we will motivate our reasoning behind these choices and give a

glimpse into the experiments conducted in Chapter 4.

The model we used to test the proposed framework is VGG-16 (Simonyan and Zisserman,

2015), as it is arguably one of the most widely used architectures, but the framework is also

applicable to other models. Moreover, the effect of LRP rules on VGG-16 has been previously

studied (Montavon et al., 2019). Figure 3.1 of VGG was illustrated using PlotNeuralNet (Iqbal,

2018); ReLU units are omitted for brevity, similarly as in Simonyan and Zisserman (2015).

We use the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Russakovsky

et al., 2015) dataset for large-scale experiments in Chapter 4 and to validate the evaluation

framework in this chapter.
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Figure 3.1: VGG-16 Model for ILSVRC dataset, with 1000 neurons in the output layer.

We focus on explanations of Computer Vision (CV) using feed-forward NN with ReLU

nonlinearities as LRP rules have been previously tested for this use case. Previous work applies

heuristics to generate the LRP explanations; these heuristics will be evaluated with the goal

of arriving at optimal hyperparameters to use for future work.

It is possible to explain a different class than the ground truth label using LRP and PF.

For the experiments, we opted to explain the ground truth class. To validate the approach,

the experiments were executed locally as well as on the cluster, on a larger scale. Locally,

experiments ran using shell scripting; to optimize their performance, parallel GNU was used

(Tange, 2022).
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Chapter 3. Benchmarking Visual Explanations

To verify our LRP implementation (Bermudez Schettino, 2022), we used PF and compared

the heatmaps qualitatively with zennit’s LRP implementation. We also verified the conserva-

tion property defined in Equation 2.2 of relevance between layers and calculated the maxi-

mum and minimum relevance scores—as shown in Figure 3.2—and compared them between

different heatmaps. We also calculated the standard deviation of a subset of explanations.

Although the LRP algorithm has already been previously implemented (Anders et al., 2021;

Lapuschkin et al., 2016; Alber et al., 2018), during the scope of this thesis, LRP, PF, AUC were

implemented in Bermudez Schettino (2022), with improvements for the latter two.

There are already implementations of PF, mostly using a linear approach for the perturba-

tion steps. In this chapter we will introduce our proposed improvements and their rationale.

It is worth noting that XAI explanations and evaluations need to be in line with the use case.

Given the sheer amount of hyperparameters, it is inherently difficult to have one-size-fits-

all approach. Even so, often explanations require additional explanation and are only valid

within a certain context (Hedström et al., 2022).

3.1. Narrowing Down the Hyperparameter Space

In this section, we will explain the approach to explore the hyperparameter space. The naïve

approach would be to randomly search all possible hyperparameter combinations. This would

be sub-optimal because it would involve exploring the available LRP rules and their hyper-

parameters. Additionally, given the limited time and computational resources available and

the options to explore, which include type of architecture, dataset, choice of LRP composites

and their hyperparameter values, and choice of evaluation metrics, we decided to focus on

the VGG-16 model, ILSVRC dataset and two LRP composites.

Another consideration is whether assigning LRP rules by layer index provides an advan-

tage over filtering by layer type instead. Assigning rules by layer index allows to treat relevances

in different parts of the network differently, as discussed in Montavon et al. (2019). The im-

plicit assumption is that the same rule can have a different effect depending on the position

of the layer.

The LRP composites we selected to evaluate are: LRPTutorial— Table 2.4—and LRPDecreasing−γ
(Eberle et al., 2022)—Table 2.3—, which is a simpler alternative to the first composite because

involves implementing only one LRP rule and only having the hyperparameter value as vari-

able. LRPTutorial represents a more complex composite given the four different LRP rules it

leverages. We would like to evaluate whether this added complexity results in better explana-

tions or whether the simplicity of LRPDecreasing−γ is enough to produce meaningful explana-

tions. The castle image from the original LRPTutorial (Montavon, 2021) was used throughout

as a reference image to compare results with other implementations.

For reference, there are variations of the LRPDecreasing−γ composite. One would be an expo-

nential decay of γ hyperparameter throughout layers, as opposed to halving γ at every block

or dividing it by a pre-defined factor.

To discard irrelevant regions for the large-scale experiments, we started by conducting ex-

ploratory grid searches, initially on previously proposed ranges—e.g., near zero (Eberle et al.,
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3.2 Qualitative Evaluation of Heatmaps

2022). Therefore, a grid search was conducted in Section 3.2 to evaluate hyperparameters qual-

itatively and develop an intuition over the hyperparameters, as to reduce the hyperparameter

space to a more relevant subspace.

The hyperparameters are theoretically defined in the positive integer range until infin-

ity, but, empirically, the most interesting range is near zero, where most changes happen.

Afterwards, the changes stagnate and become monotonic; further examples in Appendix B.

Therefore, a logarithmic scale was used instead of a linear one to discover the area near zero

with more detail than the latter.

Figure 3.2: Minima and maxima of relevance scores in final experiments.

3.2. Qualitative Evaluation of Heatmaps

An initial grid search was conducted to evaluate the effect of the individual hyperparameters

both for uniform and composite applications of LRP rules. This contributed to the choice of

hyperparameters tested both quantitatively and qualitatively in Chapter 4.

Eberle et al. (2022) suggests that γ values have the most noticeable impact when closest

to zero but not zero, which is why we decided to sample values logarithmically between zero

and one. In Figure 3.3, we observe that ε reduces the noise of the attributions as it becomes

larger in magnitude by absorbing weaker relevance. This is congruent with the ε definition

(Montavon et al., 2019). Effects of the ε parameter are especially present on the lamp post at

the top of the castle image for ε= 1.0 in uniform LRP heatmaps. We notice that the differences

in between ε values are mostly negligible. It is evident from the heatmaps that zB signifi-

cantly improves the quality of the generated explanations. Additional results are included in

Appendix B.
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Chapter 3. Benchmarking Visual Explanations

Figure 3.3: Grid search for castle image.

3.3. Quantitative Evaluation of Heatmaps

In this section we will show the original PF algorithm presented in Section 2.2 and motivate

the improvements proposed—i.e., multiple flips per step and repeteadly perturbing already

perturbed regions in subsequent steps. Perturbation is applied to non-overlapping regions

and regions are flipped using the inpainting algorithm by Telea (2004).

Given multiple LRP-generated heatmaps, we would like to categorize which is the best

one by leveraging the LRP-PF-AUC framework. We use PF to compute their corresponding

perturbation curves; to compare them, it is desirable to reduce them to a single value to grade

the explanations. We have seen in Section 2.3 that AOPC requires further heuristics because it

is inherently unbounded. We prefer AUC for its natural boundedness of zero, which translates

to integrating under the curve to obtain AUC.

In summary, the proposed quantitative evaluation framework comprises PF for quantify-

ing the quality of heatmaps and reducing the perturbation curve to a AUC score. We provide

an example of our evaluation framework applied to the castle image to validate its function-

ality in Figure 3.5 and also to randomly generated relevance scores in Figure 3.4; values were

sampled from a uniform distribution on the following interval: [0,1).

In Figure 3.6a and 3.6b we can observe that the perturbation curve for PFLRF is in line

with its definition. Removing least relevant pixels first should result in largely unchanged

classification scores until pixels with stronger relevances are perturbed at the end, where we

observe the decline in the curve.

3.3.1. Improving PF Performance

In Figure 3.7a we notice that flipping pixels using randomly sampled values results in an

artificially looking image with no resemblance to the original input image. On the other hand,
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3.3 Quantitative Evaluation of Heatmaps

(a) Random heatmap (b) PFInpainting
MoRF

(c) PFInpainting
LRF (d) PFInpainting

Random

Figure 3.4: PF applied to random relevance scores.

it can be observed in Figure 3.5a that flipping regions using inpainting results in better AUC

scores and the image preserves some resemblance to the original image. In Figure 2.8, we

show the results of the inpainting algorithm, integrated into PF.

For the sake of completion, we show the perturbation curves of PFRandom in Figure 3.7. We

notice that the perturbation curves of PFRandom do not match the expectations of MoRF, LRF,

and Random, respectively.

The proposed improvements to the state-of-the-art PF algorithm is the number of simul-

taneous flips per perturbation step, as shown in Figure 3.8. Note that these were calculated for

an image of dimensions 224×224. For perturbation size 8×8, the dimensions become 28×28.

Therefore, the maximum number of flips for this specific example is 784—the total number

of patches of size 8. The initial step is to measure the classification score of the unperturbed

image to compare it against the perturbations later on. The last step is a gray image to destroy

any resemblance of the initial image, as shown in Figure 3.9, hence the 784 number of flips

in the final PF step. The goal of the granular steps is to measure consistently the expected

changes in classification scores as the image is progressively perturbed.
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(a) Comparison of LRP-generated heatmap with PF-
perturbed input image

(b) AUC

Figure 3.5: LRPTutorial-PFInpainting
MoRF -AUC evaluation of castle image.

(a) LRPDecreasing−γ-PFInpainting
LRF -AUC of batch of 4

axolotl images (b) LRPTutorial-PFInpainting
LRF -AUC for castle image

Figure 3.6: PFInpainting
LRF on castle and axolotl images.
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(a) Comparison of LRP-generated heatmap with PF-
perturbed input image (b) PFRandom

MoRF

(c) PFRandom
LRF (d) PFRandom

Random

Figure 3.7: LRPTutorial-PFRandom-AUC evaluation of castle image.

Figure 3.8: PF - Number of flips per step for 224×224 image divided into 8×8 patches.

21
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Figure 3.9: Last Step of PF Algorithm: Gray Image.
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4. Results

In this chapter, the results from applying the evaluation framework proposed in Chapter 3 are

reported in Section 4.1. LRP composites are evaluated and compared with each other. Then,

the optimal heatmaps according to our results are presented in Section 4.2, Figure 4.3. Finally,

these findings are compared to existing heuristics and we come to a conclusion about the

interpretation of said optima.

The experiments were conducted using the Neural Network model VGG-16 model and the

ILSVRC 2012 dataset; details of the dataset used can be found in Appendix A. We used all 50

images available in the dataset from the axolotl class in the experiments for simplicity’s sake.

The hardware used includes NVIDIA A100 40GB PCIe GPU. The experiments were executed

on a cluster with nodes with a minimum of 12GB virtual memory and a minimum of 12GB of

free memory.

As mentioned earlier, the quantitative evaluation is performed using LRP for explaining

NN decisions. Then, PF is used to evaluate the quality of these evaluations. Finally, the pertur-

bation curve of such procedure is reduced to a numerical score, which can be used to compare

several explanations, leveraging AUC. The approximate elapsed time for calculations in the

experiments is as follows: 4 seconds for the NN forward pass, 4 seconds for the LRP explana-

tion, 5 minutes for the PF process. Inpainting is arguably one of the most computationally

expensive operations in the experiments.

4.1. Quantitative Results

To summarize the experiment results we will leverage contour plots, where the hyperparam-

eters tested are located on the x- and y-axes and their corresponding AUC score is displayed

on the z-axis by color intensity. The goal of these contour plots is to identify optimal hyper-

parameters according to our evaluation framework. In the discussion part, we will compare

the results achieved to the commonly established heuristics for LRP hyperparameters. We are

limited to two variables in the contour plots, due to computational constraints and also due

to natural visualization constraints.

For PFLRF, higher AUC scores are better; for PFMoRF, lower AUC scores are better. By defini-

tion, we expect experiments with PFrandom to result in constant contour plots—i.e., constant

AUC score and single color—because the choice of LRP hyperparameters is independent of

the PF performance. A constant AUC score means that LRP hyperparameters are not corre-

lated with PF performance.

The hyperparameter values were sampled logarithmically with base 10, with zero addition-
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ally. Altogether, the hyperparameter space was defined as {0,10−4, . . . ,100}; a total of 16 values

were used as hyperparameter space—see Table 4.2 and Table 4.3. The following experiments

were conducted on a batch of 50 images. A summary of the conducted experiments is listed

in Table 4.1.

The logarithmic scale was used because according to our preliminary exploration of the

hyperparameter space conducted in Chapter 3, where γ and ε values are most interesting near

zero, AUC scores larger than one eventually stagnated.

LRP Composite PF Sort

Decreasing-γ MoRF

Decreasing-γ LRF

Decreasing-γ Random

Tutorial MoRF

Tutorial LRF

Tutorial Random

Table 4.1: Overview of Experiments.

4.1.1. Quantitative Evaluation of LRPDecreasing−γ

The hyperparameters for the composite evaluated in this section, LRPDecreasing−γ, are defined

in Table 4.2. In Figure 4.1a, permutations of 16 γ values for layers 1-17 and 18-24 of model

VGG-16 were performed, a total of 256. These permutations are exemplified in Table 4.2. Given

the results displayed in Figure 4.1b, we conducted further experiments on a reduced hyper-

parameter space to evaluate in-depth the discontinuity of AUC scores in the range between 0

and 0.2; the resulting AUC scores are shown in Figure 4.1d.

Layer index Rule Hyperparameters

0 (pixel) zB low, high

2-10 LRPγ γ= 0.5

11-17 LRPγ γ ∈ {0,10−4, . . . ,100}

18-24 LRPγ γ ∈ {0,10−4, . . . ,100}

25-31 LRPγ γ= 0

Table 4.2: Hyperparameter Space for LRPDecreasing−γ.
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4.2 Qualitative Results

(a) AUC scores of LRPDecreasing−γ, PFMoRF (b) AUC scores of LRPDecreasing−γ, PFLRF

(c) AUC Scores of LRPDecreasing−γ, PFRandom

(d) AUC Scores for LRPDecreasing−γ, PFMoRF;
Reduced Hyperparameter Space

Figure 4.1: Results for LRPDecreasing−γ.

4.1.2. Quantitative Evaluation of LRPTutorial

The hyperparameter space explored for LRPTutorial is summarized in Table 4.3. The results

of the quantitative evaluation are depicted in Figure 4.2. Similarly to Subsection 4.1.1, the

optimal hyperparameter values are closest to zero for γ and ε—see Figure 4.2a and Figure 4.2b.

We notice that the original LRPTutorial composite is relatively close to the optima shown by

the evaluation framework and, in certain cases, it corresponds to the optimal explanation

measured by AUC score.

4.2. Qualitative Results

In this section we visualize a sample from each experiment to compare the results qualita-

tively. The sample is taken from experiment number 140 out of the total 256; the number was

chosen semi-randomly, purposely avoiding the ones where the hyperparameter is set to zero.
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Layer index Rule Hyperparameters

0 (pixel) zB low, high

1-16 LRPγ γ ∈ {0,10−4, . . . ,100}

17-30 LRPε ε ∈ {0,10−4, . . . ,100}

31-n LRP0

Table 4.3: Hyperparameter Space for LRPTutorial.

Then, we will plot the optimal values from Section 4.1 in Figure 4.3. The hyperparameters

corresponding to experiment number 140 are 0.01 and ≈ 0.138 (rounded). The respective

composites tested are shown in Table 4.4 and Table 4.5.

Layer index Rule Hyperparameters

0 (pixel) zB low, high

2-10 LRPγ γ= 0.5

11-17 LRPγ γ= 0.01

18-24 LRPγ γ≈ 0.138

25-31 LRPγ γ= 0

Table 4.4: Hyperparameters of LRPDecreasing−γ for Qualitative Comparison

Layer index Rule Hyperparameters

0 (pixel) zB low, high

1-16 LRPγ γ ∈ {0,10−4, . . . ,100}

17-30 LRPε ε ∈ {0,10−4, . . . ,100}

31-n LRP0

Table 4.5: Hyperparameters of LRPTutorial for Qualitative Comparison.

4.3. Discussion

The contour plots for LRPDecreasing−γ and PFMoRF shown in Figure 4.1a meet our expectations

by depicting that optimal hyperparameters according to our framework are found near zero.

For LRPTutorial and PFMoRF, Figure 4.2a reveals that optimal hyperparameters regarding this

composite are roughly 0.1 ≤ γ ≤ 1 and 0.4 ≤ ε ≤ 1. This confirms the hypothesis that LRPγ
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4.3 Discussion

(a) AUC scores of LRPTutorial, PFMoRF (b) AUC scores of LRPTutorial, PFLRF

(c) AUC scores of LRPTutorial, PFRandom

Figure 4.2: Results for LRPTutorial.

provides a measurable improvement over LRP0, which is equivalent to LRPγ=0. According to

Figure 4.1d, the precise optimal values for γ are 0.05 ≤ γ ≤ 0.3 for VGG-16 layers 1-17 and

0.01 ≤ γ≤ 0.2 for layers 18-24.

Plots for PFRandom are constant, in line with the hypothesis that the choice of hyperpa-

rameters is independent of the performance of PFRandom—see Figure 4.1c and Figure 4.2c.

Conversely, Figure 4.1b shows that optimal hyperparameters for γ are closest to zero. By defi-

nition, γ favors positive contributions, while PFLRF negative ones. Thus, the optimal scores for

PFLRF are where the least positive contributions are preferred in favor of negative ones, which

is when γ= 0. Similarly, for γ in LRPTutorial in Figure 4.2b.

Figure 4.4 and Figure 4.5 show the penultimate steps of the perturbation process from

the PF algorithm together with the original image and its heatmap generated by the LRP

composites LRPTutorial and LRPDecreasing−γ. In the heatmap of Figure 4.5, positive relevances

are concentrated around the eyes of the axolotl, which explains why the region around the

eyes in Figure 4.4d is almost unperturbed by the inpainting process. In contrast to Figure 4.4c,
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Optimal Heatmaps by AUC score

LRPTutorial

LRPDecreasing−γ

PFMoRF PFLRF

γ ≈ 0.27
ε ≈ 1.0

AUC ≈ 243

γ ≈ 0.14
ε ≈ 1.0

AUC ≈ 629

γ1 ≈ 0.07
γ2 ≈ 0.07

AUC ≈ 605

γ1 ≈ 0.14
γ2 ≈ 0.04

AUC ≈ 251

Figure 4.3: Optimal heatmaps according to AUC experiments

where the area around the eyes is the most perturbed.

Figure 4.5 shows scattered positive and negative relevances in the heatmap. As a result,

the area around the axolotl’s eyes in Figure 4.5d is more drastically perturbed compared to Fig-

ure 4.4d. Figure 4.4e and Figure 4.5e are practically indistinguishable due to the randomly in-

painted regions. Figure 4.6 shows the distribution of AUC scores of all experiments. For PFLRF

and PFMoRF, LRPTutorial achieves the best quantitative results compared to LRPDecreasing−γ. The

qualitative differences between optimal heatmaps in Figure 4.3 are negligible; these optimal

heatmaps are similar to the original LRPTutorial heatmap (Montavon et al., 2019).

(a) Input (b) LRP Heatmap (c) PFMoRF (d) PFLRF (e) PFRandom

Figure 4.4: Qualitative Comparison of Perturbed Images for LRPDecreasing−γ as defined in Ta-
ble 4.4.
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(a) Input (b) LRP Heatmap (c) PFMoRF (d) PFLRF (e) PFRandom

Figure 4.5: Qualitative Comparison of Perturbed Images for LRPTutorial as defined in Table 4.5.

(a) PFMoRF (b) PFLRF

Figure 4.6: AUC Scores of Experiments.
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5. Conclusion

After reviewing state-of-the-art evaluation metrics for explanations of DNN as heatmaps, we

have seen that there are several parameters which impact the quality and interpretation of the

evaluation—e.g., choice of hyperparameters for LRP composite, choice of evaluation frame-

work, implementations of LRP and PF, and visualization settings.

Depending on the visualization of these results, their interpretations can vary strongly.

Therefore, we have demonstrated that there is no global optimum for heatmaps, the best

representation is the one which most accurately matches the current use case. For instance,

if aesthetic heatmaps are preferred, this directly depends on the opinion of the observer. If

objectivity is preferred, it is possible to measure best according to a quantitative metric and

an appropriate metric should be chosen—e.g., AOPC or AUC. Both are inherently different,

hence, the dilemma on how to define best from the perspective of human interpretability. The

choice of optimal LRP hyperparameters highly depends on the evaluation metrics, thus, no

global optimum exists.
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A. Dataset

ImageNet: The ImageNet Large Scale Visual Recognition Challenge 2012 dataset (Russakovsky

et al., 2015)—also known as ImageNet—is available for download under https://www.image-net.

org/challenges/LSVRC/2012/index.php and encompasses three tasks: (task 1) classification,

(task 2) classification with localization, (task 3) fine-grained classification. The disjoint splits

of the data set are: training, validation, and test. Samples of dataset shown in Figure A.1a.

The subsets originate from the ImageNet data set consisting of 10 million hand-labeled

images with 10,000+ classes. The training data consists of 1.2 million images and 1,000 classes.

The validation and test subsets consist of 150,000 images and 1,000 classes, from which 50,000

constitute the validation set. Each class in the validation set is limited to 50 samples in this

set.

The validation split was used to conduct the experiments in Chapter 3 and Chapter 4

with the axolotl class—ground truth label 29. For the sake of completion, here is the synonym

set (synset) of that class: axolotl, mud puppy, Ambystoma mexicanum. Samples of such class

shown in Figure A.1b.

(a) Random samples (b) axolotl class samples

Figure A.1: ILSVRC 2012 images.
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B. Additional Experiments

B.1. Qualitative Experiments

The following experiments in Figure B.1 were conducted using a different reference image

than the castle image used in Chapter 3. As mentioned in Section 3.1 the changes in the

heatmaps as ε increases are almost imperceptible, similarly as in Figure 3.3. The most notice-

able changes are found when incrementing γ.

Figure B.1: Grid search for castle2 image.

B.2. Quantitative Experiments

In Section 3.3, we validate LRP-PF-AUC mainly based on the castle image and in Chapter 4

with axolotl images. The goal of this section is to reassure the reader that the methodology

proposed is not limited to the few examples presented so far. The implementation of the

framework will be validated by extending the scope to further classes of the ILSVRC 2012

dataset.

The perturbation curve displayed in Figure B.2c shows the expected prompt initial decline

of the curve due to PFMoRF. In Figure B.2a, we observe the negative evidence for dalmatian

in the dog’s shadow. Most likely, the images in the dataset on which the model was trained
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included few examples of dog shadows. A relatively similar example is shown in Figure B.2b,

where the negative class evidence for the alp class is due to the clouds. A possible assumption

of the model is that the sky is predominantly cloudless in the Alps.

(a) Sample from dalmatian class (b) Sample from alp class

(c) AUC scores for batch of 10 images from random ILSVRC 2012 classes

Figure B.2: LRPTutorial-PFInpainting
MoRF -AUC evaluation of image batch from random classes.
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C. Implementing LRP

We will briefly compare the different approaches when implementing LRP to take into con-

sideration possible impacts of the implementation on the experiments with the goal of dif-

ferentiating them from the actual impact of hyperparameters on explanations, which is the

top priority of this scope-limited research. We will also motivate design choices in our LRP

implementation (Bermudez Schettino, 2022).

There are two known approaches: forward-hook or sequential implementations. The

forward-hook implementation is more suitable for complex NN like ResNet50 with skip con-

nections. The sequential implementation is the most common one; it involves using a forward-

backward loop and it is more intuitive for architectures such as VGG-16. Here we will give an

overview of how they differ from each other. In this chapter we will assume the models are

already in canonical form; canonization was discussed in Subsection 2.1.4.

Implementing LRP in PyTorch is recommended due to its popularity (Kohlbrenner et al.,

2020). For this thesis, LRP was implemented from scratch despite the alternatives available

(Kokhlikyan et al., 2020; Hedström et al., 2022; Alber et al., 2018) to provide an end-to-end

explanation and evaluation framework of NN results, as well as to develop a better under-

standing of the algorithms at hand.

C.1. Sequential Algorithm

The following algorithms are the implementation of equation (2.3), which corresponds to

LRP0/ε/γ.

C.1.1. Definition A - LRP0/ε/γ

∀k : zk = ε+∑
0, j a j ·ρ(w j k ) 1. Forward pass (C.1)

∀k : sk = Rk

zk
2. Element-wise division (C.2)

∀ j : c j =
∑
k
ρ

(
w j k

) · sk 3. Backward pass (C.3)

∀ j : R j = a j · c j 4. Element-wise product (C.4)

Operation in equation (C.1) is done on a copy of the original layer. Equation (C.2) is equiv-

alent to:
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c j =
[
∇

(∑
k

zk (a) · sk

)]
j

(C.5)

where a = (a j ) j , zk is a function, sk is constant.

Special case - LRPγ

Forward pass:

∀k : zk =∑
0, j a j ·ρ

(
w j k

)
(C.6)

=∑
0, j a j ·

(
w j k +γw+

j k

)
(C.7)

(C.8)

where ρ(w j k ) = w j k +γw+
j k (C.9)

Backward pass:

∀ j : c j =
∑
k
ρ

(
w j k

) · sk (C.10)

∑
k

(
w j k +γw+

j k

) ak

zk
ck (C.11)

=∑
k

∂zk

∂a j
· ∂ak

∂zk
· ck (C.12)

=∑
k

∂zk

[
ak
zk

]
cst .

ck

∂a j
(C.13)

sk = Rk

zk
= ak ck

zk
(C.14)

Rk = ak ck (C.15)

Replace ak by zk ·
[

ak
zk

]
cst .

in the forward pass. Valid for linear and convolution layers to

support automatic differentiation. This rule definition is only valid for linear and convolu-

tional layers.

C.1.2. Definition B - LRP0/ε/γ

The above algorithm is equivalent to the following one but with different notation. Step (C.16)

is a forward evaluation of a copy of the original layer, similar as in (C.1).
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C.2 Forward-Hook Algorithm

z = ε+ f ρl

(
a(l−1)

)
1. Forward pass (C.16)

s = R(l ) ⊘ z 2. Element-wise division (C.17)

c =∇〈z, [s]cst .〉 3. Backward pass (C.18)

R(l−1) = a ⊙ c 4. Element-wise product (C.19)

return R(l−1) (C.20)

C.1.3. Definition B - zB

z = f1(x)+ f +
1 (l )− f −

1 (h) (C.21)

s = R(1)/z (C.22)

c =∇x,l ,h〈z, [s]cst .〉 (C.23)

R(0) = x ⊙ c1 + l ⊙ c2 +h ⊙ c3 (C.24)

return R(0) (C.25)

C.2. Forward-Hook Algorithm

The forward-hook implementation of the LRP algorithm for DRN (Samek et al., 2021) has

advantages over the sequential one, as it can be implemented seamlessly for complex net-

works—e.g., ResNet50 with skip connections.

y = f (x , l ,h)

c1,c2,c3 = ∇̂y

R = x ⊙ c1 = l ⊙ c2 +h ⊙ c3

return R

(C.26)

Equation C.26: Global LRP Computation (Forward-hook) (Samek et al., 2020).

There are multiple strategies to handle (i.e., propagate relevance through) MaxPooling2D

layers in forward-hook implementations: winner-takes-all and sum-pooling rules. Both ap-

proaches are not equivalent. Max-pooling in forward-hook already handled automatically by

autograd.

The following definitions only apply for LRP0/ε/γ in DRN.

C.2.1. First Layer

z = f1(x)− f +
1 (l )− f −

1 (h)

return z ⊙ [
f1(x)⊘ z

]
cst .

(C.28)
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z = ε+ f ρl

(
a(l−1)

)
return z ⊙

[
fl

(
a(l−1) ⊘z

)]
cst .

(C.27)

Equation C.27: Factor required to be stabilized in implementation for forward-hook imple-
mentation of LRP0/ε/γ for intermediate layers. See equation (C.29).

C.2.2. Intermediate Layers

z = ε+ f ρl

(
a(l−1)

)
return z ⊙

[
fl

(
a(l−1) ⊘ z

)]
cst .

(C.29)

f ρl is a forward pass on a copy layer where parameters are processed by the ρ function.
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