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ABSTRACT
The design of algorithms for autonomous vehicles includes a wide
range of machine learning tasks including scene perception by the
visual input from cameras and other sensors, monitoring and pre-
diction of the driver and passengers’ state, and others. The aim of
the present work is to study the task of personalizing the driving
experience in an autonomous vehicle, taking into account the par-
ticularities and differences of each person in how he/she perceives
the vehicle’s velocity. For this purpose, we employ the Actor-Critic
Reinforcement Learning technique in order to automatically select
the best driving mode during driving. The input to the actor-critic
model comprises the driver’s stress and excitement, which are af-
fected by the route conditions, and the vehicle velocity and angular
velocity. The output at each step is the best mode for each driver,
which better balances stress, excitement, and route completion
time. The whole setup is simulated and tested within the Carla
open-source simulator for autonomous driving research.
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1 INTRODUCTION
The last few years we are witnessing the rapid development and
adoption of electric vehicles in our daily lives and in parallel to
this development, the quick rise of interest for autonomous driv-
ing. Companies like Tesla and Waymo have shown some really
impressive examples of autonomous driving in real road conditions.
Waymo has already created a fleet of vehicles that operate as taxis
in some US cities [14], WeRide did the same in Guangzhou, China
[4] and Tesla has announced that is launching a similar service
soon.

For increasing trust to autonomous vehicles and boosting their
public acceptance, researchers and companies are developing new
models, methods and solution, which are tested using different
forms of experimentation such as on-road, on a simulated test
bed, in a living lab, etc. Since the financial and organisational cost
for performing experiments on living labs and on real roads are
high, researchers usually rely on simulation software in order to
train, fine-tune and evaluate their models. The key factor in the full
adoption of autonomous vehicles are humans. Humans however
are a subjective factor since their desire, mood, age and of course
psychological and physical condition can affect the final experience
from the use of autonomous vehicles. It is thus important to monitor
human state, along with the vehicle and environment condition and
consequently adapt the autonomous vehicle behavior to human
preferences. The key enabler to this behaviour personalisation is
the proper detection of the driver state, which can be expressed as
stress, excitement, etc. In all cases, this has to be combined with
the proper interpretation of traffic rules in order to guarantee the
safe operation of the vehicle and the correct management of the
low level controllers of the vehicle that operate the acceleration
pedal, the breaks and the steering wheel.

In this work, we focus on the personalisation aspect of au-
tonomous driving, assuming that the autopilot of the vehicle takes
all the necessary decisions that relate to car navigation and traf-
fic rules. As a result, the proposed personalisation approach takes
control only of the vehicle acceleration/deceleration. In order to
implement the personalisation of the autonomous vehicle behavior,
we assume a modular pipeline in which an autopilot is responsible
for setting the parameters of the vehicle controller and more than
one autopilots are available, corresponding to different modes of
driving the vehicle (e.g. aggressively, conservatively, etc). In our
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experimental evaluation, we rely on the driving simulation envi-
ronment of Carla simulator 1, which offers a long list of vehicle
sensors and controllers, information about the vehicle route, and a
configurable autopilot that can simulate different driving profiles.
The driving mode personalisation employs an actor-critic reinforce-
ment learning model, which learns to choose the best driving mode
(action) for each driver during the execution of the route, based on
the road’s and driver’s condition (state). The extensive evaluation
performed in the Carla simulation environment demonstrates that
having a module that dynamically changes driving modes based
on the driver’s condition and the vehicle’s state and environment,
results in lower stress and higher excitement for different driver
profiles.

Section 2 that follows highlights the main research works on the
personalisation of autonomous driving, and briefly introduces our
choices for this task. Section 3 introduces the simulation environ-
ment employed in this study. Section 4 provides the implementation
details with emphasis on the deep learning architectures that have
been employed. and summarizes the results we achieved and Sec-
tion 6 concludes the paper.

2 RELATEDWORK
The initial thought behind the personalisation of autonomous driv-
ing is that a driver feels more comfortable in a vehicle that moves
in a similar way to the one he usually drives. However, researches
in simulated environments have shown that this only applies to
younger individuals, whereas people over 65 do not feel as com-
fortable when they experience the way they were driving [5, 12].

A different study that used a simulator [2] found that people
tend to choose a driving profile, which they believe matches their
driving style, but which is usually less aggressive than their actual
style.

The empirical results highlight the difficulty of finding the op-
timal driving profile for each driver, and the various subjective
factors that emanate from human nature make it difficult for an
autonomous vehicle to learn the driving style. They also raise the
need for further intervention so that the driving style of the au-
tonomous vehicle to always adapt to the driving conditions and
the state of the driver. This is in agreement to the definition of
personalisation provided by Adomavicius & Tuzhilin [1], who de-
fine it as an endless cyclical process. In the context of autonomous
driving, this process consists of i) understanding the driver (e.g. by
observing the driving behavior), ii) enabling the driver to customize
the vehicle’s functions and finally, iii) measuring the impact of the
current vehicle behavior to the driver, so that it can adapted as
needed.

Nava et al. [10] were the first to point out the need for continuous
on-line learning with the aim of personalizing ACC (adaptive cruise
control), and employed a Reinforcement Learning technique to
form a personalized model, which learns by interacting with the
environment.

The two machine learning alternatives that can be employed
for the automatic control of autonomous vehicles are the modular
pipeline and the end-to-end learning [7].

1https://carla.org/

The modular pipeline offers complete control and understanding
of why the vehicle exhibits a particular behavior, since each module
(e.g. low-level perception, scene parsing, path planning, behavior
controller) in the pipeline is trained and evaluated individually.
This specialization allows more targeted interventions on the tasks
that demonstrate unexpected behaviors, without interfering with
critical systems of the vehicle that can cause safety complications
(i.e. the vehicle control system). Reinforcement Learning (RL) is a
popular technique for training ML models for playing video games
[9], where the agent learns to solve the problem in an optimal way,
after a large number of repetitions. RL training requires a reliable
reward system, a lot of learning time and can not be applied in
real conditions, but only in simulations since it learns by making
mistakes, which can be fatal in real conditions. The main competitor
of RL in autonomous driving, Imitation Learning, trains the model
by observing the human driver and imitating its behavior [3]. The
major disadvantage of imitation learning is the difficulty of model
generalisation, since models trained on a highway, will not behave
well within the city limits or on a country road, and even different
weather or lighting conditions may affect its performance.

In the absence of a living lab, we did all the development and
evaluation in a simulated environment. So, we rely on reinforcement
learning to train a model that dynamically adapts the vehicle’s
driving mode according to the driver’s and vehicle’s conditions.
More specifically, we employ a Model-Free approach which is more
appropriate for the very complex and highly interactive driving
task [8] than the Model-Based one. We use a Policy Optimization
technique, the Actor-Critic one, which has been used by many
researchers in autonomous driving [6, 11, 13].

3 THE SIMULATION ENVIRONMENT
All the experiments have been performed within the Carla driving
simulation environment, which allows to quickly create different
scenarios, have access to all the vehicle data, and easily attach
specialized sensors and cameras to the vehicle and collect more
data. Carla offers a highly parametric behavior agent, the autopi-
lot, which can drive the vehicle within the simulated environment,
paying respect to all the road safety rules. The parametric autopi-
lot allows to simulate different driving behaviors (driving modes),
which correspond to how different drivers behave in various traffic
conditions. Carla offers different driving environments, from city
road networks with crossroads and traffic lights, to rural roads
and highways. Pedestrians, vehicles, traffic lights, speed limits, etc.,
can be added to the world to provide a more realistic setup for the
experiments, or removed completely for simplicity.

3.1 Vehicle state monitoring, scene perception
and the autopilot

Carla offers a wide range of sensors that can provide useful feedback
concerning the vehicle state. In addition, the information about a
route (i.e. the waypoints it contains) is always available through the
autopilot. The visualisation of the forthcoming route segment, is
used as an additional input to the personalisation module, as shown
in Figure 1. The Proportional Integral Drivative (PID) controller
that is used to control steering and velocity, can be configured to
have specific speed and steering limits. In order to simulate different
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driving behaviors, we configure more than one autopilots, each one
having different PID controller limits, thus resulting in a less or
more aggressive driving behavior.

Figure 1: A visualization of the forthcoming vehicle route
segment in Carla (left) and two sample routes (right), the
complex route 4 and the simple route 8.

3.2 Driver state monitoring
Twomain factors that affect the driver’s experience from autonomous
driving are stress and excitement. Stress increases when drivers are
exposed to risky and stressing situations and in general decreases
when the vehicle is moving at lower speeds. Excitement has been
found to play a very important role in the driving experience, and
is on the opposite edge of stress, since if the vehicle slows down to
reduce stress, and keeps moving at very slow speeds for a long time,
this can reduce the driver’s excitement, making him/her bored and
in some cases brink drowsiness and sleepiness [15]. In live-labs or
real-world experiments, it would be possible to use galvanic sensors
for measuring sweating, heart rate sensors, and questionnaires, in
order to monitor the driver’s state. However, the simulation envi-
ronment does not provide any method for measuring the driver’s
stress and excitement, so we decided to simulate driver’s stress and
excitement based on measurements of speed, acceleration, angular
velocity, speed limits, number of violations, etc. We developed three
types of drivers (’easily stressed’, ’normal’, and ’resilient’) that have
different limits of sensitivity to the velocity and angular velocity
of the vehicle. Their stress and excitement level in relation to the
vehicle’s velocity and angular velocity are simulated using sigmoid
and skewed normal curves as depicted in Figure 2.

Figure 2: The simulated curves of driver stress and excite-
ment of the three sample drivers A, B, C.
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4 THE PROPOSED APPROACH
4.1 The Actor Critic algorithm
The Actor Critic algorithm [16] used in this study consists of two
neural networks, the actor and the critic. The actor network is
based on the policy-method and is responsible for the actions of
the agent in the dynamic environment, while the critic network,
which is value-based, is responsible for judging how good were
the actions that came from the decision of the actor network. The
actor network maps each state to a corresponding action by giving
as output a probability distribution corresponding to each action.
The critic network maps each state to its corresponding Q-value,
which represents the quality (value) of the state. The weights of the
two neural networks are updated in order to maximize an objective
function Jθ whose gradient is defined as follows:

∇θ Jθ =
1
m

m∑
i=1

T∑
t=0

∇θ loдπθ (αt |st )Q(st ,αt ) (1)

where J (θ ) is the objective function that depends on θ , m is the
number of episodes executed, π is a policy parametrized by θ , which
means that when θ varies the policy will be affected. The actor critic
technique updates weights at every step and not at the end of the
episode, so αt is the action taken at step t and st is the state at the
same step. Q(st ,αt ) is the quality of the action αt and πθ (αt |st )
is the probability that defines the action at step t . As shown in
Equation 1 the updates take into account the probability of the
action as defined by the actor, and the quality and value of the state
as defined by the critic network.

4.2 The implementation of the Actor Critic
neural network

The sensors used as input to the Actor Critic model at each step
are the velocity and angular velocity of the vehicle, the vertical
acceleration, the speed limit, the driver’s stress and excitement
scores as given by the equations depicted in Figure 2. In addition, we
feed the black and white image depicting the forthcoming segment
of the vehicle route (as shown in Figure 1).

The extended network architecture is depicted in Figure 3. The
left output layer, which corresponds to the Actor takes the input
and generates two probabilities that in our case correspond to
choosing a less or more aggressive driving mode respectively. The
right output layer of the Actor Critic model corresponds to the
Critic and outputs a single value that sums up all the expected
future rewards from the action. Using the actor output probabilities
(and the current driving mode) we choose a driving mode each
time. During training, the action is chosen at random based on the
two probabilities (which sum up to 1) whereas during inference,
the action with the highest probability is chosen. The quality of an
action is evaluated using a reward function that jointly checks the
driver’s excitement and stress as a result of this action. Since the
objective is to keep driver’s stress low and driver’s excitement high,
we reward a step with 1 if the stress is low and excitement is high.
We also penalize the agent when we have a crash or the vehicle fails
to terminate the route on time. The objective is to maximize the
reward at the end of each episode. The actions and rewards at each
step are collected in a buffer and are used to update the network

weights in a batch, when the episode is completed. Tensorflow 2.0
and Keras 2.0 have been employed for creating the network. We
employed the log of probability of the action multiplied by the
difference of the total reward minus the action reward, as a loss
function for the actor model, and the Huber loss as the loss function
for the critic model. In back-propagation we employed the sum of
the two loss functions and Adam optimizer with learning rate 1e-3.

Figure 3: The architecture of the Actor Critic model, along
with the additional layers (on the left branch) for handling
the image that depicts the forthcoming section of the route.

5 EXPERIMENTAL SETUP AND RESULTS
In order to evaluate our personalisation algorithm, we employed
Town 3 in Carla simulator, which contains a lot of turns, wide and
narrower streets in an urban setup, as well as a circular highway
around the town. This allows the model to be tested in varying
route conditions where straight lines interchange with 45 to 180
degree turns, as shown in the two sample routes of Figure 1. We
employed the three driver profiles (A, B, C), who get stressed in a
different way (easily stressed, normally stressed, low stress) and
excited (low excitement, medium excitement, high excitement) from
high velocities and angular velocities. We also define three autopilot
setups (AP1, AP2, AP3) that correspond to different limits in the
PID controller and consequently to three different driving modes
(conservative, normal, aggressive). For the training of the RL model
we assume that in each episode the vehicle is performing a random
route within the town. During the route we change the driving
mode based on the actor-critic model probabilities. This results
to models that in general choose the conservative mode during
turns and the aggressive mode in the straights and highways, of
course with a different mix, depending on the driver profile. The
final RL model has been trained for several hours on an AMD
Ryzen 9 5900X (12 cores) CPU with 32 RAM, using a RTX 3070 OC
8GB graphics card. All experiments have been performed in real-
time in Carla, so the training time corresponds to real driving time
and the training was interrupted when there was no improvement
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Table 1: Results on different routes, using a single driver mode for each driver (manual) or by changing profiles during the
route (RL).

route # mode stress excitement route completion
time

stress
out of limits

A B C A B C A B C A B C
1 manual 0.10 0.10 0.08 0.41 0.49 0.50 149.53 86.19 86.18 1341 794 609
1 RL 0.17 0.06 0.05 0.58 0.33 0.15 104.77 102.94 102.26 322 59 13
2 manual 0.09 0.09 0.07 0.41 0.48 0.48 189.13 108.94 108.91 390 256 205
2 RL 0.16 0.06 0.06 0.61 0.3 0.16 131.56 129.59 128.88 309 128 87
3 manual 0.08 0.08 0.07 0.41 0.5 0.46 169.55 96.95 97.03 275 193 139
3 RL 0.14 0.05 0.05 0.58 0.25 0.12 119.37 117.97 117.39 210 71 43
4 manual 0.12 0.13 0.09 0.39 0.53 0.52 173.83 100.63 100.7 814 525 354
4 RL 0.19 0.08 0.07 0.53 0.26 0.1 127.27 125.77 125.13 471 203 141
5 manual 0.12 0.14 0.1 0.39 0.52 0.5 127.33 74.83 74.6 569 423 289
5 RL 0.19 0.09 0.07 0.51 0.24 0.08 95.08 93.82 93.63 344 172 98
6 manual 0.09 0.09 0.07 0.41 0.46 0.47 101.26 59.23 59.18 252 142 123
6 RL 0.15 0.06 0.05 0.61 0.27 0.11 72.52 71.56 70.98 122 77 36
7 manual 0.11 0.11 0.08 0.4 0.51 0.47 76.77 45.6 45.43 363 183 97
7 RL 0.17 0.06 0.05 0.54 0.27 0.06 56.55 55.56 55.65 207 40 18
8 manual 0.1 0.1 0.08 0.41 0.48 0.47 110.47 64.55 64.7 344 226 191
8 RL 0.17 0.07 0.06 0.57 0.27 0.09 80.29 78.55 78.46 239 94 58
9 manual 0.07 0.07 0.06 0.43 0.47 0.47 162.0 93.08 93.17 180 104 92
9 RL 0.14 0.05 0.05 0.64 0.31 0.17 110.31 108.34 107.55 131 61 22

Average manual 0.1 0.1 0.08 0.41 0.49 0.48 139.99 81.11 81.1 503 316 233
Average RL 0.16 0.06 0.06 0.57 0.28 0.12 99.75 98.23 97.77 262 101 57

to the episode reward for 50 episodes or when 700 episodes are
reached. Finally, we kept the model with the highest reward so far.
In order to evaluate the approach, we choose 9 random routes of
varying complexity2 and use each driver’s RL model for choosing
the most appropriate driving mode at each step. We repeat the same
route three times, one for each driver profile (i.e. A, B and C) in
order to evaluate the ability of the RL to choose the proper driving
mode in each condition. The correct choice is expected to balance
between stress and excitement and in the same time to have an
impact on the completion time of the route. A baseline method for
comparison is the manual assignment of a certain driving mode
to each driver during the whole route. More specifically we assign
the conservative driving mode (i.e. AP1) to the most easily stressed
driver (i.e. driver A), the normal profile (AP2) to driver B and the
aggressive profile (AP3) to driver C who is not easily stressed and
prefers high velocities. The performance of the RL personalisation
technique, along with the baseline manual choice of driving mode
is depicted in Table 1, for each of the nine routes. We measure the
average stress and excitement of all steps ( 4500 steps per route) and
the total time needed to complete the route for every driver profile.
We also provide the average stress, excitement and total time for
all the nine routes. The aim of the RL model (and the respective
reward) was to keep driver’s stress below 0.2 and excitement above
0.4, so we also depict the number of steps in which the driver’s
stress was higher than this threshold.

The results show that the average execution time for all the
routes has been reduced by 29% for the easily stressed driver (driver

2route 4 in the middle of Figure 1 corresponds to a complex route with many sharp
turns, whereas route 8 on the right is a simple route with few turns

A) by a small increase (i.e. 0.06) in the average stress. Also, the
stress of the other two drivers has been slightly decreased, and
similarly did the average route completion time. This better control
of stress values is obvious when we compare the RL method with
the manual one in the average number of steps, in which stress
succeeded the desired threshold of 0.2. For all the three drivers
this number decreased: by 47% for driver A and by 70% and 76%
for drivers B and C respectively. This is more evident in routes of
higher complexity (i.e. with more and more sharp turns) such as
route #4, which is depicted in Figure 1.

In the box plots depicted in Figure 4, which compare themodule’s
behavior for drivers A (left two plots) and C (right two plots), it
is obvious that the excitement values for driver 0 are increasing
both for high and low complexity routes (increase more in the latter
case) with a small increasing effect on stress, which is still bellow
the desired threshold. In all cases the comparison is against the
manual setup, which assigns a single profile for the whole route.

6 CONCLUSIONS
Our research on the task of personalizing the driving mode of
an autonomous vehicle based on the driver’s state and the road
conditions showed that reinforcement learning is a promising so-
lution, which can improve the driver’s comfort by reducing stress
and increasing excitement. The next steps of our work comprise
adding more information from the Carla environment (front and
rear camera), and evaluating more complex scenarios that engage
pedestrians and other vehicles. This will increase the complexity
of the task and will require more interventions to the autopilot on
steering control.
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Figure 4: The stress and excitement box plots using the RL and the manual profile assignment. The two plots on the left are
for driver A and the two plots on the right for driver C.
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