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Abstract 

This study describes the recycling of green coconut husk powder (CHP) aimed at the sustainable production of methyl 
levulinate. The preliminary step involved thermogravimetric analysis of green (CHP) and residues after synthesis of 
methyl levulinate with the catalyst’s aluminum sulfate (CHP-AS) and titanium dioxide (CHP-TD), based on a degradation 
and determination of activation energy using the Ozawa-Flynn-Wall (OWF) method. Thermogravimetric analyses 
showed significant differences between the main constituents of CHP, CHP-AS and CHP-TD residues: hemicellulose 
(18.18, 9.78 and 12.17%), cellulose (44.65, 26.18 and 44.23%) and lignin (20.09, 19.89 and 19.58%), respectively. The 
methyl levulinate concentration obtained by the reaction between CHP and aluminum sulfate was 16.53 g.L-1, due to the 
participation of hemicellulose and cellulose. The results showed that the activation energies calculated using the OFW 
method were 142 kJ.mol-1 (CHP), 125 kJ.mol-1 (CHP-AS) and 180 kJ.mol-1 (CHP-TD). 
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1. Introduction 

The transition to a low-carbon energy matrix requires searching for bioproducts and renewable energies, deemed 
limitless and with less environmental impact. Considered a renewable source, biomass is a viable alternative to the 
indiscriminate use of fossil fuel derivatives, responsible for greenhouse gas emissions and climate disorders [1]. The 
use of biomass favors cleaner and more sustainable production processes, thereby ensuring the development of 
chemical products, additives, biofuels and bioenergy in line with decarbonizing policies [2]. Thus, agricultural waste can 
be reintroduced into new bioproduct and bioenergy production chains, transforming an environmental liability into an 
energy asset [3,4]. Since it is highly resistant to degradation, numerous agricultural residues can cause incalculable 
damage to ecosystems and human life [5].  

Brazil is the fifth largest coconut producer in the world, with a harvested area of approximately 223,000 hectares and 
estimated production of 1.05 billion fruits in 2020, the Northeast being the largest producer [6,7]. Given that each fruit 
produces 1 Kg of solid waste and has a decomposition time of around 10 years, its disposal in inappropriate areas, even 
sanitary landfills, results in high management costs and causes significant environmental impact [8]. Reusing this waste 
is an alternative to mitigate these problems by producing powder and fiber with specific properties that favor several 
applications. Fiber is used as raw material for crafts or agricultural input [9] and green coconut husk powder (CHP) as 
a biosorbent to remove metallic ions resulting from the presence of functional groups containing oxygen, hydroxyl and 
carbonyl [10-13] and in the formulation of additives and bioproducts since it is a source of lignin, cellulose and 
hemicellulose [4,14,15].  

Currently, the scientific community is studying the transformation of lignocellulosic biomass into valuable, sustainable 
environmentally friendly products, such as 5-hydroxymethylfurfural, levulinic acid and levulinate esters [16]. The latter 
are a promising class of biomass derivatives with low toxicity, high lubrication, moderate flow at low temperatures and 
low vapor pressure [17]. Methyl levulinate (MLev) is a target product in biorefining and widely used as an additive in 
gasoline, diesel and biofuels, in addition to acting as a raw material for the manufacture of spices, coatings, herbicides, 
plasticizers, fragrances and pharmaceutical products, among others [2,18].  

Thermogravimetric analysis (TGA) is becoming a widely used method due to its simplicity, precision and determination 
of broad spectrum of properties, particularly composition and thermal degradation [19;20]. This technique involves 
specific studies on the output of the transesterification reaction aimed at biodiesel production [21], in addition to 
compositional determination of hemicellulose, cellulose, and lignin present in several biomass sources, such as 
“dendezeiro” (oil palm) waste (empty fruit trusses, mesocarp fiber and palm husk), forest residues (wood shavings and 
powder), peanut shells, date palm petioles and alamo wood [20,22,23]. 

Isoconversional methods have been widely used to determine the non-kinetic parameters in pyrolysis processes and 
conversion reactions of solid raw materials and biomass [24,25,26]. It is presumed that the activation energies of kinetic 
degradation reactions are represented by activation energy distribution as a function of conversion degree [27]. Some 
authors combined TGA with isoconversional models aimed at determining kinetic parameters in different biomass 
sources (pineapple, orange and mango peel, rice husk, and açai berries) [23,28]. 

As such, this study proposes an unprecedented and innovative investigation on methyl levulinate production from green 
CHP for use as additives in biofuels, such as biodiesel. A preliminary step was to determine the energy potential of green 
CHP and after the conversion reaction into methyl levulinate using aluminum sulfate and titanium dioxide catalysts. To 
that end, decomposition analysis of green CHP was conducted and kinetic degradation assessed, in addition to 
determining activation energy using TGA and the Ozawa-Flynn-Wall (OFW) method.  

2. Material and methods 

2.1. Materials 

Fresh green coconut (Cocos nucifera L.) husk powder was obtained from the Brazilian Agriculture Research Corporation 
(Embrapa), Embrapa Tropical unit (Ceará, Brazil). The synthesis reactions of methyl levulinate from green CHP were 
carried out with methanol (Dinâmica, 98%), and aluminum sulfate (Vetec, 98%) and titanium dioxide catalysts (Vetec, 
98%).  
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2.2. Green coconut husk powder preparation 

 Embrapa Tropical developed the green coconut process to obtain powder for reuse in specific applications. The 
experimental procedure to produce green CHP with a particle size of 0.841 - 2.0 mm followed the methodology created 
by Embrapa [5], consisting of the following processes: pre-drying, grinding, drying and particle size classification. This 
methodology makes it possible to obtain CHP with the following textual properties: specific surface area - 1.86 m².g-1, 
total pore volume - 0.0028 cm3.g-1, average pore volume - 2.9 nm and average particle diameter - 161.1 nm 
[29](Nascimento et al., 2020). 

2.3. Methyl levulinate production 

The conversion reactions of green CHP into methyl levulinate were conducted in the presence of methanol and catalysts, 
in line with the methodology applied in the synthesis of carbohydrate additives or directly from bamboo or wheat straw 
[28,30-32]. The reactions were conducted in a 300 mL pressurized stainless steel cylindrical reactor, with temperature 
adjusted by a coil and monitored by a thermocouple (Parr instrument, USA). The reactions were processed using 12.0 
g of green CHP, 78.0 g of methanol and 1.2 g of aluminum sulfate [Al2(SO4)3] or titanium dioxide (TiO2) catalyst for 15 
minutes at an agitation speed of 733 rpm, with temperature controlled at 180 ºC. At the end of the reaction, the products 
were removed and filtered, obtaining a liquid phase (methyl levulinate) and solid fraction (green CHP waste). The 
methyl levulinate concentration was determined by liquid chromatography using a CTO-10ASvp chromatograph 
(Shimadzu) equipped with a CLC shim-pack column (4.5mm x 15cm), operating at a temperature of 65 °C. The mobile 
phase, consisting of a 2.5 mM sulfuric acid solution with a flow rate of 0.6 mL.min-1, was responsible for transporting 10 
µL of methyl levulinate, its detection ensured by the refractive index (RI) detector. Solid fraction composition was 
determined by TGA and activation energy estimated by the association between TGA and the Ozawa-Flynn-Wall (OFW) 
isoconversional method. It is important to underscore that the solid fraction was determined according to its condition: 
green CHP, green CHP after the reaction with aluminum sulfate (CHP-AS) and green CHP after the reaction with titanium 
dioxide (CHP-TD). 

2.4. Thermogravimetric analysis 

Thermogravimetric analysis (TGA) has been used to determine the composition of different types of biomass [33-35]. 
Thus, the study of decomposition green CHP was carried out by thermogravimetry using a TG/DTG analyzer (Shimadzu, 
DTG-60) with FC-60 flow controller and TA Acquisitions Status data acquisition software. Analyses were conducted 
with 6.0 ± 1.0 mg of the sample in inert nitrogen atmosphere, under the following conditions: temperature range 
between 25 and 800 ºC, heating rate of 10 ºC.min-1 and flow rate of 50 mL.min-1. The green CHP degradation curve was 
used to obtain the weight percentage of cellulose, cellulose, lignin, carbon, ashes, moisture and volatile material.  

2.5. Isoconversional method  

Thermogravimetric analysis combined with the isoconversional model makes it possible to determine apparent 
activation energy (Ea) [36]. The Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) models are the most 
widely used [26] and can be applied to calculate kinetic parameters such as the degradation reaction rate, considering 
that conversion is only a function of temperature [37]. The Ozawa-Flynn-Wall (OFW) isoconversional method has been 
used to estimate activation energy values irrespective of the expressions of reaction speed. The success of the 
application is attributed to the approximate expressions used to integrate the Arrhenius equation. Activation energy 
was calculated with the OFW method, using a range of E/RT values from ambient temperature to 800 ºC and heating 
rates of 5, 10, 15 and 20 °C.min-1. Applying different heating rates ensures a useful estimate of activation energy using 
the OFW method [38]. This method was developed for non-isothermal analyses and applies Doyle’s approximation to 
determine activation energy without the need of knowing the order of the reaction. The OFW equation is expressed by 
Equation 1[39]:  

log β + 0.4567(Ea/RT) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                (1) 

Where 𝛽 is the heating rate, Ea the activation energy, R the universal constant of ideal gases and T the reaction 
temperature (K).  

3. Results and discussion 

3.1. Composition of green coconut husk powder  

The composition of biomass is one of the most relevant factors in identifying its energy potential in order to guarantee 
its application as a source of sustainable energy [24]. The thermogravimetric technique was used in the samples (CHP, 
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CHP-AS and CHP-TD) to obtain the content of the main constituents of green CHP (Table 1). The three residues exhibited 
moisture content below 10%, considered an acceptable limit to convert biomass in thermochemical processes [40]. In 
addition, these results corroborate the moisture content found in other lignocellulosic sources, such as tucumã seeds 
(7.6 %), banana trunk (6.67 %), and castor bean waste (11.14 %) [18,41,42]. Ash content was within the classic range 
for lignocellulosic biomass, namely, between 0.1 and 20 % [44]. Finally, hemicellulose and cellulose percentages 
declined for the CHP-AS residue, since they were consumed during the reaction. The decrease of these components is 
because one of the methyl levulinate production routes is through cellulose [18,30-32]. 

Table 1 Fresh green coconut husk powder (CHP) constituents and after the methyl conversion reaction (CHP-AS and 
CHP-TD) 

Constituents Biomass 

Description Temperature Range CHP CHP-AS CHP-TD 

Moisture (%) 0 - 100 ºC 8.946 5.149 6.729 

Extractables (%) 100 - 250 ºC 4.963 9.051 2.764 

Hemicellulose (%) 250 - 300 ºC 18.182 9.779 12.178 

Cellulose (%) 300 - 400º C 44.651 26.183 44.227 

Lignin (%) 400 - 470 ºC 20.093 19.89 19.586 

 

 

Figure 1 Thermogravimetric profile of green coconut husk powder (CHP, CHP-AS and CHP-TD) 

The evolution of the thermal degradation of green coconut husk powder (CHP, CHP-AS and CHP-TD) is shown in Figure 
1. The first decomposition stage occurred up to a temperature of 100 oC, indicating water evaporation, and the second, 
between 100 and 250 oC, demonstrates the release of volatile constituents (water and holocellulose). The thermal 
degradation of cellulose and hemicellulose was observed at a temperature range between 250 and 450 oC, exhibiting 
the highest weight loss from 35 to 62.83%. The last thermal degradation stage, which occurred between 450 and 800  

oC, represents lignin decomposition and ash formation, with a weight loss of less than 20%. With respect to the thermal 
degradation of hemicellulose, it is suggested that its structure amorphizes randomly and is richly branched, thereby 
facilitating removal of the main stem and contributing to the degradation of volatile compounds. In addition, with a 
structure displaying low polymerization, thermal degradation of hemicellulose may occur at low temperatures. On the 
other hand, cellulose, considered a long chain polymer, decomposes at temperatures above 300 °C, thermal energy 
capable of breaking cellulose bonds [22,36]. In the case of lignin, the significant presence of aromatic rings with several 
branches in its structure requires higher temperatures for total decomposition [45,46]. The behavior of green CHP 
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decomposition is similar to the degradation of other biomass sources, such as rice husk, pine sawdust, areca nut shell, 
hazelnut shell and plantain flower petals [23,27,36]. 

3.2. Thermal degradation assessment 

A single heating rate may not describe the real nature of the reaction and could lead to mistaken interpretations [47]. 
Thus, a study based on four heating rates was performed (5, 10, 15 and 20 °C.min-1) in order to ensure a robust 
interpretation of TGA profiles, showing weight loss in the samples (CHP, CHP-AS and CHP-TD) in the 100- to-800 °C 
temperature range (Figure 2). In all the cases studied, an increase in heating rate did not significantly change the 
thermal decomposition pattern of green coconut husk powder waste (CHP, CHP-AS and CHP-TD). However, an increase 
in heating rate causes a slight displacement of the degradation curve towards higher temperatures in a faster time 
frame. This behavior was also reported in thermal degradation studies conducted with açai and millet husk [28,48]. 

 

Figure 2 Thermal degradation profile as a function of different heating rates: a) CHP, b) CHP-AS and c) CHP-TD 

3.3. Activation energy using the OFW method 

The OFW model is used to measure the multiple scanning rate, ensuring kinetic analysis based on several green CHP 
residue TGA curves (CHP, CHP-AS and CHP-TD) obtained at different heating rates (5, 10, 15 and 20 °C.min-1) (Figure 
3). The behavior of straight lines related to the OWF model shows greater parallelism in values between 1.65 and 1.80 
(Figure 3a), 1.40 and 1.60 (Figure 3b) and 1.40 and 1.45 (Figure 3c), suggesting hemicellulose and cellulose 
decomposition and the onset of thermal decomposition of lignin contained in green coconut husk powder waste (CHP, 
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CHP-AS and CHP-TD). This behavior was also observed in the thermal decomposition of lignocellulosic waste from 
sugarcane bagasse, sugarcane straw, rice husk and wood residue [49]. 

 

Figure 3 Conversion evolution by analyzing the Ozawa-Flynn-Wall model: a) CHP, b) CHP-AS and c) CHP-TD 

The coefficient of correlation (R2) of each conversion reaction (α) was based on previously reported heating rates 
(Figure 3). In all the models, R2 values ≥ 0.90 were obtained, confirming that the equations were reliably adjusted. The 
conversion rate used to obtain activation energy distribution, applying the isoconversional method, was 5-90 %, as 
reported in other studies [50,51]. In this respect, activation energy was obtained using the OFW method via equation 1. 
Table 2 presents the activation energy values of CHP, CHP-AS and CHP-TD residues, as a function of the conversion rate. 

The kinetic properties of green CHP degradation were assessed based on activation energy (Ea) behavior as a function 
of the conversion rate (Error! Reference source not found.). This approach involved only the region of greatest weight 
loss, considered the pyrolysable fraction, as reported in kinetic studies of different biomasses, such as corn husk, wheat 
straw and hazelnut shells [27]. Given that activation energy depends on the conversion rate, the reaction mechanism is 
not identical in all the decomposition processes, but complex with multiple stages. However, according to studies on the 
kinetics of biomass degradation, the average Ea values reflect the preponderant influence of hemicellulose, cellulose 
and lignin [52].  

 

https://www-sciencedirect.ez18.periodicos.capes.gov.br/topics/chemistry/alpha
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Table 2 Activation energy (Ea) as a function of the conversion rate obtained by the OFW method 

Conversion (α) 
CHP CHP-AS CHP-TD 

Ea (kJ.mol-1) Ea (kJ.mol-1) Ea (kJ.mol-1) 

0.05 142.30 123.78 180.05 

0.1 142.79 112.20 176.75 

0.2 144.86 94.58 170.94 

0.3 148.49 84.91 165.87 

0.4 152.23 83.88 164.36 

0.5 154.30 86.43 161.36 

0.6 153.80 93.11 158.31 

0.7 143.43 93.96 157.14 

0.8 130.82 87.30 154.16 

0.9 124.51 73.15 153.27 

 

It is important to underscore that the conversion range of α = 0.10 - 0.30 represents the onset of organic compound 
decomposition with initial activation energy of 143 kJ.mol-1 (CHP), 180 kJ.mol-1 (CHP-TD) and 125 kJ.mol-1 (CHP-AS). 
The thermal degradation of hemicellulose and onset of cellulose decomposition occurs primarily in the conversion 
range of α = 0.30 - 0.50, where the lowest activation energy was obtained with CHP-AS waste, Ea = 125 kJ.mol-1, 
indicating the conversion of these constituents into methyl levulinate. The region representing the conversion of α = 
0.50 - 0.80 shows cellulose decomposition and the onset of lignin decomposition. The increase in the activation energy 
of CHP residue in the conversion range of α = 0.50 - 0.80 may be due to the fact that green CHP is highly heterogeneous 
and its structural constituents have a specific degradation temperature range. The conversion rate of α = 0.80 indicates 
the start of the decline in degradation, demonstrated by the decrease in activation energy.  

 
 

Figure 4 Evolution of activation energy versus the converted fraction of the samples (CHP, CHP-AS and CHP-TD) 
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In addition, the lower activation energy values obtained with the CHP-AS residue reveal the small amount of 
hemicellulose and cellulose, because of its conversion into methyl levulinate, a behavior previously observed in a 
compositional study using thermogravimetry. With respect to hemicellulose, activation energy decreased from 148 
kJ.mol-1 (CHP) to 84 kJ.mol-1 (CHP-AS). In the case of cellulose, the activation energy declined from 154 kJ.mol-1 (CHP) 
to 86 kJ.mol-1 (CHP-AS). Thermogravimetry was used to determine the activation energy of different biomasses, 
producing the following results: Lagerstroemia speciosa (pride of India) seed husks (Ea = 164.00 - 141.93 kJ.mol-1) 
(Nawaz et al., 2021), oil-free yeast (Ea = 111.32 - 211.50 kJ.mol-1) [53] and açai seeds from the Amazon (Ea = 159.12 
kJ.mol-1) [28].  

3.4. Methyl levulinate production 

The methyl levulinate obtained from the reaction between green CHP and the aluminum sulfate catalyst [Al2(SO4)3] 
exhibited a concentration of 16.53 g.L-1, while the methyl levulinate concentration obtained with the titanium dioxide 
(TiO2) catalyst was 0.16 g.L-1. These results corroborate the changes observed in the composition of CHP residue (CHP-
AS and CHP-TD). In the case of CHP-AS, the hemicellulose and cellulose content declined, indicating they were 
consumed, favoring the production of methyl levulinate. The composition of CHP-TD did not change significantly, 
suggesting that hemicellulose and cellulose did not actively participate in the methyl levulinate conversion reaction. 
Thus, the TiO2 catalyst was unable to accelerate this reaction. A number of studies used biomass waste to produce 
methyl levulinate from wheat straw and bamboo, achieving outputs of 20.22 and 30.75%, respectively [30,31]. 
Supplementary studies on the efficiency of methyl levulinate production will be conducted in future research, where 
experimental planning will be developed as a function of the main variables that control the green coconut powder 
conversion reaction (time, temperature, amount of catalyst, among others), in order to establish conditions that are 
favorable to methyl levulinate production from green CHP. 

4. Conclusion 

The present study explored the composition and activation energy of green coconut residues (CHP, CHP-AS and CHP-
TD). The results demonstrate that aluminum sulfate was more favorable to methyl levulinate production, since TGA 
revealed a decline in cellulose and hemicellulose: 18.18 % (CHP) to 9.77% (CHP-AS) and 44.65% (CHP) to 26.18% (CHP-
AS), respectively. These results were confirmed by the methyl levulinate concentration of 16.53 g.L-1 obtained by the 
CHP conversion reaction with the aluminum sulfate catalyst. With respect to the thermal stability of the samples, the 
increase in heating rate caused the degradation peak to displace to regions with higher temperatures, but without 
affecting degradation performance. The OFW model demonstrated that activation energy is related to the presence of 
hemicellulose and cellulose, as shown by the activation energy of 143 kJ.mol-1 (CHP), 180 kJ.mol-1 (CHP-TD) and 125 
kJ.mol-1 (CHP-AS).  
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