Published March 24, 2022 | Version v1
Journal article Open

Is Class-Incremental Enough for Continual Learning?

Description

The ability of a model to learn continually can be empirically assessed in different continual learning scenarios. Each scenario defines the constraints and the opportunities of the learning environment. Here, we challenge the current trend in the continual learning literature to experiment mainly on class-incremental scenarios, where classes present in one experience are never revisited. We posit that an excessive focus on this setting may be limiting for future research on continual learning, since class-incremental scenarios artificially exacerbate catastrophic forgetting, at the expense of other important objectives like forward transfer and computational efficiency. In many real-world environments, in fact, repetition of previously encountered concepts occurs naturally and contributes to softening the disruption of previous knowledge. We advocate for a more in-depth study of alternative continual learning scenarios, in which repetition is integrated by design in the stream of incoming information. Starting from already existing proposals, we describe the advantages such class-incremental with repetition scenarios could offer for a more comprehensive assessment of continual learning models.

Files

2112.02925.pdf

Files (297.3 kB)

Name Size Download all
md5:54288719a4bfdeb1ee5900b511e827f9
297.3 kB Preview Download

Additional details

Funding

TEACHING – A computing toolkit for building efficient autonomous applications leveraging humanistic intelligence 871385
European Commission