@AGUPUBLICATIONS

Geochemistry, Geophysics, Geosystems

Supporting Information for

High-pressure and high-temperature single-crystal elasticity of Cr-pyrope: implications for the density and seismic velocity of subcontinental lithospheric mantle

Jingui Xu^{1, 2}, Dawei Fan^{1*}, Bo Li³, Sergey N. Tkachev⁴, Vitali B. Prakapenka⁴, Dongzhou Zhang², Guangzhong Yang⁵, Yi Zhou⁶, and Wenge Zhou¹

¹Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China.

² Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States.

³ Research Institute of Petroleum Exploration & Development-Northwest (NWGI), PetroChina, Lanzhou, 730060 China

⁴ Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60437, United States.

⁵ The No. 101 Geological Brigade, Geological and Mineral Exploration and Development Bureau of Guizhou Province, Kaili, Guizhou 556000, China.

⁶ School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China

*Corresponding authors: Dawei Fan (fandawei@mail.gyig.ac.cn)

Contents of this file

Texts S(1-2) Figures S(1-5) Tables S(1-6)

Text S1

The used third-order Birch-Murnaghan equation of state is described in the following:

$$P = \frac{3K_{T0}}{2} \left[\left(\frac{V_{T0}}{V} \right)^{\frac{7}{3}} - \left(\frac{V_{T0}}{V} \right)^{\frac{5}{3}} \right] \left\{ 1 + \frac{3}{4} \left(\left(\frac{\partial K_T}{\partial P} \right)_T - 4 \right) \left[\left(\frac{V_{T0}}{V} \right)^{\frac{2}{3}} - 1 \right] \right\}$$
(1),

where P, V_{T0} , V, K_{T0} , and $(\partial K_T / \partial P)_T$ are pressure, unit-cell volume at temperature and zero-pressure, unit-cell volume at pressure and temperature, zero-pressure bulk modulus, and its pressure derivative, respectively.

The thermal-pressure equation of state is based on the idea of thermal pressure (P_{th} ; e.g., (Angel et al., 2014). The total pressure (P) at a given V and T can be expressed as $P(V, T) = P(V, T_{ref}) + P_{th}$. $P(V, T_{ref})$ is the pressure at reference temperature (T_{ref}) which is described by the Birch-Murnaghan equation of state (1). P_{th} used here is proposed by Holland & Powell (2011):

$$P_{th} = \alpha_0 K_{T0} \left(\frac{\theta_E}{\xi_0} \right) \left(\frac{1}{\exp(\theta_E/T) - 1} - \frac{1}{\exp(\theta_E/T_{ref}) - 1} \right)$$
(2),

where α_0 is the thermal expansion coefficient at T_{ref} , θ_E is the Einstein temperature, and ξ_0 is given by the following expression (Kroll et al., 2012):

$$\xi_0 = \frac{\left(\theta_E/T_{ref}\right)^2 \exp\left(\theta_E/T_{ref}\right)}{\left(\exp\left(\theta_E/T_{ref}\right) - 1\right)^2}$$
(3).

Text S2

The adiabatic bulk (K_S) and shear (G) modulus at high P and high T are evaluated by the third- or fourth-order finite-strain equations.

(1) For *Ks*:

$$K_{S} = K_{S0}(T) \times (1 + 2f)^{\left(\frac{5}{2}\right)} \times \left(1 + \left(3\left(\frac{\partial K_{S}}{\partial P}\right)_{T} - 5\right) \times f\right) \text{ or}$$

$$K_{S} = K_{S0}(T) \times (1 + 2f)^{\left(\frac{5}{2}\right)} \times \left(1 + \left(3\left(\frac{\partial K_{S}}{\partial P}\right)_{T} - 5\right) \times f + 0.5 \times \left(9K_{S0}(T) \times \left(\frac{\partial^{2} K_{S}}{\partial P}\right)_{T} + 9 \times \left(\frac{\partial K_{S}}{\partial P}\right)_{T}^{2} - 36 \times \left(\frac{\partial K_{S}}{\partial P}\right)_{T} + 35\right) \times f^{2}\right)$$
(4),

$$K_{S0}(T) = K_{S0} + \left(\frac{\partial K_S}{\partial T}\right)_P \times (T - T_{ref})$$
(5),

$$\left(\frac{\partial K_S}{\partial P}\right)_T = \left(\frac{\partial K_S}{\partial P}\right)_{T_{ref}} \times \operatorname{Exp} \int_{T_{ref}}^T \alpha \, \mathrm{d}T \tag{6},$$

$$f = 0.5 \times \left(\left(\frac{\rho}{\rho_0(T)}\right)^{\frac{2}{3}} - 1\right)$$
(7),

$$\rho_0(T) = \rho_0(T_{ref}) \times \left(\exp \int_{T_{ref}}^T \alpha \, \mathrm{d}T \right)^{-1} \tag{8},$$

where $K_{S0}(T)$ is the adiabatic bulk modulus at room *P* and temperature (*T*), *f* is the Eulerian finite strain, $\left(\frac{\partial K_S}{\partial P}\right)_T$ is the first-order pressure derivative of K_S at temperature T, $\left(\frac{\partial^2 K_S}{\partial P^2}\right)_T$ is the second-order pressure derivative of K_S at *T*, K_{S0} is the adiabatic bulk modulus at room *P*-*T*, $\left(\frac{\partial K_S}{\partial T}\right)_P$ is the temperature derivative of K_S , $\left(\frac{\partial K_S}{\partial P}\right)_{T_{ref}}$ is the first pressure derivative of K_S at T_{ref} , ρ is the density at high *P*-*T*, $\rho_0(T)$ is the density at room *P* and *T*, $\rho_0(T_{ref})$ is the density at room *P*-*T*, and α is the thermal expansion coefficient.

(2) For
$$G$$

$$G = (1+2f)^{\frac{5}{2}} \times (G_0(T) + b_1 f) \text{ or}$$

$$G = (1+2f)^{\frac{5}{2}} \times (G_0(T) + b_1 f + 0.5b_2 f^2)$$
(9),

$$G_0(T) = G_0 + \left(\frac{\partial G}{\partial T}\right)_P \times (T - T_{ref})$$
(10),

$$b_1 = 3K_{T0}(T) \left(\frac{\partial G}{\partial P}\right)_T - 5G_0(T)$$
(11),

$$b_2 = 9(K_{T0}^2(T)\left[\left(\frac{\partial^2 G}{\partial P^2}\right)_T + 1/K_{T0}(T)\left(\left(\frac{\partial K_T}{\partial P}\right)_T - 4\right)\left(\frac{\partial G}{\partial P}\right)_T\right] + \frac{35G_0(T)}{9})$$
(12),

$$\left(\frac{\partial G}{\partial P}\right)_T = \left(\frac{\partial G}{\partial P}\right)_{T_{ref}} \times \operatorname{Exp} \int_{T_{ref}}^T \alpha_0 \, \mathrm{d}T$$
(13),

$$K_{T0} = K_{S0} / (1 + \alpha \gamma T)$$
 (14),

$$\left(\frac{\partial K_T}{\partial P}\right)_T = (1 + \alpha \gamma T)^{-1} \times \left(\left(\frac{\partial K_S}{\partial P}\right)_T - \gamma T / K_{T0}(T) \left(\frac{\partial K_T}{\partial T}\right)_P\right)$$
(15),

$$\left(\frac{\partial K_T}{\partial T}\right)_P = \left(\frac{\partial K_S}{\partial T}\right)_P - \alpha \gamma T / (1 + \alpha \gamma T)$$
(16),

where $G_0(T)$ is the shear modulus at room P and temperature T, G_0 is the shear modulus at room P-T, $\left(\frac{\partial G}{\partial T}\right)_P$ is the temperature derivative of G, $K_{T0}(T)$ is the isothermal bulk modulus at room-P and T, $\left(\frac{\partial G}{\partial P}\right)_T$ is the first-order pressure derivative of G at T, $\left(\frac{\partial^2 G}{\partial P^2}\right)_T$ is the second-order pressure derivative of G, $\left(\frac{\partial K_T}{\partial P}\right)_T$ is the pressure derivative of the isothermal bulk modulus at T, $\left(\frac{\partial G}{\partial P}\right)_{T_{ref}}$ is the pressure derivative of Gat T_{ref} , K_{T0} is the isothermal bulk modulus at room P-T, γ is the Grüneisen parameter, $\left(\frac{\partial K_T}{\partial P}\right)_T$ is the pressure derivative of the isothermal bulk modulus at *T*, and $\left(\frac{\partial K_T}{\partial T}\right)_P$ is the temperature derivative of the isothermal bulk modulus.

Figure S1. The calculated phase diagrams using Perple_X for the Archon (a), Proton (b), and Tecton (c) SCLM. O-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Gt-garnet. HGP means the used solution model.

Figure S2. Calculated mineral proportions of three SCLMs, (a) Archon (3-8 GPa), (b) Proton (3-6 GPa), and (c) Tecton (3-5 GPa). The used bulk compositions of the SCLMs are extracted from Griffin et al. (2009), and the used geotherms are taken from Deen et al. (2006).

Figure S3. End-member proportions of Cr-pyrope in the Archon (a; 3-8 GPa), Proton (b; 3-6 GPa) and Tecton (c; 3-5 GPa). Prp, Alm, Grs, Uvr and Knr represent pyrope, almandine, grossular, uvarovite and knorringite, respectively.

Figure S4. Density ρ (a), bulk modulus K_S (b) and shear modulus G (c) of Prp-Cr#12 along isotherms at 1000 K and 1600 K over 3-8 GPa. The solid curves represent values calculated using the elastic parameters (Table S3) fitted to the Prp-Cr#12 data. The dashed curves represent values calculated using the end-member model (linear average of garnet end-member parameters; Table S4) elastic parameters determined for the Prp-Cr#12 composition. Error bars are shown at selected pressures.

Figure S5. Calculated mineral proportions of three SCLMs, (a) Archon, (b) Proton, and (c) Tecton at 3-8 GPa along isotherms at 1300 K and 1500 K. The major-element compositions of the SCLMs are extracted from Griffin et al. (2009).

nom official (2003), which are about for the repre_relation										
Oxide (wt.%)	Archon	Proton	Tecton							
SiO ₂	45.7	44.7	44.5							
Al_2O_3	0.99	2.1	3.5							
FeO	6.4	7.9	8.0							
MgO	45.5	42.4	39.8							
CaO	0.59	1.9	3.1							
Na ₂ O	0.07	0.15	0.24							
Cr_2O_3	0.28	0.42	0.40							

Table S1. Average compositions of the Archon, Proton, and Tecton SCLM adopted from Griffin et al. (2009), which are used for the Perple X calculation

Note: other minor components (e.g., TiO₂, MnO) are not considered in the Perple_X calculation.

Pressure	Tempera	Ol/Opx/Cpx	01		0	nv	Cn	Gt			
(GPa)	ture (K)	/Gt (vol. %)	U.		0	px	Ср	Δ			
						(a) Archor	1				
3	075	69.1/25.8/1.	Mg _{1.85} Fe	F092.75	$Mg_{1.84}Fe_{0.12}Ca_{0.01}Na_{0.01}Cr_{0.02}$	$En_{90.71}Fs_{5.99}Di_{0.8}Kos_{0.8}Jd_0Mg$	$Mg_{0.85}Fe_{0.03}Ca_{0.84}Na_{0.14}Cr_{0.08}$	Di _{80.7} Jd ₆ Hd _{3.2} Cen _{1.9} Kos _{8.2}	$Mg_{2.09}Fe_{0.65}Ca_{0.26}Cr_{0.08}$	Prp69.8Alm21.6Grs4.8Uv	
	055	9/3.2	$_{0.15}SiO_4$	Fa _{7.25}	$Al_{0.02}Si_{1.98}O_6$	$Ts_{0.6}CrEn_{1.1}$	$Al_{0.06}Si_2O_6$	CaTs ₀	$Al_{1.92}Si_{3}O_{12}$	$r_{3.8}Knr_0$	
4	987	69.2/26/1.3/	Mg _{1.85} Fe	F092.60	$Mg_{1.84}Fe_{0.11}Ca_{0.02}Na_{0.01}Cr_{0.01}$	$En_{90.51}Fs_{5.49}Di_{1.9}Kos_{1.2}Jd_0Mg$	$Mg_{0.87}Fe_{0.03}Ca_{0.84}Na_{0.13}Cr_{0.07}$	Di80.82Jd5.59Hd3.4Cen3Kos7	Mg _{2.11} Fe _{0.54} Ca _{0.35} Cr _{0.16}	Prp70.3Alm18.1Grs3.5Uv	
т	707	3.6	_{0.15} Si	Fa _{7.40}	$Al_{0.02}Si_{1.99}O_6$	$Ts_{0.7}CrEn_{0.2}$	$Al_{0.06}Si_2O_6$	$_{.19}CaTs_0$	$Al_{1.84}Si_{3}O_{12}$	$r_{8.1}Knr_0$	
5	1123	69.2/26.5/0.	Mg _{1.85} Fe	F092.50	$Mg_{1.83}Fe_{0.1}Ca_{0.03}Na_{0.02}Cr_{0.01}$	$En_{88.11}Fs_{4.8}Di_{4.5}Kos_{1.1}Jd_{0.5}M$	$Mg_{0.89}Fe_{0.03}Ca_{0.87}Na_{0.1}Cr_{0.06}$	Di84.02Jd4.4Hd3.1Cen2.6Kos	$Mg_{2.1}Fe_{0.52}Ca_{0.38}Cr_{0.21}A$	Prp69.8Alm17.4Grs2.1Uv	
5	1125	7/3.6	0.15SiO4	Fa _{7.50}	$Al_{0.02}Si_{1.99}O_6$	gTs ₁ CrEn ₀	$Al_{0.04}Si_2O_6$	5.89CaTs ₀	$l_{1.79}Si_3O_{12}$	$r_{10.7}Knr_0$	
6	1242	69.2/26.8/0.	Mg _{1.85} Fe	F092.30	$Mg_{1.82}Fe_{0.1}Ca_{0.05}Na_{0.02}Cr_{0.01}$	$En_{88.91}Fs_{4.6}Di_{4.7}Kos_{0.7}Jd_{1.1}M$	$Mg_{0.93}Fe_{0.04}Ca_{0.84}Na_{0.1}Cr_{0.06}$	Di79.7Jd4.2Hd4Cen6.5Kos5.6	$Mg_{2.26}Fe_{0.44}Ca_{0.3}Cr_{0.24}A$	Prp73.43Alm14.59Grs0Uv	
0	1272	5/3.5	0.15SiO4	Fa7.70	$Al_{0.03}Si_{1.99}O_6$	gTs ₀ CrEn ₀	$Al_{0.04}Si_2O_6$	CaTs ₀	$l_{1.76}Si_3O_{12}$	$r_{10.09}Knr_{1.9}$	
7	1345	69.3/26.7/0/	Mg _{1.85} Fe	F0 _{92.25}	$Mg_{1.83}Fe_{0.09}Ca_{0.05}Na_{0.02}Cr_{0.01}$	$En_{88.91}Fs_{4.4}Di_{4.9}Kos_{0.5}Jd_{1.3}M$			$Mg_{2.18}Fe_{0.4}Ca_{0.42}Cr_{0.27}A$	Prp _{72.6} Alm _{13.4} Grs _{0.3} Uv	
/	1545	4	0.15SiO4	Fa _{7.75}	$Al_{0.01}Si_2O_6$	gTs ₀ CrEn ₀	-	-	$l_{1.73}Si_3O_{12}$	$r_{13.7}Knr_0$	
8	1/131	69.3/26.7/0/	Mg _{1.84} Fe	F092.20	$Mg_{1.83}Fe_{0.09}Ca_{0.05}Na_{0.02}Cr_{0.01}$	$En_{89.2}Fs_{5.2}Di_{3.2}Kos_{1.2}Jd_{0.3}Mg$			Mg2.22Fe0.4Ca0.38Cr0.29A	Prp72.4Alm13.2Grs0Uvr1	
0	1431	4.1	0.16SiO4	Fa _{7.80}	$Al_{0.01}Si_2O_6$	Ts _{0.9} CrEn ₀	-	-	$l_{1.71}Si_3O_{12}$	2.8Knr _{1.6}	
						(b) Proton	L				
2	1032	68.4/17.4/6.	Mg _{1.81} Fe	F090.7	$Mg_{1.79}Fe_{0.14}Ca_{0.02}Na_{0.01}Cr_{0.02}$	$En_{87}Fs_{7.2}Di_{2.1}Kos_{1.1}Jd_0MgTs_1$	$Mg_{0.87}Fe_{0.05}Ca_{0.83}Na_{0.12}Cr_{0.06}$	Di77.5Jd6.3Hd5.2Cen4.9Kos6.	Mg _{2.1} Fe _{0.57} Ca _{0.33} Cr _{0.1} A1	Prp70.03Alm18.98Grs6.19	
5		9/7.3	0.19SiO4	Fa _{9.3}	$Al_{0.04}Si_{1.97}O_6$.5CrEn _{1.1}	$Al_{0.06}Si_2O_6$	$_1CaTs_0$	$_{1.91}$ Si ₃ O ₁₂	Uvr _{4.8} Knr ₀	
1	1228	68.4/17.7/6.	Mg _{1.81} Fe	F090.5	$Mg_{1.77}Fe_{0.13}Ca_{0.04}Na_{0.02}Cr_{0.02}$	$En_{85.31}Fs_{6.69}Di_{4.3}Kos_{1.5}Jd_{0.2}M$	$Mg_{0.92}Fe_{0.06}Ca_{0.78}Na_{0.12}Cr_{0.04}$	Di72Jd7.7Hd6.1Cen10Kos4.2	Mg2.12Fe0.49Ca0.4Cr0.16A	Prp70.53Alm16.28Grs5.29	
4	1238	3/7.5	0.19SiO4	Fa _{9.5}	$Al_{0.04}Si_{1.98}O_6$	gTs ₂ CrEn ₀	$Al_{0.08}Si_2O_6$	CaTs ₀	$l_{1.84}Si_3O_{12}$	Uvr _{7.89} Knr ₀	
5	1425	68.5/18.1/5.	Mg _{1.81} Fe	F090.35	$Mg_{1.75}Fe_{0.13}Ca_{0.07}Na_{0.02}Cr_{0.01}$	$En_{83.22}Fs_{6.29}Di_{6.79}Kos_{1.2}Jd_{1.1}$	$Mg_{0.98}Fe_{0.07}Ca_{0.73}Na_{0.11}Cr_{0.03}$	Di66.23Jd7.89Hd6.89Cen15.68	Mg2.14Fe0.43Ca0.43Cr0.19	Prp71.2Alm14.5Grs4.9Uv	
5	1423	7/7.7	0.19SiO4	Fa9.65	$Al_{0.04}Si_{1.99}O_6$	MgTs _{1.4} CrEn ₀	$Al_{0.08}Si_2O_6$	Kos _{3.2} CaTs _{0.1}	$Al_{1.81}Si_{3}O_{12}$	r _{9.4} Knr ₀	
6	1502	68.5/19.5/3.	$Mg_{1.8}Fe_0$	F090.24	$Mg_{1.73}Fe_{0.11}Ca_{0.09}Na_{0.03}Cr_{0.01}$	$En_{81.42}Fs_{5.69}Di_{9.39}Kos_{0.8}Jd_{2.2}$	$Mg_{1.03}Fe_{0.07}Ca_{0.67}Na_{0.12}Cr_{0.03}$	Di _{60.14} Jd _{8.99} Hd _{7.09} Cen _{21.28}	$Mg_2Fe_{0.39}Ca_{0.61}Cr_{0.21}Al$	Prp _{66.7} Alm _{13.1} Grs _{9.6} Uv	
0	1392	9/8.1	.2SiO4	Fa9.76	$Al_{0.03}Si_2O_6$	MgTs _{0.5} CrEn ₀	$Al_{0.09}Si_2O_6$	Kos _{2.5} CaTs ₀	1.79Si ₃ O ₁₂	$r_{10.6}Knr_0$	
						(c) Tecton	L				
2	1270	64.0/11.9/12	$Mg_{1.8}Fe_0$	F089.99	$Mg_{1.74}Fe_{0.14}Ca_{0.05}Na_{0.02}Cr_{0.02}$	$En_{82.42}Fs_{7.19}Di_{4.9}Kos_{1.6}Jd_0Mg$	$Mg_{0.93}Fe_{0.07}Ca_{0.76}Na_{0.13}Cr_{0.03}$	Di69.23Jd9.89Hd6.49Cen11.69	$Mg_{2.19}Fe_{0.46}Ca_{0.35}Cr_{0.09}$	Prp _{73.1} Alm _{15.2} Grs _{7.1} Uv	
3	1270	.0/12.1	.2SiO4	Fa10.01	Al _{0.08} Si _{1.96} O ₆	Ts _{3.7} CrEn _{0.2}	$Al_{0.1}Si_2O_6$	Kos _{2.7} CaTs ₀	Al _{1.91} Si ₃ O ₁₂	r _{4.6} Knr ₀	
1	1529	64.0/11.0/13	$Mg_{1.8}Fe_0$	F089.89	$Mg_{1.7}Fe_{0.14}Ca_{0.08}Na_{0.02}Cr_{0.01}$	$En_{78.7}Fs_{6.9}Di_{8.3}Kos_{1.2}Jd_{0.9}Mg$	$Mg_{1.05}Fe_{0.09}Ca_{0.63}Na_{0.11}Cr_{0.02}$	Di52.8Jd9.2Hd9.1Cen26Kos2	$Mg_{2.18}Fe_{0.41}Ca_{0.41}Cr_{0.11}$	Prp72.7Alm13.5Grs8.1Uv	
4	1338	.0/12.0	.2SiO4	Fa10.11	Al _{0.09} Si _{1.96} O ₆	Ts_4CrEn_0	$Al_{0.11}Si_{1.99}O_6$	CaTs _{0.9}	Al1.89Si3O12	r _{5.7} Knr ₀	
15	1664	64.0/7.0/17.	$Mg_{1.8}Fe_0$	F089.83	$Mg_{1.71}Fe_{0.13}Ca_{0.09}Na_{0.03}Cr_{0.01}$	$En_{80.12}Fs_{6.39}Di_{9.39}Kos_{0.7}Jd_{2.1}$	$Mg_{1.2}Fe_{0.11}Ca_{0.47}Na_{0.08}Cr_{0.02}$	Di29.9Jd6.5Hd11.2Cen45.3Ko	$Mg_{2.19}Fe_{0.39}Ca_{0.43}Cr_{0.13}$	Prp72.83Alm12.99Grs7.79	
4.3	1004	9/11.1	.2SiO4	Fa _{10.17}	$Al_{0.05}Si_{1.99}O_6$	MgTs _{1.3} CrEn ₀	$Al_{0.17}Si_{1.95}O_6$	s _{1.7} CaTs _{5.4}	Al _{1.87} Si ₃ O ₁₂	Uvr _{6.39} Knr ₀	
5	1707	64.1/7.0/17.	Mg _{1.8} Fe ₀	F089.77	Mg1.67Fe0.13Ca0.12Na0.03Cr0.01	En75.62Fs6.29Di12.39Kos0.8Jd1.8	$Mg_{1.24}Fe_{0.11}Ca_{0.45}Na_{0.09}Cr_{0.01}$	Di31.8Jd7.6Hd11Cen46.1Kos1	Mg _{2.19} Fe _{0.37} Ca _{0.44} Cr _{0.14}	Prp73Alm12.2Grs8Uvr6.8	
5	1/8/	1/11.9	.2SiO4	Fa _{10.23}	Al _{0.08} Si _{1.97} O ₆	MgTs _{3.1} CrEn ₀	Al _{0.13} Si _{1.98} O ₆	$_{.1}CaTs_{2.4}$	Al _{1.86} Si ₃ O ₁₂	Knr ₀	
Notes: Ol-	olivine; Op	x-orthopyroxer	ne; Cpx-clir	opyroxe	ne; Gt-garnet; Fo-Forsterite (M	g ₂ SiO ₄); Fa-fayalite (Fe ₂ SiO ₄);	En-enstatite (Mg ₂ Si ₂ O ₆); Fs-Fe	rrosilite (Fe ₂ Si ₂ O ₆); MgTs-M	g-tschermakite (MgAlSiA	lO ₆); Di-diopside	

Table S2. Mineral proportions and compositions of the Archon (a), Proton (b) and Tecton (c) as a function of pressure and temperature

(CaMgSi₂O₆); Jd-jadeite (NaAlSi₂O₆); Kos-kosmochlor (NaCrSi₂O₆); CrEn-Cr-enstatite (MgCrSiAlO₆); Hd-hedenbergite (CaFeSi₂O₆); Cen-clinoenstatite (Mg₂Si₂O₆); CaTs-Ca-tschermakite (CaAlSiAlO₆); Prp-pyrope (Mg₃Al₂Si₃O₁₂); Alm-Almandine (Fe₃Al₂Si₃O₁₂); Grs-grossular (Ca₃Al₂Si₃O₁₂); Uvr-uvarovite (Ca₃Cr₂Si₃O₁₂); Knr-knorringite (Mg₃Cr₂Si₃O₁₂). - means unavailable. The geotherms of Archon, Proton, and Tecton are adopted from Deen et al. (2006)

Oxide (wt.%)	Prp-Cr#12
SiO ₂	41.77(58)
TiO ₂	0.09(3)
Al ₂ O ₃	19.91(23)
FeO ^a	6.39(4)
MnO	0.33(3)
MgO	20.15(24)
CaO	6.18(4)
Na ₂ O	0.01(1)
K ₂ O	0.00(0)
Cr_2O_3	4.33(6)
NiO	0.01(2)
Total	99.20(100)

Table S3. Chemical Composition of the Cr-pyrope in this study

Numbers in parenthesis represent standard deviations

^a All Fe as FeO

Composition	n C ₁₁ (GPa)	C_{12} (GPa)	$\overline{C_{44}(\text{GPa})}$	K _{S0} (GPa)	$\overline{G_0(\text{GPa})}$	$V_{\rm P}(\rm km/s)$	$V_{\rm S}$ (km/s)	$(\partial K_S/\partial P)_T$	$r(\partial G/\partial P)_T$	$(\partial K_{\rm S}/\partial_T)_P ({\rm GPa/K})$	$(\partial G/\partial T)_P$ (GPa/K)	Method	References
Cr-Prp ^a	291.4(6)	105.9(4)	90.6(3)	167.7(8)	91.5(5)	8.85(1)	4.97(1)	4.3(1)	1.4(1)	-0.0175(1)	-0.0073(1)		This study
Cr-Prp ^b	-	-	-	171.6(13)	90.7(1)	8.92(3)	4.99(1)	-	-	-	-	RPR	Babuška et al. (1978)
Cr-Prp ^c	-	-	-	171.3(16)	92.6(2)	8.92(4)	5.00(1)	-	-	-	-		
Cr-Prp ^d	-	-	-	170.0(18)	92.6(1)	8.90(5)	5.00(1)	-	-	-	-		
Cr-Prp ^e	-	-	-	170.8(27)	92.0(2)	8.88(7)	4.97(1)	-	-	-	-		
Cr-Prp ^f	296.6(15)	108.5(16)	91.6(2)	171.2(8)	92.6(3)	8.92	5.00			$-0.0193(2)^{g}$	$-0.0102(1)^{g}$	RPR	Suzuki & Anderson (1983)
Prp_{100}^{h}	294.5(5)	105.7(6)	90.5(4)	168.6(4)	92.0(3)	9.05(1)	5.09(1)	4.6(1)	1.3(1)	-0.015(1)	-0.008(1)	BLS	Fan et al. (2019)
Prp_{100}^{h}	296.2(5)	111.1(6)	91.6(3)	172.8(3)	92.0(2)	9.06	5.11	-	-	-	-	BLS	O'Neill et al. (1991)
Prp100	295(2)	117(1)	90(3)	177(1)	89(1)	9.08	5.10	-	-	-	-	BLS	Leitner et al. (1980)
Prp_{100}	297(3)	108(2)	93(2)	171(2)	94(2)	9.115	5.125	4.1(3)	1.3(2)	-	-	BLS	Sinogeikin & Bass (2000)
Prp100	298(3)	107(2)	93(2)	171(2)	94(2)	-	-	-	-	-0.014(2)	-0.009(1)	BLS	Sinogeikin & Bass (2002)
Prp_{100}	-	-	-	170(2)	93(1)	9.10(5)	5.12(3)	4.3(3)	1.5(2)	-	-	UI	Gwanmesia et al. (2006)
Prp ₁₀₀	-	-	-	166.0(2)	92.2(1)	9.01	5.09	-	-	-0.0193(4)	-0.0104(2)	UI	Gwanmesia et al. (2007)
Prp100	-	-	-	171(2)	92(1)	9.07(5)	5.07(3)	5.3(4)	1.6(2)	-	-	UI	Chen et al. (1999)
Prp ₁₀₀	-	-	-	172.0(16)	89.1(5)	-	-	4.38(8)	1.66(5)	-0.018(2)	-0.008(1)	UI	Chantel et al. (2016)
Prp100	-	-	-	170.0(2)	93.2(1)	-	-	4.51(2)	1.51(2)	-0.0170(1)	-0.0107(1)	UI	Zou, Irifune, et al. (2012)

Table S4. Elastic properties of Cr-pyrope and end-member pyrope

Notes:

^a Prp_{71.0}Alm_{12.6}Sps_{0.7}Grs_{3.5}Uvr_{12.2},

^b Prp_{73.1}Alm_{14.3}Adr_{3.1}Sps_{0.6}Uvr_{8.9},

^c Prp_{72.6}Alm_{15.7}Grs_{0.6}Adr_{4.3}Sps_{0.7}Uvr_{6.1},

^d Prp_{72.6}Alm_{16.0}Grs_{1.9}Adr_{4.2}Sps_{0.6}Uvr_{4.7},

^e Prp_{70.4}Alm_{16.0}Grs_{1.8}Adr_{2.1}Sps_{0.9}Uvr_{8.8},

^f Prp_{72.6}Alm_{15.7}Grs_{0.6}Adr_{4.3}Sps_{0.7}Uvr_{6.1},

^g Prp₆₈Alm₂₄Grs₅Sps₁;

^g - refit the literature data by this study;

^h - Hydrous sample

Prp - pyrope; Alm - Almandine; Grs - grossular; Sps - spessartine; Uvr - uvarovite; Adr - andradite; BLS = Brillouin light scattering; UI = ultrasonic interferometry; RPR = rectangular parallelepiped resonance. - means unavailable

Table S5. Elastic parameters of minerals used for density and velocity calculations

				1		2		2					
Formula	ρ (g/cm ³)	K _{S0} (GPa)	$(\partial K_S/\partial P)_T$	$(\partial^2 K_S / \partial P^2)_T$	$\partial K_{S}/\partial T (\text{GPaK}^{-1})$	$G_0(\text{GPa})$	$(\partial G/\partial P)_T$	$(\partial^2 G/\partial P^2)_T$	$\partial G/\partial T (\text{GPaK}^{-1})$	γ	$\alpha (10^{-5} \mathrm{K}^{-1})$	$\theta_E(\mathbf{K})$	ReFerences
Prp ₁₀₀ (Mg ₃ Al ₂ Si ₃ O ₁₂)	3.565(3)	171(1)	4.3(2)	-	-0.016(1)	92.3(9)	1.5(1)	-	-0.0092(7)	1.15	2.543(5)	320	1
Alm ₁₀₀ (Fe ₃ Al ₂ Si ₃ O ₁₂)	4.3188(2)	174(1)	4.6(1)	-	-0.0267(7)	94.9(7)	1.06(6)	-	-0.0131(8)	1.22	1.85(1)	600	2
Grs ₁₀₀ (Ca ₃ Al ₂ Si ₃ O ₁₂)	3.5949(1)	168.4(7)	4.9(1)	-	-0.0136(5)	108.9(4)	1.39(4)	-	-0.0128(2)	1.22	2.09(2)	512	3
Uvr ₁₀₀ (Ca ₃ Cr ₂ Si ₃ O ₁₂)	3.8302(7)	162(2)	4.7(9)	-	-0.012(3)	92(1)	1.8(5)	-	-0.0128(2)	1.22	1.64(14)	473	4
Knr100 (Mg3Cr2Si3O12)	3.8930(8)	160(2)	4.6(9)	-	-0.012(3)	92(1)	1.8(5)	-	-0.0128(2)	1.34	2.89(6)	477	5
Fo100 (Mg2SiO4)	3.2214(2)	129.8(9)	4.45(5)	-	-0.018(2)	77.8(5)	1.8(1)	-0.10(2)	-0.013(1)	1.14	2.666(9)	484	6
Fa100 (Fe2SiO4)	4.4020(7)	129.8(9)	4.45(5)	-	-0.018(2)	77.8(5)	1.8(1)	-0.10(2)	-0.013(1)	1.14	2.666(9)	484	7
En100 (Mg2Si2O6)	3.2039(2)	113(1)	8.8(1)	-0.68(6)	-0.0263(3)	75.9(7)	2.9(1)	-0.40(2)	-0.0136(3)	0.88	2.591(18)	510	8
$Fs_{100} (Fe_2Si_2O_6)$	3.9985(3)	113(1)	8.8(1)	-0.68(6)	-0.0263(3)	75.9(7)	2.9(1)	-0.40(2)	-0.0136(3)	0.89	2.591(18)	510	9
MgTs100 (MgAlSiAlO6)	3.4153(5)	113(1)	8.8(1)	-0.68(6)	-0.0263(3)	75.9(7)	2.9(1)	-0.40(2)	-0.0136(3)	0.88	2.591(18)	510	10
CrEn100 (MgCrAlSiO ₆)	3.679(2)	113(1)	8.8(1)	-0.68(6)	-0.0263(3)	75.9(7)	2.9(1)	-0.40(2)	-0.0136(3)	0.88	2.591(18)	510	11
Jd ₁₀₀ (NaAlSi ₂ O ₆)	3.3287(7)	138(3)	3.9(1)	-	-0.012(1)	84(2)	1.09(4)	-	-0.011(1)	1.06	2.67(7)	343	12
Di100 (CaMgSi2O6)	3.2787(4)	114.6(7)	5.4(4)	-0.2(1)	-0.012(1)	72.7(4)	1.9(2)	-0.07(4)	-0.011(1)	1.1	2.67(7)	343	13
Hd ₁₀₀ (CaFeSi ₂ O ₆)	3.6625(6)	116.6(8)	5.0(2)	-0.12(4)	-0.012(1)	69.8(7)	1.72(9)	-0.05(2)	-0.011(1)	1.1	2.67(7)	343	14
Kos100 (NaCrSi2O6)	3.592(2)	138(3)	3.9(1)	-	-0.012(1)	84(2)	1.09(4)	-	-0.011(1)	1.06	2.67(7)	343	15
Cen ₁₀₀ (Mg ₂ Si ₂ O ₆)	3.2077(6)	114.6(7)	5.4(4)	-0.2(1)	-0.012(1)	72.7(4)	1.9(2)	-0.07(4)	-0.011(1)	1.1	2.67(7)	343	16
CaTs ₁₀₀ (CaAl ₂ SiO ₆)	3.45	114.6(7)	5.4(4)	-0.2(1)	-0.012(1)	72.7(4)	1.9(2)	-0.07(4)	-0.011(1)	1.1	2.67(7)	343	17

Note: Due to the lack of end-member elastic parameters, $\partial K_S / \partial T$ of Uv_{100} is converted from $\partial K_T / \partial T$ obtained from Gréaux & Yamada (2019); $\partial G / \partial T$ of Uv_{100} is assumed to be equal to that of Uv_{100} , while $\partial K_S / \partial T$ and K_{50} of Knr100 are converted from $\partial K_T / \partial T$ and K_{70} , respectively ; the elastic parameters except density of San Carlos olivine (Angel et al., 2018; Mao et al., 2015; Zhang & Bass, 2016b) are used For Fo₁₀₀ and Fa₁₀₀; the elastic parameters K_{50} , $(\partial K_S / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, and $(\partial^2 G / \partial P^2)_T$ of San Carlos orthopyroxene (Zhang & Bass, 2016a), $\partial K_S / \partial T$ and $\partial G / \partial T$ of En₁₀₀ (Jackson et al., 2007), α of Ca-, Fe-, Al-bearing orthopyroxene (Faccincani et al., 2021) are used for En₁₀₀, Fs₁₀₀, CrEn₁₀₀ and MgTs₁₀₀; γ of En₁₀₀ is used For En₁₀₀, CrEn₁₀₀ and MgTs₁₀₀; the density of MgTs₁₀₀ is Calculated using a linear interpolation of the densities of En₁₀₀, Fs₁₀₀ and synthetic MgTs-rich orthopyroxene (Xu et al., 2022), while the density of CrEn is calculated using ρ (CrEn₁₀₀) = ρ (Kos₁₀₀) + ρ (MgTs₁₀₀) – ρ (Jd₁₀₀); the elastic parameters K_{50} , $(\partial K_S / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 K_S / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 G / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 G / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P)_T$, $(\partial^2 G / \partial P^2)_T$, G_0 (GPa), $(\partial G / \partial P$

References: 1-(Chantel et al., 2016; Gwanmesia et al., 2006; Milani et al., 2015; Sinogeikin & Bass, 2000; Sinogeikin & Bass, 2002; Zhang et al., 1998; Zou, Gréaux, et al., 2012); 2-(Arimoto et al., 2015; Milani et al., 2015; Soga, 1967); 3-(Bass, 1989; Gwanmesia et al., 2014; Isaak et al., 1992; Milani et al., 2017); 4-(Bass, 1986; Gréaux & Yamada, 2019; Klemme et al., 2005; Wang & Ji, 2001); 5-(Bass, 1986; Dymshits et al., 2014; Gréaux & Yamada, 2019; Klemme et al., 2005; Wang & Ji, 2001); 6-(Angel et al., 2018; Kroll et al., 2012; Mao et al., 2015; Zhang & Bass, 2016b); 8-(Faccincani et al., 2021; Jackson et al., 2017; Xu et al., 2018; Yang & Ghose, 1994; Zhang & Bass, 2016a); 9- (Faccincani et al., 2021; Hugh-Jones, 1997; Jackson et al., 2007; Xu et al., 2002; Yang & Ghose, 1994; Zhang & Bass, 2016a); 10-(Faccincani et al., 2021; Jackson et al., 2007; Xu et al., 2002; Yang & Ghose, 1994; Zhang & Bass, 2016a); 11-(Faccincani et al., 2021; Jackson et al., 2007; Ohashi, 1984; Yang & Ghose, 1994; Zhang & Bass, 2016a); 12-(Hao et al., 2007; Xu et al., 2007; Chashi, 1984; Yang & Ghose, 1994; Zhang & Bass, 2016a); 12-(Hao et al., 2020; Li & Neuville, 2010; Zhao et al., 1997); 13- (Jeanloz & Thompson, 1983; Li & Neuville, 2010; Sang & Bass, 2014; Zhao et al., 2007; Jacobsen et al., 2007; Jacob

Table S6. Mineral proportions and compositions of the Archon (a), Proton (b) and Tecton (c) as a function of pressure and temperature											
Pressure (GPa)	Temperatu re (K)	Ol/Opx/Cpx/ Gt (vol%)	Ol	Ol Opx			Ср	X	Gt		
(01 a)		01 (10170)				(a) Archon					
3	1300	69.1/28.8/0.5	Mg _{1.85} Fe _{0.1}	Fo _{92.4} Fa	$Mg_{1.76}Fe_{0.11}Ca_{0.05}Na_{0.01}Cr_{0.0}$	$En_{83.42}Fs_{5.69}Di_{4.9}Kos_{1.4}Jd_0Mg$ $Ts_2 \circ CrEn_0 \circ$	$Mg_{0.94}Fe_{0.06}Ca_{0.75}Na_{0.13}Cr_{0.0}$	Di _{69.4} Jd _{8.6} Hd _{5.6} Cen _{12.1} Kos	Mg _{2.25} Fe _{0.36} Ca _{0.39} Cr _{0.13}	Prp _{75.02} Alm _{12.09} Grs _{6.39}	
		69.3/26.5/0.5	Mg1 85Fe0 1	F092 55F	$Mg_{1,84}Fe_{0,09}Ca_{0,03}Na_{0,02}Cr_{0,0}$	$E_{n_{90},21}E_{s_4}$ 5Di2 αK_{OS0} 8.Id1Mg	$Mg_1Fe_0Ca_0 \otimes Na_0 \otimes Cr_0Al_0Si$	Digs 5.Ido 3Hdo 3Ceno 6Koso	$Mg_{1.78}Fe_{0.78}Ca_{0.44}Cr_{0.27}$	$Prn_{59} = Alm_{26}Grs_{11}Uvr_{11}$	
4	1300	/3.8	5SiO4	a7 45	1Alo 02Si1 99O6	Tso 6CrEno	2Q6	3CaTso	Ali 73Si3O12	3.6Knr	
_		69.2/27.1/0/3	Mg _{1.85} Fe _{0.1}	F092.35F	$Mg_{1,81}Fe_{0,1}Ca_{0,05}Na_{0,02}Cr_{0,01}$	En _{87.51} Fs _{5.09} Di _{4.8} Kos _{1.1} Jd _{0.6} M	-	-	Mg _{2.17} Fe _{0.39} Ca _{0.43} Cr _{0.24}	Prp _{72.4} Alm _{13.1} Grs _{2.7} Uvr	
5	1300	.6	₅ SiO ₄	a _{7.65}	Al _{0.02} Si _{1.99} O ₆	gTs _{0.9} CrEn ₀			$Al_{1.76}Si_{3}O_{12}$	11.8Knr ₀	
6	1200	69.3/26.9/0/3	Mg _{1.85} Fe _{0.1}	Fo92.3Fa	Mg _{1.82} Fe _{0.1} Ca _{0.05} Na _{0.02} Cr _{0.01}	En88.4Fs4.8Di4.7Kos0.9Jd0.8Mg	_	-	Mg2.16Fe0.41Ca0.43Cr0.26	Prp72Alm13.5Grs1.7Uvr1	
6	1300	.9	5SiO4	7.7	Al _{0.02} Si ₂ O ₆	Ts _{0.4} CrEn ₀			Al _{1.74} Si ₃ O ₁₂	2.8Knr0	
7	1200	69.3/26.7/0/4	$Mg_{1.85}Fe_{0.1}$	Fo _{92.3} Fa	$Mg_{1.83}Fe_{0.09}Ca_{0.04}Na_{0.02}Cr_{0.0}$	$En_{89.21}Fs_{4.6}Di_{4.4}Kos_{0.7}Jd_{1.1}M$	_	-	Mg _{2.13} Fe _{0.42} Ca _{0.45} Cr _{0.27}	Prp71Alm14Grs1.6Uvr13.	
/	1300	.1	5SiO4	7.7	$_{1}Al_{0.01}Si_{2}O_{6}$	gTs_0CrEn_0			Al _{1.73} Si ₃ O ₁₂	4Knr ₀	
Q	1200	69.3/26.7/0/4	$Mg_{1.85}Fe_{0.1}$	F092.25F	$Mg_{1.83}Fe_{0.09}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{89.31}Fs_{4.4}Di_{4.5}Kos_{0.6}Jd_{1.2}M$	-	-	$Mg_{2.12}Fe_{0.44}Ca_{0.45}Cr_{0.28}$	Prp70.6Alm14.6Grs0.9Uvr	
0	1300	.1	5 SiO 4	a 7.75	$_{1}\mathrm{Al}_{0.01}\mathrm{Si}_{2}\mathrm{O}_{6}$	gTs_0CrEn_0			Al _{1.72} Si ₃ O ₁₂	13.9Knr ₀	
3	1500		$Mg_{1.85}Fe_{0.1}$	F092.34F	$Mg_{1.73}Fe_{0.11}Ca_{0.06}Na_{0.02}Cr_{0.0}$	En79.6Fs5.6Di6.3Kos1.5Jd0MgT	-	-	-	-	
5	1500	69.1/30.9/0/0	₅ SiO ₄	a _{7.66}	$_{3}Al_{0.13}Si_{1.93}O_{6}$	s_6CrEn_1					
4	1500	69.2/29.3/0/1	$Mg_{1.85}Fe_{0.1}$	F092.29F	$Mg_{1.76}Fe_{0.11}Ca_{0.06}Na_{0.02}Cr_{0.0}$	$En_{82.7}Fs_{5.3}Di_{5.9}Kos_{1.6}Jd_0MgT$	-	-	Mg2.33Fe0.34Ca0.34Cr0.25	$Prp_{76.4}Alm_{11.2}Grs_0Uvr_1$	
т	1500	.6	₅ SiO ₄	a _{7.71}	$_{2}Al_{0.09}Si_{1.96}O_{6}$	s _{4.2} CrEn _{0.3}			$Al_{1.75}Si_{3}O_{12}$	$_{1.3}$ Knr $_{1.1}$	
5	1500	69.3/27.9/0/2	$Mg_{1.84}Fe_{0.1}$	F092.25F	$Mg_{1.79}Fe_{0.1}Ca_{0.06}Na_{0.02}Cr_{0.01}$	$En_{85.31}Fs_{5.09}Di_{5.59}Kos_{1.3}Jd_{0.4}$	-	-	Mg2.32Fe0.34Ca0.34Cr0.26	Prp75.7Alm11.4Grs0Uvr1	
5	1200	.8	₆ SiO ₄	a7.75	$Al_{0.05}Si_{1.98}O_6$	MgTs _{2.3} CrEn ₀			$Al_{1.74}Si_{3}O_{12}$	1.2Knr 1.7	
6	1500		$Mg_{1.84}Fe_{0.1}$	F092.25F	$Mg_{1.81}Fe_{0.1}Ca_{0.05}Na_{0.02}Cr_{0.01}$	$En_{87.6}Fs_{4.8}Di_{5.3}Kos_{0.8}Jd_{0.9}Mg$	-	-	$Mg_{2.31}Fe_{0.35}Ca_{0.34}Cr_{0.28}$	Prp _{74.43} Alm _{11.69} Grs ₀ Uv	
-		69.3/27/0/3.7	₆ SiO ₄	a7.75	$Al_{0.02}Si_{1.99}O_6$	Ts _{0.6} CrEn ₀			Al _{1.72} Si ₃ O ₁₂	r _{11.39} Knr _{2.5}	
7	1500	69.3/26.8/0/3	$Mg_{1.84}Fe_{0.1}$	Fo _{92.2} Fa	$Mg_{1.82}Fe_{0.09}Ca_{0.05}Na_{0.02}Cr_{0.0}$	En _{88.2} Fs _{4.6} Di _{5.2} Kos _{0.6} Jd _{1.1} Mg	-	-	$Mg_{2.29}Fe_{0.36}Ca_{0.35}Cr_{0.29}$	$Prp_{73.6}Alm_{12.1}Grs_0Uvr_1$	
		.9	6SiO4	7.8	$_1\text{Al}_{0.02}\text{Sl}_2\text{O}_6$	Ts _{0.3} CrEn ₀			$AI_{1.71}Si_{3}O_{12}$	1.5 Knr $_{2.8}$	
8	1500	69.6/26.3/0/4	$Mg_{1.82}Fe_{0.1}$	F091.25F	$Mg_{1.93}Fe_{0.02}Ca_{0.02}Na_{0.02}Cr_{0}A$	$En_{95.4}Fs_{0.8}D_{12}Kos_{0.2}Jd_{1.6}MgT$	-	-	$Mg_{1.98}Fe_{0.44}Ca_{0.58}Cr_{0.33}$	Prp _{66.17} Alm _{14.51} Grs ₃ Uv	
		.1	₈ S1O4	a _{8.75}	$I_{0.02}S_{12}O_6$	$s_0 CrEn_0$			$AI_{1.67}S_{13}O_{12}$	$r_{16.32}$ Kn r_0	
		68 1/18 6/6 5	MararEast	Foss -Fo	Max Food Coord Nord Croo	(b) Proton	Massi Fosse Cosse Nosse Cross	Dictor Ide collide on Company	Mary For the Construction	Drn-, - Alm, Crach	
3	1300	/6 5		1'090.51'a	a A la ao Si a co	$aT_{s_2,o}CrEn_{o,o}$	101g0.941 C0.07 Ca0.741 Va0.12 C10.0	Kost (CaTso 2	$101g_{2.151} = 0.45 Ca_{0.4} C_{10.14}$	$\frac{11p}{1.6}/\text{Am}[5.020186.4]}{\text{Uvr}_{c.04}Knr_0}$	
		68 4/18 1/6 2	95104 Mg1 91Fe0 1	9.5 F000 5Fa	$Mg_{1,25}Fe_{0,12}Ca_{0,05}Na_{0,02}Cr_{0,0}$	Fn_{22} σFs_{4} $\sigma Dis_{2}K \sigma s_{1} s_{1} d\sigma_{2}M\sigma$	$M_{30,04} Fe_{0,07} Ca_{0,7} cNa_{0,12} Cr_{0,0}$	Die oz Idz 40Hde 50Cen 12 50	$M_{02,12}$ Fe0 47 C 20 4 C ro 16	$Prn_{70} \circ A lm_{15} = Grs_{5} \circ U lvr$	
4	1300	/7 3	oSiO4	1 090.31 d	2Alo 05Si 10006	Ts2 5CrFn0	4Alo osSi2O6	Kos4 1CaTso 2	Ali e4Si2O12	• 2Knr	
		68.4/17.7/6.1	$Mg_{1,81}Fe_{0,1}$	9.5 F090.45F	$Mg_{1.77}Fe_{0.13}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{85} = 1Fs_{6} = 0$	$Mg_{0.94}Fe_{0.06}Ca_{0.77}Na_{0.11}Cr_{0.0}$	Di70 7.Jd7 6Hd6 1Cen11 7Kos	Mg2 11 Fe0 49 Ca0 4 Cr0 18	Prp ₇₀ 3Alm ₁₆ 3Grs ₄ 6Uvr	
5	1300	/7.7	9SiO4	a9 55	$1Al_{0.04}Si_{1.99}O_{6}$	MgTs ₁ 4CrEn ₀	4Alo 08Si2O6	3 8CaTs _{0.1}	Al ₁ 83Si3O ₁₂	8 8 Knro	
		68.5/17.5/5.9	$Mg_{1.81}Fe_{0.1}$	F090.45F	$Mg_{1.78}Fe_{0.12}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{86,51}Fs_{5,89}Di_5Kos_{0,8}Jd_{1,5}Mg$	$Mg_{0.94}Fe_{0.06}Ca_{0.79}Na_{0.11}Cr_{0.0}$	Di _{72.9} Jd _{7.5} Hd _{5.6} Cen _{10.4} Kos	$Mg_{2.09}Fe_{0.5}Ca_{0.41}Cr_{0.19}$	$Prp_{69,53}Alm_{16,78}Grs_{4,3}U$	
6	1300	/8.1	9SiO4	a9.55	$_1\text{Al}_{0.02}\text{Si}_2\text{O}_6$	Ts _{0.3} CrEn ₀	$4Al_{0.08}Si_2O_6$	3.6CaTs0	$Al_{1.81}Si_{3}O_{12}$	vr9.39Knr0	
-	1200	68.4/17.5/5.8	$Mg_{1.81}Fe_{0.1}$	Fo _{90.4} Fa	$Mg_{1.79}Fe_{0.11}Ca_{0.05}Na_{0.02}Cr_{0.0}$	En _{87.11} Fs _{5.69} Di _{4.9} Kos _{0.7} Jd _{1.6} M	$Mg_{0.93}Fe_{0.05}Ca_{0.8}Na_{0.11}Cr_{0.03}$	Di _{74.6} Jd _{7.6} Hd _{5.2} Cen _{9.2} Kos _{3.}	Mg _{2.07} Fe _{0.51} Ca _{0.42} Cr _{0.19}	Prp _{68.9} Alm _{17.1} Grs _{4.3} Uvr	
/	1300	/8.2	9SiO4	9.6	$_{1}Al_{0.02}Si_{2}O_{6}$	gTs ₀ CrEn ₀	Al _{0.08} Si ₂ O ₆	4CaTs ₀	Al _{1.81} Si ₃ O ₁₂	9.7Knr0	
0	1200	68.4/17.5/5.8	$Mg_{1.81}Fe_{0.1}$	Fo _{90.4} Fa	$Mg_{1.8}Fe_{0.11}Ca_{0.05}Na_{0.02}Cr_{0.01}$	$En_{87.5}Fs_{5.4}Di_{4.8}Kos_{0.6}Jd_{1.7}Mg$	$Mg_{0.93}Fe_{0.05}Ca_{0.8}Na_{0.11}Cr_{0.03}$	Di75.22Jd7.99Hd4.9Cen8.69K	Mg _{2.05} Fe _{0.53} Ca _{0.42} Cr _{0.2}	Prp68.3Alm17.8Grs3.9Uvr	
0	1300	/8.3	9SiO4	9.6	$Al_{0.02}Si_2O_6$	Ts_0CrEn_0	$Al_{0.08}Si_2O_6$	os _{3.2} CaTs ₀	$Al_{1.8}Si_{3}O_{12}$	$_{10}$ Knr ₀	
2	1500	68.4/19.9/6.4	$Mg_{1.81}Fe_{0.1}$	F090.39F	$Mg_{1.68}Fe_{0.14}Ca_{0.08}Na_{0.02}Cr_{0.0}$	$En_{76.22}Fs_{6.99}Di_{8.09}Kos_{1.6}Jd_0M$	$Mg_{1.02}Fe_{0.09}Ca_{0.64}Na_{0.11}Cr_{0.0}$	Di53.6Jd8Hd8.8Cen24.2Kos3.	$Mg_{2.19}Fe_{0.39}Ca_{0.42}Cr_{0.15}$	Prp72.87Alm13.01Grs6.41	
5	1500	/5.3	₉ SiO ₄	a 9.61	$_{3}\mathrm{Al}_{0.13}\mathrm{Si}_{1.93}\mathrm{O}_{6}$	gTs _{6.19} CrEn _{0.9}	$_{3}\mathrm{Al}_{0.12}\mathrm{Si}_{1.98}\mathrm{O}_{6}$	4CaTs ₂	$Al_{1.85}Si_{3}O_{12}$	Uvr _{7.71} Knr ₀	
1	1500	68.4/19/5.8/6	$Mg_{1.81}Fe_{0.1}$	F090.34F	$Mg_{1.71}Fe_{0.13}Ca_{0.08}Na_{0.02}Cr_{0.0}$	$En_{79.6}Fs_{6.6}Di_8Kos_{1.8}Jd_{0.2}MgT$	$Mg_{1.01}Fe_{0.08}Ca_{0.68}Na_{0.11}Cr_{0.0}$	Di59.8Jd8.2Hd8Cen20.4Kos3.	$Mg_{2.17}Fe_{0.4}Ca_{0.44}Cr_{0.18}$	Prp72.13Alm13.29Grs5.69	
-	1500	.8	9SiO4	a 9.66	$_{2}Al_{0.08}Si_{1.96}O_{6}$	$s_{3.8}CrEn_0$	$_{3}Al_{0.09}Si_{2}O_{6}$	$_2CaTs_{0.4}$	$Al_{1.82}Si_{3}O_{12}$	Uvr _{8.89} Knr ₀	
5	1500	68.5/18.8/5.4	$Mg_{1.81}Fe_{0.1}$	F090.34F	$Mg_{1.73}Fe_{0.12}Ca_{0.08}Na_{0.02}Cr_{0.0}$	$En_{81.12}Fs_{6.19}Di_{8.09}Kos_{1.3}Jd_{1.1}$	$Mg_{1.01}Fe_{0.08}Ca_{0.69}Na_{0.11}Cr_{0.0}$	Di _{60.7} Jd _{8.1} Hd _{7.5} Cen _{20.3} Kos	$Mg_{2.11}Fe_{0.42}Ca_{0.47}Cr_{0.19}$	Prp70.3Alm14Grs6Uvr9.7	
5	1200	/7.4	9SiO4	a 9.66	$_{1}Al_{0.06}Si_{1.98}O_{6}$	MgTs _{2.2} CrEn ₀	$_{3}Al_{0.09}Si_{2}O_{6}$	3CaTs _{0.4}	$Al_{1.81}Si_{3}O_{12}$	Knr_0	
6	1500	68.5/18.8/4.6	$Mg_{1.81}Fe_{0.1}$	Fo _{90.3} Fa	$Mg_{1.75}Fe_{0.12}Ca_{0.08}Na_{0.03}Cr_{0.0}$	$En_{83.1}Fs_{5.8}Di_8Kos_{0.8}Jd_2MgTs$	$Mg_{0.99}Fe_{0.07}Ca_{0.72}Na_{0.11}Cr_{0.0}$	Di _{65.8} Jd _{8.2} Hd _{6.5} Cen _{16.6} Kos	$Mg_{2.05}Fe_{0.42}Ca_{0.53}Cr_{0.2}$	Prp _{68.27} Alm _{14.11} Grs _{7.41}	
	1000	/8.1	9SiO4	9.7	$_{1}Al_{0.03}Si_{2}O_{6}$	0.3 CrEn $_0$	$_3Al_{0.08}Si_2O_6$	2.9CaTs0	$Al_{1.8}Si_{3}O_{12}$	Uvr _{10.21} Knr ₀	
7	1500	68.5/18.7/4.6	$Mg_{1.8}Fe_{0.19}$	F0 _{90.29} F	$Mg_{1.75}Fe_{0.11}Ca_{0.08}Na_{0.03}Cr_{0.0}$	En _{83.5} Fs _{5.5} Di _{7.9} Kos _{0.7} Jd _{2.1} Mg	$Mg_{0.98}Fe_{0.06}Ca_{0.73}Na_{0.11}Cr_{0.0}$	Di _{67.2} Jd _{8.5} Hd _{6.1} Cen _{15.6} Kos	$Mg_{2.03}Fe_{0.44}Ca_{0.53}Cr_{0.21}$	Prp _{67.73} Alm _{14.69} Grs _{7.09}	
	-	/8.2	SiO ₄	a 9.71	$_{1}Al_{0.03}Si_{2}O_{6}$	Ts _{0.3} CrEn ₀	$_{3}Al_{0.09}Si_{2}O_{6}$	2.6CaTs ₀	$AI_{1.79}Si_{3}O_{12}$	$Uvr_{10.49}Knr_0$	
8	1500	68.5/18.3/4.9	$Mg_{1.81}Fe_{0.2}$	F090.25F	Mg _{1.76} Fe _{0.11} Ca _{0.08} Na _{0.03} Cr _{0.0}	En83.92Fs5.39D17.89Kos0.6Jd2.2	Mg0.98Fe0.06Ca0.75Na0.11Cr0.0	D169.1Jd8.1Hd5.9Cen14.5Kos	Mg2.08Fe0.46Ca0.47Cr0.21	Prp69.2Alm15.2Grs4.9Uvr	
		/8.3	S_1O_4	a 9.75	$_{1}AI_{0.02}S1_{2}O_{6}$	Mg1s ₀ CrEn ₀	$_{2}AI_{0.08}Si_{2}O_{6}$	2.4Cals ₀	$AI_{1.79}S_{13}O_{12}$	10.7Knr ₀	

(c) Tecton

3	1300	64/11.9/12.1/	$Mg_{1.8}Fe_{0.2}$	F089.99F	$Mg_{1.73}Fe_{0.15}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{81.82}Fs_{7.29}Di_{5.09}Kos_{1.7}Jd_0M$	$Mg_{0.93}Fe_{0.07}Ca_{0.75}Na_{0.12}Cr_{0.0}$	Di _{67.8} Jd _{9.5} Hd _{6.9} Cen _{12.8} Kos	$Mg_{2.2}Fe_{0.45}Ca_{0.36}Cr_{0.09}$	Prp73.2Alm14.9Grs7.5Uvr
	12	SiO_4	$a_{10.01}$	$_{2}Al_{0.08}Si_{1.96}O_{6}$	gTs ₄ CrEn _{0.1}	$_3Al_{0.1}Si_2O_6$	$_{2.9}CaTs_{0.1}$	$Al_{1.91}Si_{3}O_{12}$	4.4Knr ₀	
4	4 1200	64/11.6/11.8/	$Mg_{1.8}Fe_{0.2}$	F090.05F	$Mg_{1.75}Fe_{0.14}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{83.82}Fs_{6.79}Di_{5.09}Kos_{1.2}Jd_{0.9}$	$Mg_{0.93}Fe_{0.07}Ca_{0.76}Na_{0.12}Cr_{0.0}$	Di69Jd9.7Hd6.5Cen12.2Kos2.	Mg _{2.17} Fe _{0.47} Ca _{0.37} Cr _{0.1}	Prp72.2Alm15.6Grs7.2Uvr
4	1300	12.5	SiO_4	a 9.95	${}_{1}\mathrm{Al}_{0.05}\mathrm{Si}_{1.98}\mathrm{O}_{6}$	MgTs _{2.2} CrEn ₀	$_3\mathrm{Al}_{0.1}\mathrm{Si}_2\mathrm{O}_6$	₆ CaTs ₀	$Al_{1.9}Si_{3}O_{12}$	5Knr ₀
5	1200	64/11.4/11.7/	$Mg_{1.8}Fe_{0.2}$	Fo _{90.1} Fa	$Mg_{1.77}Fe_{0.13}Ca_{0.05}Na_{0.02}Cr_{0.0}$	$En_{85.6}Fs_{6.5}Di_{4.8}Kos_{0.8}Jd_{1.4}Mg$	$Mg_{0.93}Fe_{0.07}Ca_{0.76}Na_{0.12}Cr_{0.0}$	Di69.13Jd9.59Hd6.49Cen12.09	$Mg_{2.13}Fe_{0.49}Ca_{0.38}Cr_{0.1}$	Prp71.1Alm16.4Grs7.3Uvr
5	1300	12.8	SiO ₄	9.9	$_{1}Al_{0.03}Si_{1.99}O_{6}$	Ts _{0.9} CrEn ₀	$_{3}Al_{0.1}Si_{2}O_{6}$	Kos _{2.7} CaTs ₀	Al _{1.9} Si ₃ O ₁₂	5.2Knr ₀
6	1200	64/12/10.9/1	$Mg_{1.8}Fe_{0.2}$	F090.15F	$Mg_{1.78}Fe_{0.12}Ca_{0.05}Na_{0.03}Cr_{0.0}$	$En_{86.5}Fs_6Di_{4.6}Kos_{0.6}Jd_{2.3}MgT$	$Mg_{0.92}Fe_{0.06}Ca_{0.78}Na_{0.12}Cr_{0.0}$	Di71.73Jd9.39Hd5.69Cen10.19	$Mg_{2.05}Fe_{0.52}Ca_{0.43}Cr_{0.1}$	Prp _{68.37} Alm _{17.22} Grs _{9.21}
0	1300	3.1	SiO ₄	a 9.85	$_1Al_{0.02}Si_2O_6$	s ₀ CrEn ₀	$_{3}Al_{0.09}Si_{2}O_{6}$	Kos ₃ CaTs ₀	Al _{1.9} Si ₃ O ₁₂	Uvr _{5.21} Knr ₀
7	1200	64/11.6/11.4/	$Mg_{1.8}Fe_{0.2}$	F090.15F	$Mg_{1.78}Fe_{0.12}Ca_{0.05}Na_{0.03}Cr_{0.0}$	$En_{86.81}Fs_{5.89}Di_{4.7}Kos_{0.6}Jd_2Mg$	$Mg_{0.92}Fe_{0.06}Ca_{0.78}Na_{0.12}Cr_{0.0}$	Di72.1Jd10Hd5.6Cen10Kos2.3	$Mg_{2.09}Fe_{0.53}Ca_{0.38}Cr_{0.11}$	Prp69.6Alm17.7Grs7Uvr5.
1	1300	13.1	SiO ₄	a 9.85	$_{1}Al_{0.02}Si_{2}O_{6}$	Ts_0CrEn_0	$_2Al_{0.1}Si_2O_6$	CaTs ₀	$Al_{1.89}Si_{3}O_{12}$	₇ Knr ₀
Q	0 1200	64/11.6/11.3/	$Mg_{1.8}Fe_{0.2}$	Fo _{90.1} Fa	$Mg_{1.79}Fe_{0.11}Ca_{0.05}Na_{0.03}Cr_0A$	En _{87.3} Fs _{5.6} Di _{4.6} Kos _{0.4} Jd _{2.1} Mg	$Mg_{0.92}Fe_{0.05}Ca_{0.78}Na_{0.12}Cr_{0.0}$	Di73.1Jd10.2Hd5.2Cen9.3Kos	Mg2.08Fe0.54Ca0.38Cr0.12	Prp69.33Alm17.98Grs6.79
0	1300	13.1	SiO_4	9.9	$1_{0.02}$ Si ₂ O ₆	Ts_0CrEn_0	$_2Al_{0.1}Si_2O_6$	$_{2.2}CaTs_0$	$Al_{1.88}Si_{3}O_{12}$	Uvr _{5.89} Knr ₀
2	1200	64/11.8/12.9/	$Mg_{1.8}Fe_{0.2}$	F089.93F	$Mg_{1.68}Fe_{0.15}Ca_{0.08}Na_{0.02}Cr_{0.0}$	En77.02Fs7.29Di7.79Kos1.6Jd0M	$Mg_{1.02}Fe_{0.09}Ca_{0.65}Na_{0.12}Cr_{0.0}$	Di54.2Jd9.4Hd9.2Cen23.8Kos	Mg2.19Fe0.4Ca0.41Cr0.1Al	Prp73.07Alm13.31Grs8.41
3	1300	11.3	SiO ₄	a _{10.07}	$_{2}Al_{0.13}Si_{1.94}O_{6}$	gTs _{6.19} CrEn _{0.1}	$_{2}Al_{0.12}Si_{1.99}O_{6}$	2.3CaTs1.1	$_{1.9}Si_{3}O_{12}$	Uvr _{5.21} Knr ₀
Λ	1200	64/11.5/12.4/	$Mg_{1.8}Fe_{0.2}$	F0 _{89.94} F	$Mg_{1.7}Fe_{0.14}Ca_{0.08}Na_{0.02}Cr_{0.01}$	En79.4Fs6.9Di7.8Kos1.2Jd0.9Mg	$Mg_{1.01}Fe_{0.09}Ca_{0.66}Na_{0.12}Cr_{0.0}$	Di57Jd9.5Hd8.6Cen22.2Kos2.	Mg _{2.18} Fe _{0.41} Ca _{0.41} Cr _{0.11}	Prp72.5Alm13.8Grs8.2Uvr
4	1300	12	SiO ₄	a _{10.06}	Al _{0.09} Si _{1.96} O ₆	Ts _{3.8} CrEn ₀	$_{2}Al_{0.11}Si_{1.99}O_{6}$	1CaTs _{0.6}	Al _{1.89} Si ₃ O ₁₂	5.5Knr0
5	1200	64.1/10.9/12.	$Mg_{1.8}Fe_{0.2}$	F0 _{89.94} F	$Mg_{1.72}Fe_{0.13}Ca_{0.08}Na_{0.03}Cr_{0.0}$	$En_{81.2}Fs_{6.4}Di_{7.7}Kos_{0.9}Jd_{1.7}Mg$	$Mg_{1.04}Fe_{0.08}Ca_{0.65}Na_{0.11}Cr_{0.0}$	Di55.9Jd9.2Hd8.4Cen23.8Kos	Mg _{2.16} Fe _{0.43} Ca _{0.41} Cr _{0.12}	Prp _{72.03} Alm _{14.39} Grs _{7.69}
3	1300	7/12.4	SiO ₄	a 10.06	$_{1}Al_{0.06}Si_{1.98}O_{6}$	Ts _{2.1} CrEn ₀	$_{2}Al_{0.11}Si_{1.99}O_{6}$	1.9CaTs 0.8	Al _{1.88} Si ₃ O ₁₂	Uvr5.89Knr0
C	1200	64.1/11.3/11.	$Mg_{1.8}Fe_{0.2}$	F0 _{89.94} F	$Mg_{1.74}Fe_{0.12}Ca_{0.08}Na_{0.03}Cr_{0.0}$	En ₈₃ Fs _{6.1} Di _{7.7} Kos _{0.5} Jd _{2.5} MgT	Mg1Fe0.07Ca0.7Na0.12Cr0.02A1	Di _{62.6} Jd _{9.8} Hd _{7.3} Cen _{18.5} Kos	Mg _{2.14} Fe _{0.44} Ca _{0.42} Cr _{0.12}	Prp _{71.37} Alm _{14.71} Grs _{7.81}
0	1300	6/13	SiO ₄	$a_{10.06}$	$_{1}Al_{0.03}Si_{2}O_{6}$	s _{0.2} CrEn ₀	$_{0.1}\mathrm{Si_2O_6}$	1.8CaTs ₀	Al _{1.88} Si ₃ O ₁₂	Uvr _{6.11} Knr ₀
7	1200	64.1/11.4/11.	Mg _{1.8} Fe _{0.2}	F089.94F	$Mg_{1.75}Fe_{0.12}Ca_{0.08}Na_{0.03}Cr_{0.0}$	En83.4Fs5.8Di7.7Kos0.5Jd2.5Mg	Mg1Fe0.07Ca0.7Na0.12Cr0.02A1	Di63.34Jd9.89Hd6.79Cen18.18	Mg2.12Fe0.46Ca0.42Cr0.12	Prp70.6Alm15.3Grs7.9Uvr
/	1300	5/13.1	SiO ₄	$a_{10.06}$	$_{1}Al_{0.03}Si_{2}O_{6}$	Ts _{0.1} CrEn ₀	$_{0.1}\mathrm{Si_2O_6}$	Kos _{1.8} CaTs ₀	Al _{1.88} Si ₃ O ₁₂	$_{6.2}$ Knr ₀
0	1200	64/11.8/11/1	Mg _{1.8} Fe _{0.2}	F089.89F	$Mg_{1.75}Fe_{0.11}Ca_{0.08}Na_{0.03}Cr_0A$	En83.72Fs5.59Di7.49Kos0.4Jd2.8	$Mg_{0.98}Fe_{0.06}Ca_{0.73}Na_{0.12}Cr_{0.0}$	Di66.13Jd10.29Hd6.29Cen15.68	Mg _{2.1} Fe _{0.47} Ca _{0.43} Cr _{0.13}	Prp70Alm15.5Grs8.1Uvr6.
8 1300	1300	3.1	SiO ₄	a _{10.11}	$l_{0.03}Si_2O_6$	MgTs ₀ CrEn ₀	$_2Al_{0.1}Si_2O_6$	Kos _{1.6} CaTs ₀	Al _{1.87} Si ₃ O ₁₂	₄ Knr ₀

Notes: Ol-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Gt-garnet; Fo-Forsterite (Mg₂SiO₄); Fa-fayalite (Fe₂SiO₄); En-enstatite (Mg₂Si₂O₆); Fs-Ferrosilite (Fe₂Si₂O₆); MgTs-Mg-tschermakite (MgAlSiAlO₆); Di-diopside (CaMgSi₂O₆); Jd-jadeite (NaAlSi₂O₆); Kos-kosmochlor (NaCrSi₂O₆); CrEn-Cr-enstatite (MgCrSiAlO₆); Hd-hedenbergite (CaFeSi₂O₆); Cen-clinoenstatite (Mg₂Si₂O₆); CaTs-Ca-tschermakite (CaAlSiAlO₆); Prp-pyrope (Mg₃Al₂Si₃O₁₂); Alm-Almandine (Fe₃Al₂Si₃O₁₂); Grs-grossular (Ca₃Al₂Si₃O₁₂); Uvr-uvarovite (Ca₃Cr₂Si₃O₁₂); Knr-knorringite (Mg₃Cr₂Si₃O₁₂). - means unavailable.

ReFerences

- Angel, R.J., Alvaro, M., & Nestola, F. (2018). 40 years of mineral elasticity: a critical review and a new parameterisation of equations of state for mantle olivines and diamond inclusions. *Physics and Chemistry of Minerals*, 45(2), 95-113. <u>https://doi.org/10.1007/s00269-017-0900-7</u>
- Angel, R.J., Gonzalez-Platas, J., & Alvaro, M. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. *Zeitschrift für Kristallographie - Crystalline Materials*, 229(5). 10.1515/zkri-2013-1711
- Arimoto, T., Gréaux, S., Irifune, T., Zhou, C., & Higo, Y. (2015). Sound velocities of Fe₃Al₂Si₃O₁₂ almandine up to 19 GPa and 1700 K. *Physics of the Earth and Planetary Interiors*, 246, 1-8. <u>https://doi.org/10.1016/j.pepi.2015.06.004</u>
- Babuška, V., Fiala, J., Kumazawa, M., Ohno, I., & Sumino, Y. (1978). Elastic properties of garnet solidsolution series. *Physics of the Earth and Planetary Interiors*, 16(2), 157-176. <u>https://doi.org/10.1016/0031-9201(78)90086-9</u>
- Bass, J.D. (1986). Elasticity of uvarovite and andradite garnets. *Journal of Geophysical Research*, 91(B7), 7505-7516. <u>https://doi.org/10.1029/JB091iB07p07505</u>
- Bass, J.D. (1989). Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. *Journal of Geophysical Research: Solid Earth*, 94(B6), 7621-7628. https://doi.org/10.1029/JB094iB06p07621
- Cameron, M., Sueno, S., Prewitt, C.T., & Papike, J.J. (1973). High-Temperature Grystal Ghemistry of Acmite, Diopside, Hedenbergite, Jadeite, Spodumene, and Ureyite. *American Mineralogist*, 58, 594-618.
- Chantel, J., Manthilake, G.M., Frost, D.J., Beyer, C., Ballaran, T.B., Jing, Z., et al. (2016). Elastic wave velocities in polycrystalline Mg₃Al₂Si₃O₁₂-pyrope garnet to 24 GPa and 1300 K. *American Mineralogist*, 101(4), 991-997. <u>https://doi.org/10.2138/am-2016-5335</u>
- Chen, G., Cooke, J.A., Gwanmesia, G.D., & Liebermann, R.C. (1999). Elastic wave velocities of Mg₃Al₂Si₃O₁₂-pyrope garnet to 10 GPa. *American Mineralogist*, 84(3), 384-388. <u>https://doi.org/10.2138/am-1999-0322</u>
- Deen, T.J., Griffin, W., Begg, G., O'Reilly, S.Y., Natapov, L., & Hronsky, J. (2006). Thermal and compositional structure of the subcontinental lithospheric mantle: Derivation from shear wave seismic tomography. *Geochemistry, Geophysics, Geosystems*, 7(7), Q07003. https://doi.org/10.1029/2005GC001120
- Dymshits, A.M., Litasov, K.D., Sharygin, I.S., Shatskiy, A., Ohtani, E., Suzuki, A., et al. (2014). Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. *Journal of Geophysical Research*, *119*(11), 8034-8046. https://doi.org/10.1002/2014JB011194
- Faccincani, L., Faccini, B., Casetta, F., Mazzucchelli, M., Nestola, F., & Coltorti, M. (2021). EoS of mantle minerals coupled with composition and thermal state of the lithosphere: Inferring the density structure of peridotitic systems. *Lithos*, 404-405. 10.1016/j.lithos.2021.106483
- Fan, D., Fu, S., Lu, C., Xu, J., Zhang, Y., Tkachev, S.N., et al. (2020). Elasticity of single-crystal Feenriched diopside at high-pressure conditions: Implications for the origin of upper mantle lowvelocity zones. *American Mineralogist: Journal of Earth and Planetary Materials*, 105(3), 363-374. <u>https://doi.org/10.2138/am-2020-7075</u>
- Fan, D., Xu, J., Lu, C., Tkachev, S.N., Li, B., Ye, Z., et al. (2019). Elasticity of single-crystal low water

content hydrous pyrope at high-pressure and high-temperature conditions. *American Mineralogist*, *104*(7), 1022-1031. <u>https://doi.org/10.2138/am-2019-6897</u>

- Gréaux, S., & Yamada, A. (2019). Density variations of Cr-rich garnets in the upper mantle inferred from the elasticity of uvarovite garnet. *Comptes Rendus Geoscience*, 351(2), 95-103. <u>https://doi.org/10.1016/j.crte.2018.09.012</u>
- Griffin, W., O'reilly, S.Y., Afonso, J.C., & Begg, G. (2009). The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. *Journal of Petrology*, 50(7), 1185-1204. <u>https://doi.org/10.1093/petrology/egn033</u>
- Gwanmesia, G., Jackson, I., & Liebermann, R. (2007). In search of the mixed derivative∂²M/∂P∂T (M= G, K): joint analysis of ultrasonic data for polycrystalline pyrope from gas-and solid-medium apparatus. *Physics and Chemistry of Minerals*, *34*(2), 85-93.
- Gwanmesia, G.D., Wang, L., Heady, A., & Liebermann, R.C. (2014). Elasticity and sound velocities of polycrystalline grossular garnet (Ca₃Al₂Si₃O₁₂) at simultaneous high pressures and high temperatures. *Physics of the Earth and Planetary Interiors*, 228, 80-87. <u>https://doi.org/10.1016/j.pepi.2013.09.010</u>
- Gwanmesia, G.D., Zhang, J., Darling, K., Kung, J., Li, B., Wang, L., et al. (2006). Elasticity of polycrystalline pyrope (Mg₃Al₂Si₃O₁₂) to 9GPa and 1000°C. *Physics of the Earth and Planetary Interiors*, 155(3), 179-190. <u>https://doi.org/10.1016/j.pepi.2005.10.008</u>
- Hao, M., Zhang, J.S., Pierotti, C.E., Zhou, W.-Y., Zhang, D., & Dera, P. (2020). The seismically fastest chemical heterogeneity in the Earth's deep upper mantle—implications from the single-crystal thermoelastic properties of jadeite. *Earth and Planetary Science Letters*, 543, 116345. <u>https://doi.org/10.1016/j.epsl.2020.116345</u>
- Holland, T., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. *Journal* of Metamorphic Geology, 29(3), 333-383. <u>https://doi.org/10.1111/j.1525-1314.2010.00923.x</u>
- Hugh-Jones, D. (1997). Thermal expansion of MgSiO₃ and FeSiO₃ ortho-and clinopyroxenes. *American Mineralogist*, 82(7-8), 689-696. <u>https://doi.org/10.2138/am-1997-7-806</u>
- Isaak, D.G., Anderson, O.L., & Oda, H. (1992). High-temperature thermal expansion and elasticity of calcium-rich garnets. *Physics and Chemistry of Minerals*, 19(2), 106-120. <u>https://doi.org/10.1007/BF00198608</u>
- Jackson, J.M., Sinogeikin, S.V., & Bass, J.D. (2007). Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure. *Physics of the Earth and Planetary Interiors*, 161(1-2), 1-12. <u>https://doi.org/10.1016/j.pepi.2006.11.002</u>
- Jacobsen, S.D., Liu, Z., Ballaran, T.B., Littlefield, E.F., Ehm, L., & Hemley, R.J. (2010). Effect of H₂O on upper mantle phase transitions in MgSiO₃: Is the depth of the seismic X-discontinuity an indicator of mantle water content? *Physics of the Earth and Planetary Interiors*, 183(1), 234-244. https://doi.org/10.1016/j.pepi.2010.06.015
- Jeanloz, R., & Thompson, A.B. (1983). Phase transitions and mantle discontinuities. *Reviews of Geophysics*, 21(1), 51-74. <u>https://doi.org/10.1029/RG021i001p00051</u>
- Klemme, S., Van Miltenburg, J., Javorsky, P., & Wastin, F. (2005). Thermodynamic properties of uvarovite garnet (Ca₃Cr₂Si₃O₁₂). *American Mineralogist*, 90(4), 663-666. <u>https://doi.org/10.2138/am.2005.1812</u>
- Kroll, H., Kirfel, A., Heinemann, R., & Barbier, B. (2012). Volume thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series. *European Journal of*

Mineralogy, 24(6), 935-956. https://doi.org/10.1127/0935-1221/2012/0024-2235

- Leitner, B.J., Weidner, D.J., & Liebermann, R.C. (1980). Elasticity of single crystal pyrope and implications for garnet solid solution series. *Physics of the Earth and Planetary Interiors*, 22(2), 111-121. <u>https://doi.org/10.1016/0031-9201(80)90052-7</u>
- Li, B., & Neuville, D.R. (2010). Elasticity of diopside to 8GPa and 1073K and implications for the upper mantle. *Physics of the Earth and Planetary Interiors*, *183*(3), 398-403. https://doi.org/10.1016/j.pepi.2010.08.009
- Ma, C., Simon, S.B., Rossman, G.R., & Grossman, L. (2009) End-member calcium Tschermak's pyroxene, CaAlAlSiO₆, from the Allende and Murray meteorites: occurrence, origin and significance.
- Mao, Z., Fan, D.W., Lin, J.F., Yang, J., Tkachev, S.N., Zhuravlev, K., et al. (2015). Elasticity of singlecrystal olivine at high pressures and temperatures. *Earth and Planetary Science Letters*, 426, 204-215. <u>https://doi.org/10.1016/j.epsl.2015.06.045</u>
- Milani, S., Angel, R.J., Scandolo, L., Mazzucchelli, M.L., Ballaran, T.B., Klemme, S., et al. (2017). Thermo-elastic behavior of grossular garnet at high pressures and temperatures. *American Mineralogist*, 102(4), 851-859. <u>https://doi.org/10.2138/am-2017-5855</u>
- Milani, S., Nestola, F., Alvaro, M., Pasqual, D., Mazzucchelli, M.L., Domeneghetti, M.C., et al. (2015). Diamond–garnet geobarometry: The role of garnet compressibility and expansivity. *Lithos*, 227, 140-147. <u>https://doi.org/10.1016/j.lithos.2015.03.017</u>
- O'Neill, B., Bass, J.D., Rossman, G.R., Geiger, C.A., & Langer, K. (1991). Elastic properties of pyrope. *Physics and Chemistry of Minerals*, 17(7), 617-621. <u>https://doi.org/10.1007/BF00203841</u>
- Ohashi, Y. (1984). Polysynthetically-twinned structures of enstatite and wollastonite. *Physics and Chemistry of Minerals*, 10(5), 217-229. <u>https://doi.org/10.1007/BF00309314</u>
- Sang, L., & Bass, J.D. (2014). Single-crystal elasticity of diopside to 14 GPa by Brillouin scattering. *Physics of the Earth and Planetary Interiors*, 228, 75-79. https://doi.org/10.1016/j.pepi.2013.12.011
- Sinogeikin, S.V., & Bass, J.D. (2000). Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. *Physics of the Earth and Planetary Interiors*, 120(1), 43-62. <u>https://doi.org/10.1016/S0031-9201(00)00143-6</u>
- Sinogeikin, S.V., & Bass, J.D. (2002). Elasticity of pyrope and majorite–pyrope solid solutions to high temperatures. *Earth and Planetary Science Letters*, 203(1), 549-555. <u>https://doi.org/10.1016/S0012-821X(02)00851-8</u>
- Soga, N. (1967). Elastic constants of garnet under pressure and temperature. Journal of Geophysical Research, 72(16), 4227-4234. <u>https://doi.org/10.1029/JZ072i016p04227</u>
- Suzuki, I., & Anderson, O.L. (1983). Elasticity and thermal expansion of a natural garnet up to 1,000
 K. Journal of Physics of the Earth, 31(2), 125-138. <u>https://doi.org/10.4294/jpe1952.31.125</u>
- Tribaudino, M., Nestola, F., Bruno, M., Ballaran, T.B., & Liebske, C. (2008). Thermal expansion along the NaAlSi₂O₆-NaFe³⁺Si₂O₆ and NaAlSi₂O₆-CaFe²⁺Si₂O₆ solid solutions. *Physics and Chemistry of Minerals*, 35(5), 241-248. <u>https://doi.org/10.1007/s00269-008-0217-7</u>
- Wang, Z., & Ji, S. (2001). Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa. American Mineralogist, 86(10), 1209-1218. <u>https://doi.org/10.2138/am-2001-1009</u>
- Xu, J., Fan, D., Zhang, D., Guo, X., Zhou, W., & Dera, P.K. (2020). Phase Transition of Enstatite-Ferrosilite Solid Solutions at High Pressure and High Temperature: Constraints on Metastable Orthopyroxene in Cold Subduction. *Geophysical Research Letters*, 47(12), e2020GL087363.

https://doi.org/10.1029/2020GL087363

- Xu, J., Fan, D., Zhang, D., Ma, M., Zhou, Y., Tkachev, S.N., et al. (2022). Phase Transitions of Fe-, Aland Ca-Bearing Orthopyroxenes at High Pressure and High Temperature: Implications for Metastable Orthopyroxenes in Stagnant Slabs. *Journal of Geophysical Research: Solid Earth*, 127(1), e2021JB023133. <u>https://doi.org/10.1029/2021JB023133</u>
- Xu, J., Zhang, D., Fan, D., Zhang, J.S., Hu, Y., Guo, X., et al. (2018). Phase Transitions in Orthoenstatite and Subduction Zone Dynamics: Effects of Water and Transition Metal Ions. *Journal of Geophysical Research: Solid Earth*, 123(4), 2723-2737. https://doi.org/10.1002/2017JB015169
- Yang, H., & Ghose, S. (1994). Thermal expansion, Debye temperature and Grüneisen parameter of synthetic (Fe, Mg)SiO₃ orthopyroxenes. *Physics and Chemistry of Minerals*, 20(8), 575-586. https://doi.org/10.1007/BF00211853
- Zhang, J.S., & Bass, J.D. (2016a). Single Crystal Elasticity of Natural Fe-bearing Orthoenstatite Across a High-Pressure Phase Transition. *Geophysical Research Letters*, 43(16), 8473-8481. <u>https://doi.org/10.1002/2016GL069963</u>
- Zhang, J.S., & Bass, J.D. (2016b). Sound velocities of olivine at high pressures and temperatures and the composition of Earth's upper mantle. *Geophysical Research Letters*, *43*(18), 9611-9618. https://doi.org/10.1002/2016GL069949
- Zhang, L., Ahsbahs, H., & Kutoglu, A. (1998). Hydrostatic compression and crystal structure of pyrope to 33 GPa. *Physics and Chemistry of Minerals*, 25(4), 301-307. <u>https://doi.org/10.1007/s002690050118</u>
- Zhao, Y., Dreele, R.V., Zhang, J., & Weidner, D. (1998). Thermoelastic Equation of State of Monoclinic Pyroxene: CaMgSi₂O₆ Diopside. *The Review of High Pressure Science and Technology*, 7, 25-27. <u>https://doi.org/10.4131/jshpreview.7.25</u>
- Zhao, Y., Von Dreele, R.B., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y., et al. (1997). Thermoelastic equation of state of jadeite NaAlSi₂O₆: An energy-dispersive Reitveld Refinement Study of low symmetry and multiple phases diffraction. *Geophysical Research Letters*, 24(1), 5-8. <u>https://doi.org/10.1029/96GL03769</u>
- Zou, Y., Gréaux, S., Irifune, T., Whitaker, M.L., Shinmei, T., & Higo, Y. (2012). Thermal equation of state of Mg₃Al₂Si₃O₁₂ pyrope garnet up to 19 GPa and 1,700 K. *Physics and Chemistry of Minerals*, 39(7), 589-598. <u>https://doi.org/10.1007/s00269-012-0514-z</u>
- Zou, Y., Irifune, T., Gréaux, S., Whitaker, M.L., Shinmei, T., Ohfuji, H., et al. (2012). Elasticity and sound velocities of polycrystalline Mg₃Al₂(SiO4)₃ garnet up to 20 GPa and 1700 K. *Journal of Applied Physics*, *112*(1), 014910. <u>https://doi.org/10.1063/1.4736407</u>