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 Path planning or finding a collision-free path for mobile robots between 

starting position and its destination is a critical problem in robotics. This 

study is concerned with the multi objective optimization path planning 

problem of autonomous mobile robots with moving targets in dynamic 

environment, with three objectives considered: path security, length and 

smoothness. Three modules are presented in the study. The first module is to 

combine particle swarm optimization algorithm (PSO) with bat algorithm 

(BA). The purpose of PSO is to optimize two important parameters of BA 

algorithm to minimize distance and smooth the path. The second module is 

to convert the generated infeasible points into feasible ones using a new 

local search algorithm (LS). The third module obstacle detection and 

avoidance (ODA) algorithm is proposed to complete the path, which is 

triggered when the mobile robot detects obstacles in its field of vision. ODA 

algorithm based on simulating human walking in a dark room. Several 

simulations with varying scenarios are run to test the validity of the proposed 

solution. The results show that the mobile robots are able to travel clearly 

and completely safe with short path, and smoothly proving the effectiveness 

of this method. 
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1. INTRODUCTION 

Previously, using robot implemented only in the manufacturing industry. However, nowadays, 

mobile robots are commonly used in diverse fields such as entertainment, medicine, mining, rescue, 

education, military, aerospace and agriculture. Smart equipment enables mobile robots to model the 

environment, determine its location, control movement and discover obstacles while carrying out its tasks. 

These functions can be performed through navigation technology, of which the most important function is to 

plan a safe path by detecting and avoiding obstacles when moving from one point to another. Therefore, in 

planning the robot path for the customer in an environment, whether simple or complex, the most important 

step is the correct choice of navigation technology [1], [2]. Path planning can be divided into two types based 

on the robot's knowledge of its environment: global (or offline) and local (or online). Mobile robots have 

complete knowledge of their environment when it comes to global path planning. Before the robot starts 

moving, the algorithm generates a complete path for it to follow. Local path planning is performed by mobile 

robots that have no prior knowledge of their environment and rely on a local sensor to collect data and then 

construct a new path in response [3]. Depending on the target type: static or dynamic, the above classification 

can be subdivided. In static targets, the mobile robot looks for a static point in its workspace, but for dynamic 

targets, it searches for a moving point while avoiding obstacles [4]. The path planning algorithms for those 

https://creativecommons.org/licenses/by-sa/4.0/
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scenarios are different. Path planning problems in a variety of fields have been solved using various methods 

such as cell decomposition and roadmap approaches., the main disadvantages of this method include 

inefficiencies due to high processing fees and unreliability due to significant risks of being caught in local 

minima. These limitations can be overcome by using different heuristic techniques, such as neuronal 

pathways, genetics, or nature-inspired algorithms [5]. Several techniques have been used to solve the path 

planning problem, for a variety of reasons, including safety or single-objective optimisation for the shortest 

path, these methods such as bacterial foraging optimization (BFO) [6], bat algorithm (BA) [7], cuckoo search 

(CS) [8], whale optimization algorithm (WOA), particle swarm optimization (PSO) [9], and artificial immune 

systems (AIS) [10]. Additionally, fuzzy logic and neural networks have been used. Another objective of these 

solutions is multi-objective optimization, which tries to satisfy requirements for the shortest and smoothest 

path in static or dynamic environments. 

In this study, the previous research that's tried to solve the problem of multiobjective optimization 

were reviewed. For example, Li and Chou [11] employed self-adaptive learning PSOs to attain three 

objectives: path length, collision risk degree, and smoothness. In order to improve the search capability of a 

PSO, this mechanism selects the most suitable search strategies dynamically at various stages of the 

optimization process. An alternative algorithm for multi-objective mobile robot path planning uses an 

improved genetic algorithm [12] to find three types of objects for planned paths: length, smoothness, and 

security. By considering a Mars Rover scenario, Guimari in [13] used A* search algorithm to minimise the 

path difficulty, danger, elevation and length from a starting point to a destination. A novel multi-objective 

optimization method that uses the WOA is also presented for planning mobile robot paths [14]. The two 

distance and smooth path criteria of robot path planning are transformed into a minimisation process. In 

WOA, the solution fitness is determined by the target and obstacle positions in the environment. A multi-

objective approach based on the shuffled frog-leaping algorithm (MOSFLA) was proposed in [15], that is, 

the natural behaviour of frogs. Three distinct path objectives are considered: safety, length and smoothness. 

The results are compared with the well-known and most commonly used Non-dominated Sorting Genetic 

Algorithm II. In [16], they were also explored the natural flashing behaviour of fireflies and proposed the 

multi-objective firefly algorithm (MO-FA). This method addresses three distinct goals: path safety, length 

and smoothness (related to energy consumption). Furthermore, eight realistic scenarios are used to calculate 

the path to test the proposed MO-FA. An elitist multi-objective approach based on coefficients of variation 

was proposed in [17]. The Intelligent water drops (IWD) algorithm was used in the calculation of the Pareto 

front. Known as CV-based MO-IWD, this method aims to optimize two goals: path length and safety .To 

optimise the cost performance index with the multi-objective fuzzy optimisation strategy and Voronoi 

diagram method, A new approach was developed in the [18] to improve the performance index, which can 

coordinate the weight conflict of the sub-objective functions. A global path planning algorithm for wheeled 

robots that utilizes multiobjective memetic algorithms (MOMA) that optimizes several objectives 

simultaneously, including path length, smoothness, and safety was discussed in [19]. Two MOMA are 

utilized based on conventional multi-objective genetic algorithms combined with elitist, non-dominant 

sorting and decomposition strategies for optimizing the path length and reducing smoothness simultaneously. 

To improve the algorithms search capabilities and to ensure the safety of the obtained candidate paths, new 

path encoding schemes, path refinements, and specific evolutionary operators are designed and introduced in 

the MOMA. A new method based on Region of Sight is also presented in [20] with the primary goal to easily 

and rapidly address path planning,the method attempts to meet various robot movement requirements, such 

as shortest path length, safety and smoothness, while using the least amount of time.An optimization 

algorithm known as using grey wolf optimization algorithm (GWO) [21] is introduced to solve the problems 

with multiple objectives. GWO integrates a fixed-sized external archive to save and retrieve the pareto 

optimal solutions, then define the social hierarchy and simulate the hunting behavior of grey wolves in a 

multi-objective search space. 

Hybridisation is also used to improve the performance of path planning meta-heuristic algorithms. 

With hybridisation, the benefits of two or more meta-heuristic algorithms are combined to create a better 

technique. A hybrid multi-objective based on the bare-bones PSO with differential evolution was illustrated 

in [22]. To achieve different types of optimisation, Geetha et al. in [23] proposed a path planning algorithm 

based on Ant Colony Optimisation and Genetic algorithm. The objectives for planned paths include length, 

smoothness and security. Ajeil et al. [24] optimised paths by conducting a hybridised PSO-modified 

frequency bat (PSO-MFB) algorithm. A path was optimized using the hybridisation of Grey Wolf Optimiser–

PSO algorithm in [25]. Oleiwi et al. in [26] proposed new hybrid approach based on enhanced genetic 

algorithm based on the modified search A* algorithm and fuzzy logic. 

However, these studies are mainly focus to solve single /multi objective but they did not take into 

account the change of location of the target. In reality, the target location commonly changes in time. For 

example, unmanned aerial vehicles flow target. 
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This paper presents a novel path planning algorithm to solve multi-objective optimisation path 

planning problems with moving targets in unknown dynamic environments. The new path planning algorithm 

achieves safety, shortness, and smoothness. It consists of three modules as follows; firstly, a combination of 

BA and PSO algorithms is used to select points that are short and smooth enough to satisfy the proposed 

multi-objective measures. The PSO is used to optimise the BA parameters, which generates the path points. 

Secondly, to make the infeasible solutions feasible, new LS is used. Thirdly, to achieve the objective, the 

novel algorithm is applied to detect and avoid the obstacles. 

To the best of our knowledge, this is the first use of the hybrid BA and PSO algorithm in multi 

objective robot path planning with moving target. The remaining of the paper is organized as follows; the 

problem statement is presented in section 2. Section 3 shows the detailes of swarm intelligence and the 

proposed approaches are presented in section 4. In section 5, the work of obstacle detection and obstacles 

avoiding is presented. The simulation results are discussed in section 6 and the main conclusions are presented 

in section 7. 
 

 

2. PROBLEM STATEMENT AND ASSIMPTIONS 

Consider a workspace in which a mobile robot is in a start position , and must reach a goal position. 

This robot referred to as the target for another robot referred to as the second robot. The second robot in a 

different start position must reach the target robot. Mobile robots' workspaces are assumed to contain a 

variety of static and dynamic obstacles. The purpose of path planning is to determine the optimal or near-

optimal paths (which are the safest, shortest, and smoothest) for the second mobile robot to follow in order to 

reach the target robot. Several assumptions in this study require clarification to avoid colliding with 

environmental obstacles. 

− The environment represents as room that contains varying shapes of dynamic and static obstacles  with 

different shapes and sizes. 

− The two mobile robots are considered as points given their physical bodies, as shown in Figure 1. 

− The motion of mobile robots is not affected by kinematic constraints.  

− Both robot are free to move in any direction at any time. 

− The first robot must be avoiding obstacle but the second robot not only avoid obstacle it must flow the 

best path according to the criteria (safety, smoothness, shortest). 
 

 

  
 

Figure 1. Physical mobile robots 
 

 

2.1.  Performance objectives of mobile robots  

The primary goal of path planning is to generate a set of reference points that will carry a robot from 

a starting point to a destination point. In addition, this path is collision free while trying to meet predefined 

optimization criteria. Some of these criteria are; maximum safety, lowest energy consumption, shortest path, 

shortest time, and smoothest path. The optimization criteria can be details as following: 

 

2.1.1. Shortest path 

Basically, this is the shortest distance between the starting point and the destination, calculated by 

summarizing the midpoints (p (1), p (2),……,p(N)) produced by a path planning algorithm between a Start 

Point that is given by p(1) and the Goal Point that is denoted by p(N). Figure 2 illustrates this measurement in 

detail. The (1): 

 

𝑓1(𝑥, 𝑦) = 𝑑((𝑝𝑖(𝑡), 𝑝(𝑁)) (1) 

 

d (.,.) corresponds to Euclidean distance between two points. Taking the sum of all distances from the Start 

Point p (1) to the Goal Point p(N), the shortest path length (SPL) for an exercise is calculated. 

 

𝑆𝑃𝐿 = ∑ 𝑑(𝑝𝑖(𝑡)𝑁−1
𝑖=1 , 𝑝𝑖(𝑡 + 1)) (2) 
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The index i represent the best solution found by the path planning algorithm. 

 

𝑑𝑡 = √(𝑥𝑝𝑖+1(𝑡+1) − 𝑥𝑝𝑖(𝑡))2 + (𝑦𝑝𝑖+1(𝑡+1) − 𝑦𝑝𝑖+1(𝑡))22
 

 

2.1.2. Path smoothness  

Its consider one of the important optimization criteria. The smoothness of the path is normally 

measured by reducing as much as possible the angle difference between the current goal and the current 

position produced. Two lines intersect at this angle, which is then used to determine the robot's location at the 

conclusion of the process.  

 

𝑓2(𝑥, 𝑦) = ∑ |𝜃(𝑝𝑖(𝑡),𝑝𝑖(𝑡+1))−𝜃(𝑝𝑖(𝑡),𝑝(𝑁))|𝑁−1
𝑡=1   (3) 

 

where, 

 

𝜃
(𝑝𝑖(𝑡),𝑝𝑖(𝑡+1)=tan−1

𝑦𝑝𝑖(t+1)−𝑦𝑝𝑖(𝑡)

𝑥𝑝𝑖(t+1)−𝑥𝑝𝑖(𝑡)

                            𝜃
(𝑝𝑖(𝑡),𝑝𝑁)=tan−1

𝑦𝑝(𝑁)−𝑦𝑝𝑖(𝑡)

𝑥𝑝(𝑁)−𝑥𝑝𝑖(𝑡)

. 

 

A detailed description of this measurement details in Figure 2 and Figure 3.  

 

 

  
  

Figure 2. Measurement description Figure 3 Candidate solutions angles at iteration t 

 

 

Figure 3 shows that: 

θ1 represents the angles between line segments (𝑝(0), 𝑝(𝑁)) and 𝑝(0), 𝑝(1));  
Θ2 represents the angles between line segments (𝑝(0), 𝑝(𝑁)) and 𝑝(0), 𝑝(2)); 

θ3 represents the angles between line segments (𝑝(0), 𝑝(𝑁)) and 𝑝(0), 𝑝(3)). 

Clearly, among the competing points (𝑝1, 𝑝2, 𝑝3), 𝑝2 has the minimum angle θ2. Overall, multi-objective 

optimization is a balance between distance and angle of path objectives discussed above. 

However, finding the candidate with both advantages is difficult, and thus the two objectives are 

combined using the weight to calculate the fitness value, as 

 

𝑓 = (𝑥, 𝑦) = 𝑤1𝑓1(𝑥, 𝑦) + 𝑤2𝑓2(𝑥, 𝑦) (4) 

 

The values of 𝑤1 and 𝑤2 represent the relative importance of the two objectives, respectively. The following 

requirements must be met by their respective values: 

 

𝑤1 +  𝑤2  =  1 (5) 

 

The overall fitness function is defined as shown in (6): 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑓(𝑥,𝑦)+𝑒
  (6) 

 

The e factor prevents division by zero (e.g., e = 0.001). In each iteration, an optimal solution among 

competing options can be selected by determining the balance of the two performance objectives stated in (1) 

and (3). Figure 4 shows that the best point among four competing points is p2 for the t and p3 for the (t + 1) 

iterations, on the other hand, in the second iteration (t + 2) the distances are shorter for p1 and p4, but the 
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angles are larger, therefore p2 is chosen because it strikes a balance between the two criteria. This procedure 

is repeated until the GP is located. 

 

 

 
 

Figure 4. Multi-objective path planning using mid-point selection 

 

 

In our proposed system, the distance and angle are normalised below to improve the method performance, 

new_distance = distance/ST, 

new_angle = angle/90, Where ST is the distance from the starting point to the destination. The distance varies 

in the range [0, ST], and is thus normalised by ST. The angle varies in the range [0, +90], and is thus 

normalised by 90º. Near the target, the normalised distance is nearly 0 while the normalised angle is in the 

range [0, 1]. In this case, the effect of the angle is greater than that of the distance, preventing the robot from 

arriving at the target and merely vibrates around it. Therefore, distance normalisation is slightly modified to 

avoid this phenomenon. In other words, the normalised distance is in the range [0.3, 1.0]. Subsequently, 

although the robot is near the target, the normalised distance is greater than 0 and the above phenomenon can 

be avoided. 

 

2.1.3. Movement of obstacles  

In dynamic environment there are moving obstacle. During each time step, the position of the 

obstacle changes. According to this study, dynamic obstacles move linearly, that is, along a straight line, with 

a velocity. 𝑣𝑜𝑏𝑠 and direction (𝜑𝑜𝑏𝑠) defined by (7) and (8). 

 

𝑛𝑒𝑤𝑥𝑜𝑏𝑠 = 𝑜𝑙𝑑 𝑥𝑜𝑏𝑠  +  𝑣𝑜𝑏𝑠 × 𝑐𝑜𝑠 𝜑𝑜𝑏𝑠   (7) 

 

𝑛𝑒𝑤𝑦𝑜𝑏𝑠 = 𝑜𝑙𝑑 𝑦𝑜𝑏𝑠  +  𝑣𝑜𝑏𝑠 × 𝑠𝑖𝑛 𝜑𝑜𝑏𝑠 (8) 

 

where 𝜑𝑜𝑏𝑠 is the slope of the linear motion. 

 

 

3. SWARM INTELLIGENCE MODELS 

Swarm intelligence models are referred to as mathematical representations of natural swarm 

systems. Swarm intelligence models have been proposed in literature and been successfully applied in 

various real-world scenarios. In the present study, two such algorithms are used to solve the path-planning 

problem which are PSO and BA algorithms. 

 

3.1.  PSO algorithm 

Inspired by swarm intelligence, Eberhart and Kennedy [27] developed PSO as an optimisation 

algorithm in 1995 to mimic the behaviour of social animals. A flock of birds that flies to find food does not 

need leaders, but rather follows the member closest to the food. Therefore, the flock of birds receives the 

solution they require through effective communication with members of the population. PSO algorithms also 

use particles to represent candidate solutions, each with a position 𝑥𝑖 and velocity 𝑣𝑖 corresponding to the 

candidate. Position refers to the solution offered by a particle, and velocity refers to how rapidly it moves 

relative to its current position. Here, both values (position and velocity), are randomized and the PSO 

constructs the solution in two phases [28]. The velocity of each particle is updated by (9). 

 

𝑣𝑖(𝑡 +  1) =  𝑣𝑖(𝑡) + 𝑐1𝑟1 (𝑐𝑝𝑏𝑒𝑠𝑡𝑖  −  𝑥𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖) (9) 
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where 𝑣𝑖(t) represents the particle velocity, 𝑥𝑖(𝑡) represents the particle position, pbest represents the best 

position of the individual, gbest represents the best position in the group, c1 and c2 represent the constant and 

r represents the random number [0, 1]. 

The particle position is updated by (10). 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(t) + 𝑣𝑖(𝑡 + 1) (10) 

 

3.2.  Bat algorithm (BA)  

Yang and Gandomi developed a bio-inspired algorithm in 2010 called BA [29].The micro bat uses 

echolocation or bio sonar to locate prey. Echolocation is a major aspect of bat behaviour: bats use sound 

pulses to detect obstacles as they fly. By using the difference in time between their ears, they detect 

obstacles. Loudness of the response, and delay time, a bat can determine the speed, size, and shape of prey 

and obstacles. A bat can also change its sonar in this way by sending high-frequency sound pulses. This 

allows the bat to gather detailed information about its surroundings in a shorter period of time [30]. 

 

3.2.1. Artificial bat movement 

Each bat is associated with a velocity 𝑣(𝑡) and a location 𝑥𝑖(𝑡) at iteration t, in a D-dimensional 

search or solution space. Among all the bats, there exists a current best solution. Three rules are used to 

update the positions and velocities. The bat's position is updated in the following manner: 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ∗ 𝛽𝑖   (11) 

 

𝑣𝑖(𝑡 +  1) =  𝑣𝑖(𝑡) + (𝑥𝑖(𝑡 ) − 𝑥∗)𝑓𝑖 (12) 

 

𝑥𝑖(𝑡 +  1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (13) 

 

where β is a uniformly distributed random vector ∈ [0, 1] and 𝑥 ∗ represents the current global best location 

(solution), which is determined by comparing all solutions among all the number of bats. In each bat, after a 

solution for LS stage is chosen, a new solution is generated using the random walk principle, 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 +σϵA(t) (14) 

 

Here ϵ  is a random number ∈ [−1, 1] and represents the intensity and direction of the random walk. (t), 

describes the average level of loudness for all bats at step t in an iteration. It is possible to control the step 

size more effectively by providing a scaling parameter σ. 

 

3.2.2. The loudness and emission of pulses  

In order to provide an effective mechanism to control the exploration and exploitation and switch to 

exploitation stage, when necessary, we have to vary the loudness 𝐴𝑖 and pulse rate 𝑟𝑖.After each iteration, the 

level of loudness and pulse rate needs an update. When a bat has located its prey loudness usually decreases, 

whereas the rate of pulses is increased in accordance with these (15) and (16). 

 

𝐴𝑖(𝑡 + 1) = 𝛼𝐴𝑖(𝑡) (15) 

 

𝑟𝑖(𝑡 + 1) = 𝑟𝑖(0)[1 − exp(−𝛾𝑡)] (16) 

 

where 0 < 𝛼 < 1 and 𝛾 > 0. 

 

 

4. PROPOSED METHOD  

This section describes the the path-planning algorithm as an optimization technique that can help the 

robot to find its path from the initial position to goal position in static and dynamic environments with 

moving target. This section discusses the algorithm for planning the path of a mobile robot. It relies on hybrid 

swarm optimization which consist of PSO and BA algorithms combined with local search, and obstacles 

detection and avoidance techniques. 

 

4.1.  Hybrid PSO-BA algorithm proposed  

A hybridised optimisation algorithm is formed by combining the best characteristics of two or more 

optimisation algorithms to improve the overall performance. Given the limited exploration capability of BA, 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 1184-1196 

1190 

convergence of the obtained solutions to the global optimum point is quite impossibl [30]. BA contains the 

bat-specific factors A and r that have an effect on all dimensions of solutions. In this study, a hybridisation of 

PSO and BA is proposed to optimise the two parameters of the latter and achieve a balance between 

exploration and exploitation. The proper control of these parameters is based on two variables: alpha (α) and 

gamma ( γ ), and thus its optimal value enhances the variation of loudness 𝐴𝑖 and pulse rate 𝑟𝑖. Thus, 

Exploration and exploitation can be balanced with BA. The PSO algorithm adapts the appropriate range 

(α,  γ )., Algorithm 1 illustrates the pseudo code for Hybrid PSO–BA while Figure 5 illustrates the overall 

procedure. The particle size of PSO repressed in two-dimensional vector denoted as x (α, γ). 

 

Algorithm 1: A pseudo-code for the hybrid PSO–BA algorithm. 
1- Initialise PSO and BA parameters: 

       PSO_ parameters: population size of particles NP, r1, r2, c1, c2  

       BA _parameters: population size of bats NB, frequency (𝑓𝑖), pulse rate(𝑟𝑖) and loudness (𝐴𝑖) 
2- Generate random solutions of PSO s1= [α1, γ1], s1 = [α2, γ2 ],…., sn = [αn, γn ] 

3- For i =1 to NP 

4- Use BA algorithm from Equations (11)-(16) 

5- Pick the bat with the best fitness according to Equation (6) 

        𝑥𝑘,𝑗 𝑤ℎ𝑒𝑟𝑒  𝑗 = 1: 𝑁𝐵 

6- Store index (k) of the best bat  

7- Gbest= 𝑥𝑘,= [ αk, γk]. 

8- If the stopping criteria is not satisfied, then 

9- Update position and velocity using Equations (9)-(10) and go to step 3 

10-Otherwise Calculate the result output 

11- End if 

 

 

 
 

Figure 5. Algorithm proposed for hybrid PSO–BA optimisation 

 

 

4.2.  The proposed LS technique 

In every iteration, new positions for the robot are obtained using PSO–BA. However, the position 

can be inside obstacle (case 1) or the path from the previous to the current position can intersect the obstacle 

(case 2). Figure 6 shows this scenario, where the local search (LS) algorithm is used to convert the infeasible 

generated solution in to feasible solution. If the algorithm produces the next point in one of two ways, the 

solution is considered infeasible: 

− In the first case, the points are inside an obstacle 

− A segment of a line passes through an obstacle. 

 

4.2.1. Candidate feasibility checking 

Two cases consider the candidate solution is infeasible. The first case is when the candidate is inside 

obstacle and the second is when the line segment between the current and candidate positions intersects the 

obstacle. However, the two cases have a common feature: grid points are shown near the line segment 

between current and the candidate positions. Figure 6 shows the two situations of infeasible solution, where p 

is the current position, and p1 and p2 are the candidate positions, the neighbouring area is shown by the red 

outlines, and can thus be considered as one situation that can be explained by: 

 

𝑊𝑝𝑥 ≤ 𝑂𝑥 ≤ 𝑊𝑝𝑖𝑥 
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𝑊𝑝𝑦 ≤ 𝑂𝑦 ≤ 𝑊𝑝𝑖𝑦 

 

𝑑𝑦 ≤ 𝑠 

 

Thus, the above condition is used for checking the candidate feasibility. Where 𝑂𝑥 and 𝑂𝑦 represent the grid 

point of the obstacle, 𝑊𝑝𝑥 and 𝑊𝑝𝑦 are the x, y-coordinates of the Wp, 𝑊𝑝𝑖𝑥 𝑎𝑛𝑑 𝑊𝑝𝑖𝑦 is for 𝑊𝑝𝑖𝑥,s is 

the scale of grid, dy computed in (17) 

 

𝑑𝑦 = |𝑂𝑦 − (𝑎 ∙ 𝑂𝑥 + 𝑏)| (17) 

 

where a and b are the slope and offset of the line from Wp and Wpi. In other words, the line that passes both 

Wp and Wpi can be defined as (18). 

 

𝑦 = 𝑎 ∙ 𝑥 + 𝑏 (18) 

 

when O is on the line, then 

 

𝑂𝑦 = 𝑎 ∙ 𝑂𝑥 + 𝑏 (19) 

 

However, O may not be on the line but rather on the neighbouring areas. Thus, 

 

𝑂𝑦 ≈ 𝑎 ∙ 𝑂𝑥 + 𝑏 

 

The size of the neighbour is the grid scale s. 

 

𝑑𝑦 = |𝑂𝑦 − (𝑎 ∙ 𝑂𝑥 + 𝑏)| ≤ 𝑠  (20) 

 

4.2.2. Modify the infeasible candidate 

The LS technique is used to convert these infeasible solutions to feasible ones. This section 

illustrates the proposed solutions of the two previous types of situations using graphical and mathematical 

representations. Figure 7 shows that Wp1 is inside the obstacle and Wp2 is outside the obstacle but the line 

segment passes between the current position and the destination. First, find the nearest grid point from Wp in 

the neighbour area of the line segment. In other words, in the Figure 7, Wq1 is the nearest point in the 

neighbouring area of the line segment between Wp and Wp1 for the first case, and Wq2 for the second case. 

 

𝑊𝑞𝑖 = min
𝑂∈𝑁(𝑊𝑝,𝑊𝑝𝑖)

|𝑊𝑝 − 𝑂| (21) 

 

𝑁(𝑊𝑝, 𝑊𝑝𝑖) is the neighbouring area and |𝑊𝑝 − 𝑂| is the distance between Wp and O, 𝑖 = 1, 2. Second, 

calculate the new feasible candidate from the infeasible one. 

 

𝑊𝑝𝑖̅̅ ̅̅ ̅̅ = 𝑊𝑝 + (𝑊𝑝𝑖 − 𝑊𝑝) ∙
|𝑊𝑝−𝑊𝑞𝑖|−𝑑𝑠

|𝑊𝑝−𝑊𝑝𝑖|
 (22) 

 

where ds is the safety distance. In other words, the distance between Wqi and 𝑊𝑝𝑖̅̅ ̅̅ ̅̅ . 

 

 

  
  

Figure 6. Infeasible candidate solution Figure 7. Modifying infeasible positions 

 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 1184-1196 

1192 

5. OBSTACLE DETECTION AND AVOIDANCE (ODA) 

The robot follows a path generated by PSO-BA algorithm between the starting point and a goal 

point until it detects an obstacle. The starting point is denoted by (SP) and the goal point is denoted by (GP). 

In this case, the robot uses ODA procedure to detect and avoiding the obstacle. The obstacle avoiding (OA) 

based on wall following procedure. 

 

5.1. Obstacle detection  

When planning the path of a mobile robot, the first and most important aspect is to detect obstacles 

and avoid them. Sensors enable the robot to detect obstacles, and so it is necessary that the robot uses this 

sense to determine which path to follow. By deploying sensors around a robot, obstacles can be detected. All 

of them have the same Sensor Range (SR) and Angle. The SR represents the maximum distance that the 

mobile robot can measure, and the angle of the sensor is calculated by (360°/no of sensors). As obstacles are 

detected using sensor vectors (VS), which are binary vectors containing information about obstacles, their 

dimensions depend on the number of sensors (in this case, 12 sensors are used), therefore, the sensor vectors 

are represented by 12 bits indexed by 𝑖 ∈ {1,2, … ,12}. The value of VS is [s(1), s(2), ..., a(12)]. The value of 

s(i) is either 1 which indicates that an obstacle is inside the sensing range, or 0 which indicates that the angle 

range is free as shown in Figure 8. 

 

 

 
 

Figure 8. Obstacle detection 

 

 

The distance between the current position Wp and the obstacle is (23). 

 

𝐷 = min
𝑂∈𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒

|𝑊𝑝 − 𝑂| (23) 

 

where O is a grid point of the obstacle. If 𝐷 ≤ 𝑠𝑟, then the obstacle is detected, where 𝒔𝒓 is the sensing 

radius. For the grid points inside the SR, calculate the angle of the line segment between Wp and the 

considered grid point O. 

 

𝛼 = 𝑎𝑡𝑎𝑛 (
𝑂𝑥−𝑊𝑝𝑥

𝑂𝑦−𝑊𝑝𝑦
) (24) 

 

Subsequently, which sensor point O is in the SR can be determined using angle 𝛼.Thus, the sensing vector 

can be calculated. The sensing vector consists of bits, which is the sensor number. That is, each bit 

corresponds to each sensor. When the i-th sensor detects the grid point, the i-th bit is 1, and otherwise 0. 

 

𝑉𝑠(𝑖) =  {
1, 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖 𝑑𝑒𝑡𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡
0, 𝑒𝑙𝑠𝑒

.  

 

In the Figure 8, the sensing vector is Vs = [1 1 0 0 0 0 0 0 0 0 1 1]. In other words, the obstacle is sensed by 

sensors 1, 2, 11 and 12. Next, the gap vector, which indicates the direction the robot can pass through, is 

calculated from the sensing vector as 𝑉𝑔(𝑖) = 𝑁𝑂𝑇(𝑉𝑠(𝑖) 𝑂𝑅 𝑉𝑠(𝑖 + 1)).  

In the Figure 8, the corresponding gap vector is Vg = [0 0 1 1 1 1 1 1 1 0 0 0]. 

 



Int J Artif Intell  ISSN: 2252-8938  

 

Multi-objective optimization path planning with moving target (Baraa M. Abed) 

1193 

5.2.  Obstacle avoidance 

In order to complete the path to reach the goal  avoidance procedure is performed once the robot 

detects an obstacle. Sensors enable the robot to detect obstacles, and so it is necessary that the robot uses this 

sense to determine which path to follow. The avoidance procedure is performed  using the wall-following 

algorithm. The mechanism of this algorithm explains as following: 

− Move to left or right direction along the ‘wall’ of the obstacle. If the obstacle is detected, the robot 

moves along the obstacle in the left or right direction. Figure 9 shows the left and right directions for 

following the wall.  

− Detect the wall of the room and change direction 

While moving, the robot can detect the boundary of the room using the following conditions: 

 
|𝑊𝑝𝑥 − 𝑥𝑚𝑖𝑛| ≤ 𝑠𝑟  

|𝑊𝑝𝑥 − 𝑥𝑚𝑎𝑥| ≤ 𝑠𝑟  
|𝑊𝑝𝑦 − 𝑦𝑚𝑖𝑛| ≤ 𝑠𝑟  

|𝑊𝑝𝑦 − 𝑦𝑚𝑖𝑛| ≤ 𝑠𝑟  

 

Where Wpx and Wpy are the coordinates of the current robot position. Figure 10 shows the room 

boundary. The range of the room is xmin, xmax in the x-axis and ymin, ymax in the y-axis. Once the room 

wall is detected, the robot must change direction. This procedure details in Figure 11. 

 

 

  
  

Figure 9. Wall-following algorithm Figure 10. Room boundary 

 

 

  
 

Figure 11. Changing movement direction 

 

 

− Moving towards the target 

When no obstacle is detected, the robot can move towards the target. Figure 12 show moving the 

robot towards the target. An exception can occur, as shown in Figure 13. In this case, no obstacle is detected 

in the direction towards the target but the robot cannot actually pass through the path. This case can be avoided 

by memorizing the robot path during wall following. In the Figure 9, the orange points are those where the robot 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 1184-1196 

1194 

passed. Therefore, when passing the points in the direction towards the target, the robot continues to follow the 

obstacle wall. Otherwise, the robot moves directly towards the target as shown in Figure 14. 

 

 

 
 

Figure 12. Moving towards the target 

 
 

Figure 13. Exception case 

 

 

 
 

Figure 14. Robot moving directly to the target 

 

 

6. SIMULATION RESULTS 

The algorithm executed with MATLAB R2020a programming language, the following results are 

obtained as a sample of difference scenario of experiences. MATLAB code is run on a computer with a 2.80 

GHz Core i7 processor and 16 GB of RAM. Figure 15(a)-(f) shows the simulation results shown in  

the appendix. A blue point represents the first mobile robot (Robot1) at the starting point SPR1 = (120, 120). 

The purple point represents the target point for Robot 1, which is (20, 60). The second robot (Robot2) 

represented by red point at the location (160, 5). The first robot (Robot1) attempts to reach its target, while 

the second robot (Robot2) reaches the meeting point with the first robot (Robot1). Several dynamic obstacles 

with different shapes are moving linearly in this environment, and six static obstacles have different forms 

and dimensions. The colour of dynamic obstacles is red while the colour of static obstacles is black.  

As shown in Figures 15(b) to (e) the first robot moving towards its fixed target, while the second robot 

attempting to move towards the first robot (moving target) while all dynamic obstacles also move in a linear 

manner. Figure 15 (f) shows the 88th (final) iteration, where the second robot reaches the target without 

collision with any obstacles in the environment.  

 

 

7. CONCLUSION 

This study proposed a path planning algorithm for mobile robots using a hybrid PSO-BA 

optimization algorithm. PSO-BA is integrated with the LS algorithm and ODA algorithm. LS is used to 

covert all infeasible points into feasible points, while the ODA algorithm is used to detect and avoid 

obstacles. The performance of the algorithm is tested in dynamic environments with moving targets in 

different scenarios. Using simulation results, the proposed algorithm demonstrates its effectiveness in 

avoiding both static and dynamic obstacles. 
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8. APPENDIX 
 
 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 15. Path planning history: (a) first iteration, (b) Iteration no. (51), (c) Iteration no. (56), 

(d) Iteration no. (72), (e) Iteration no. (82), (f) Iteration no. (88) 
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