
Energy Consumption of Neural Networks on
NVIDIA Edge Boards: an Empirical Model

Seyyidahmed Lahmer, Aria Khoshsirat, Michele Rossi, Andrea Zanella
Department of Information Engineering

University of Padova
Padova, Italy

{firstname.lastname}@unipd.it

Abstract—Recently, there has been a trend of shifting the
execution of deep learning inference tasks toward the edge of
the network, closer to the user, to reduce latency and preserve
data privacy. At the same time, growing interest is being
devoted to the energetic sustainability of machine learning. At
the intersection of these trends, in this paper we focus on the
energetic characterization of machine learning at the edge, which
is attracting increasing attention. Unfortunately, calculating the
energy consumption of a given neural network during inference
is complicated by the heterogeneity of the possible underlying
hardware implementation. In this work, we aim at profiling
the energetic consumption of inference tasks for some modern
edge nodes by deriving simple but accurate models. To this
end, we performed a large number of experiments to collect the
energy consumption of fully connected and convolutional layers
on two well-known edge boards by NVIDIA, namely, Jetson TX2
and Xavier. From these experimental measurements, we have
then distilled a simple and practical model that can provide an
estimate of the energy consumption of a certain inference task
on these edge computers. We believe that this model can prove
useful in many contexts as, for instance, to guide the search for
efficient neural network architectures, as a heuristic in neural
network pruning, to find energy-efficient offloading strategies in
a split computing context, or to evaluate and compare the energy
performance of deep neural network architectures.

Index Terms—Energy consumption, Deep Neural Networks,
Edge Computing, Inference

I. INTRODUCTION

Machine learning is being used in many applications,
exploiting the abundance of data in the modern era and
delivering state-of-the-art performance on a huge number of
tasks. For new emerging mobile applications, the traditional
way of running inference tasks in cloud computing facilities
and sending back the predictions to the end users is not
always feasible because of the need for preserving privacy and
ensuring low latency. On the other hand, shifting the inference
towards the end devices presents its challenges, due to the
limited resources available on these devices. To tackle these
limitations, computation offloading from resource-limited end
users to more powerful edge servers is being advocated as
a promising method to schedule and execute user-generated
tasks [1].

In fact, Edge Computing not only can provide faster online
computations, closer to the end users, but it can also exploit the
smart distribution and scheduling of computations to benefit
from renewable energy resources (RERs), so as to reduce

the carbon footprint of computing technology [2]. Besides
improving throughput and latency, the energy efficiency of
edge networks has gained much attention lately. For example,
reference [3] studies the whole network’s energy consumption,
including access points, edge servers, and user equipment for
a computation offloading scenario. According to this paper,
the more we push the computation from cloud servers to the
network’s edge, the more crucial it becomes to consider the
energy consumption of the models that are being exploited by
end user applications.

Although deep learning (DL) [4] has been known for its
great success in terms of accurate predictions in a wide variety
of tasks, energy and memory requirements of modern DL ar-
chitectures may make the use of large deep neural networks for
edge computing challenging. Split computing techniques have
been proposed to tackle this problem. They basically focus on
splitting a neural network at different candidate points, and
performing early exit at such candidate points to obtain a trade-
off between computing effort and quality of the result. This
facilitates the deployment of deep networks at the network’s
edge, see, e.g., [5]. Further, designing energy efficient neural
networks that have the same prediction accuracy as their more
power hungry versions is receiving much attention from the
research community [6], [7].

Overall, current developments are evolving along two main
axes: (i) providing online and energy efficient schedulers for
edge computing networks that allow end users to offload their
tasks, e.g., [1], [2], and (ii) devising new energy efficient
DL architectures, also entailing but not limited to the split
computing paradigm, e.g., [5]–[7]. We advocate that proper
designs along both axes would greatly benefit from accurate
energy consumption models of DL, especially tailored to
modern edge computing hardware. These models are largely
missing in the literature and are the objective of the present
work.

In most of the existing literature on edge task scheduling,
the energy cost models that were used for predicting the energy
consumption mainly used the number of CPU cycles required
to perform the tasks [8] or the amount of workload that a
task produces [9], using simple equations that proportionally
depend on the squared CPU frequency or on the workload.
While these models were very valuable to derive initial the-
ories and results on scheduling algorithms, they may not suit



well with the parallelizable computations on modern multi-
core processing unit architectures. In fact, an accurate energy
consumption estimation tool requires one to take into account
the architecture of the host device, the different parameters in
the neural network model that can exploit the parallel hardware
architectures, and the exact number of operations a neural
network requires for inference.

In this paper, we propose an experimentally validated and
simple energy consumption model for neural networks on
recent NVIDIA Jetson edge computers. The model allows one
to estimate the energy drained by performing inference tasks
on DL models composed of fully connected and convolutional
layers, without having to perform online measurements of
the energy drained. As we elaborate in the following, the
main indicator for the energy consumption is the total number
of multiply and accumulate (MAC) operations that are per-
formed, as expected. Based on this number, for a convolutional
layer, the energy consumption shows a multi-modal behavior
governed by the number of kernels that are exploited. The
derived empirical model is fully described by two hardware
dependent parameters, which are here provided for Jetson TX2
and Xavier NX boards from NVIDIA. The model fitting for a
simpler fully connected layer follows a similar rationale, but
only requires a single parameter and shows a single slope in
the MAC vs energy plot.

The remainder of this paper is organized as follows: The
related work is briefly commented in Section II. In Section III
we present the experiment setup and configurations. The ob-
servations and discussions, in addition to an energy estimation
model are provided in Section IV. Finally, conclusions and
future research lines are discussed in Section V.

II. RELATED WORK

Profiling the power/energy consumption of running Neural
Network (NN)s on low-power edge devices has gained an
increasing attention in recent years. In [10], the authors
measured the power consumption of an entire NN as well as
single NN layers on an NVIDIA Jetson Nano. A framework
that predicts the energy consumption of CNNs on the Jetson
TX1 based on real measurements has been proposed in [11].
This work is however still very preliminary, as it just presents
the general measurement setup/methodology and some limited
results. For the Jetson TX2 device, in [12] the authors have re-
ported the power consumption of GPU and CPU, the memory
usage and the time of executing the test phase on a fixed small
Convolutional Neural Network (CNN) architecture. Although
the results in this paper are measured from real hardware, no
analytical model is provided to gauge the energy consumption
of the edge board from the neural network parameters.

In a research paper more similar to our present work, but
based on simulations instead of real measurements [13], the
authors have provided an energy estimation tool for different
types of neural network layers. They have shown that the
energy consumption is not always proportional to the number
of computations or parameters involved in a layer. Our results
somehow confirm these observations, since the pure number of

operations, per se, is not sufficient to characterize the energy
consumption of the boards. Nonetheless, with a careful and
systematic analysis of the collected measurements, we were
able to identify the effect of the different computational model
parameters on the energy consumption of a single inference
stage and, hence, define a model that captures reasonably well
the experimental behavior of the computing boards.

To the best of our knowledge, this is the first work to
explore the real-world effect of choosing different configu-
rations of a NN layer on the energy consumption of two
NVIDIA Jetson edge devices (TX2 and Xavier NX), providing
a parameterized analytical energy estimation model based on
empirical measurements. Our model allows estimating the
energy consumption of any custom set of layer configurations
in common feed-forward deep neural networks.

III. EXPERIMENTAL SETUP

We experimentally characterize the energy consumption
of two energy-efficient embedded computing devices from
NVIDIA, namely, Jetson TX2, and Jetson Xavier NX. These
two edge computers are currently being used in several fields
such as manufacturing, agriculture, retail, life sciences, etc. For
instance, an image processing algorithm for thermal events
has been recently proposed for the Jetson TX2 [14]. The
configurations of both devices are shown in Table I (Jetson
TX2) and II (Jetson Xavier NX).

TABLE I: NVIDIA Jetson TX2 configurations

CPU Quad-Core ARM Cortex-A57 @ 2 GHz + Dual-Core
NVIDIA Denver2 @ 2 GHz

GPU NVIDIA Pascal 256 CUDA cores @ 1300 MHz
Memory 8 GB 128-bit LPDDR4 @ 1866 Mhz, 59.7 GB/s
Performance 1.3 TFLOPS

TABLE II: NVIDIA Jetson Xavier NX configurations

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6 MB
L2 + 4 MB L3

GPU 384-core NVIDIA Volta™ GPU with 48 Tensor Cores
Memory 8 GB 128-bit LPDDR4x 59.7 GB/s
Performance 21 TFLOPS

To assess the energy profile of these edge computers, we
measure the timing and energy figures of neural network
architectures, focusing on one single layer of the whole NN
architecture. In fact, as demonstrated in [13], and also indepen-
dently verified by us, the energy consumption of two neural
network layers L1, L2 that are executed in sequence adds up,
i.e., if their energy consumption is respectively E(L1) = E1

and E(L2) = E2, then sequentially using these two layers
into a single model results in a total energy consumption of
E(L1, L2) ≃ E1 + E2, where the approximation accounts
for the measurement noise and the intrinsic variability of
the energy consumption of each single layer (as it will be
seen later on in this paper). We hence focus our analysis on
two widely utilized layer types, namely fully connected and
convolutional, as better described in the following.



Fully Connected layer. A fully connected layer consists of
a bipartite set of input and output neurons, with each input
neuron being connected to all the output neurons through
weighted links. The output neurons apply a non-linear trans-
formation to the weighted sum of the input vector, producing
the corresponding output value. The following variables are
hence used to describe a fully connected layer:

• i size: Input feature map size, i.e., number of input
neurons;

• o size: Output feature maps size, i.e., number of output
neurons.

We refer to the Computational Load of a fully connected
layer (CLF) Li as the product of the number of input and
output features of the layer, i.e., the value

CLF(Li) = i size× o size. (1)

Note, that CLF corresponds to the number of elements in the
weight matrix and, hence, is proportional to the number of
multiplications and additions that are performed as the layer
is executed, i.e., to propagate the input to the output section.

Convolutional layer. We consider a generic convolutional
layer defined by a multidimensional matrix of input values,
with size w × h × d, and a set of kernel functions, each
defined by a square matrix of real values of size k × k × d.
Here, d is referred to as the depth and should match the depth
of the input feature map. Each kernel shifts along the input
matrix with a step defined by another parameter called stride.
For each position, the dot product between the kernel and the
corresponding elements of the input matrix is computed, and
the results are then summed together to return one point of
the output matrix. Each kernel generates one output map.

The following variables are then used to describe a convo-
lutional layer:

• i size: Input feature map size (i.e., w = h);
• ifm: Number of input feature maps (i.e., d);
• ofm: Number of output feature maps (i.e., the number of

kernel functions),
• ksize Kernel size parameter (i.e., k),
• stride: Stride parameter (i.e., the sliding step of the kernel

over the input matrix).
We define the Computational Load involved for a single

kernel (KCLC) via the number of multiply-add operations,
also referred to as Multiply–accumulate (MAC) operations,
required to compute the convolution of the input maps with
a single kernel (i.e., to obtain each one of the output maps).
For a two dimensional convolutional layer Li, neglecting the
padding, it is obtained as follows

KCLC(Li) =

(
i sizei − ksizei

stridei
+ 1

)2

· ifmi · ksize2i

≃
(
i sizei
stridei

)2

· ifmi · ksize2i , (2)

where the approximation follows when the input size is much
larger than the kernel size, which is typical in most practical

cases. We then define the Computational Load for the whole
convolutional layer (CLC) as Eq. (3),

CLC(Li) = KCLC(Li) · ofmi. (3)

The variables mentioned above are varied to generate dif-
ferent layers’ configurations for the experiments. For each
configuration, 50 inference runs are performed using randomly
generated non-zero inputs. Moreover, for each inference op-
eration, the time is split into timeslots of the same duration
δ = 0.1 ms and the power of the edge board is obtained from
the onboard sensors at the end of each timeslot. The average
energy consumed by the board over a time period of T seconds
is estimated as,

Eboard(T) ≃ T ·AverageBoardPower(T). (4)

IV. ENERGY CHARACTERIZATION

A. Power consumption

Fig. 1 reports the empirical histograms of the power con-
sumption of the two boards when performing the inference
tasks with different configurations of the convolutional or fully
connected layers parameters. As shown in these two figures,
the power consumption follows a normal distribution for the
different inference tasks, with the mean placed close to the
amount of power consumption of the device when the CPU is
at 100 percent workload. This observation of the frequency of
power consumption is especially relevant when the inference
devices use renewable power sources, such as solar panels,
that cannot provide more than a specific peak or mean power
for a long period of time (due to the intermittent nature of
renewable energy).

B. Energy consumption when varying the model parameters

Experimentally, we can understand the impact of the dif-
ferent parameters of each layer’s configuration on the energy
consumption; we came up with the following key observations:

• As it will be further analyzed in the next Section IV-C,
the average energy drained for a convolutional layer Li is
accurately approximated by Econv2d(Li) ≃ CLC(Li) ×
H(ofmi), where H(·) is a non-linear function (to be
specified shortly).

• For a convolutional layer, the average energy consump-
tion grows linearly with respect to CLC when varying
the i size, ksize, ifm, or the stride. Fig. 2 depicts this
behavior: from the Eq. (3), the CLC decreases polyno-
mially with respect to an increasing stride, and so does
the average energy; the CLC increases polynomially with
increasing ksize and i size, and so does the average
energy. The CL increases linearly with an increasing ifm,
and so does the average energy.

• Moreover, still for a convolutional layer Li, the average
energy consumption Econv2d(Li) does not grow linearly
with CLC when changing the ofm parameter. From Fig. 3,
and with both edge computing boards, we notice that
the relationship between average energy and CLC can
be interpolated through a linear function for a fixed
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Fig. 1: Distribution of the average board power consumption
on Jetson TX 2 and Xavier NX for inference of many different
neural network configurations.

ofm value. Also, we observe that the slope of this
linear approximation changes (decreases) by changing the
ofm (increasing). Function H(ofm) is here introduced
to model this change of slope; it is also remarked that
there is a noise term in the measurements, whose variance
increases with an increasing CLC parameter.

• For a fully connected layer, the average energy consump-
tion grows linearly as a function of CLF (constant slope
model), see Fig. 4.

C. Energy modeling

To find a suitable shape for H(ofm), which maps an ofm
value onto a slope in the MAC-vs-energy plane, we generated
additional data. The set of N generated data pairs is denoted

by (xi, yi) where i = 1, . . . , N , xi defines an ofm value, and
yi defines the corresponding slope H(xi); Fig. 5 shows the
function H(·), which approximately takes the form

H(ofmi) ≃ ac ×
1

ofmi
+ bc. (5)

With this dataset, we use Mean Square Error (MSE) minimiza-
tion as described in Eq. (6) to estimate the parameters ac, and
bc, which results in the red fitting curve in Fig. 5.

MSE =
1

N

N−1∑
i=0

(H(xi)− yi)
2

=
1

N

N−1∑
i=0

(
ac ×

1

xi
+ bc − yi

)2

∂MSE

∂ac
= 0 ⇐⇒

∂
∑N−1

i=0

(
ac ×

1

xi
+ bc − yi

)2

∂ac
= 0

⇐⇒ ac

N−1∑
i=0

1

x2
i

+ bc

N−1∑
i=0

1

xi
=

N−1∑
i=0

yi
xi

∂MSE

∂bc
= 0 ⇐⇒ bc =

1

N

[
N−1∑
i=0

yi − ac

N−1∑
i=0

1

xi

]

ac =

∑N−1
i=0

yi
xi

− 1

N

∑N−1
i=0

1

xi

∑N−1
i=0 yi

∑N−1
i=0

1

x2
i

− 1

N

(∑N−1
i=0

1

xi

)2 . (6)

With the previous key results and observations, we define
the following model describing the average energy consump-
tion for a convolutional layer, via Eq. (7):

Econv2d(Li) = CLC(Li)×H(ofmi)

= KCLC(Li)× ofmi ×
(

ac
ofmi

+ bc

)
= KCLC(Li)× (ac + bc × ofmi). (7)

For a fully-connected layer, we describe the average energy
consumption through Eq. (8) here below. The same procedure
is followed to obtain the slope parameter af , with xi denoting
the CLF, and yi denoting the corresponding average energy
drained. The bf coefficient is set to zero, as with a zero CLF
there is no energy expenditure.

Efc(Li) = CLF(Li)× af . (8)

Given a general CNN architecture description, the average
energy expenditure of Conv2D and FC layers is gauged
through the CLF and the platform-specific parameters (ac, bc)
(Conv2D layers) and (af ) (FC layers), which we obtained
empirically (see Table. III).

Furthermore, for a feed-forward NN architecture with L
layers, one can estimate the average energy consumption of
the whole NN on the considered edge computing boards via
Algorithm 1.
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Fig. 2: Convolutional layer: exemplary demonstration of the linear relationship between CLC and the stride, ksize, ifm, and
i size parameters; vertical bars show 99% confidence intervals. Continuous lines are obtained from our approximated model
to gauge the average energy as a function of CLC (Ê). The x-axis is represented in a log 10 scale.

TABLE III: Empirical Parameters

Parameter Value
ac (TX2) 2.6727e-08
bc (TX2) 1.21334e-10
ac (Xavier NX) 2.8674e-08
bc (Xavier NX) 4.7639e-10
af (Xavier NX) 6.2454e-09

V. CONCLUDING REMARKS

In this work, we have analyzed the energy consumption of
NNs on two NVIDIA edge boards, based on readings from
the power sensors included in these devices. We have also
investigated the effect of different parameters of convolutional
and fully-connected layers on energy consumption during
inference on CPU. Moreover, we have observed that the

boards’ peak and average power requirement when using CPU
is less than when using GPU. This makes doing inference on
CPU more inviting for limited power setups.

The energy estimation model provided in this work, which
is backed-up with actual energy measurements on the edge
devices, can help understand the effect of parameter choices on
energy consumption for efficient development of new neural
network architectures. It can also be used as a metric to
optimise the scheduling of tasks on the network’s edge, when
energy efficiency is an important consideration.

In our future work, we plan to extend the experiments to
additional edge devices and to other power profile settings of
the edge boards, to study how inference can be customized in
respect to power, latency and energy. Other interesting research
directions include the investigation of effect of NN parameters



Fig. 3: The relationship between the computational load and
the average energy growth for convolutional layer for a dif-
ferent values of ofm.

Fig. 4: The relationship between the average energy consump-
tion and the computational load for a fully connected layer.

when inference is performed on GPU and measuring the
energy consumption for other layer types, e.g., long-short term
memory (LSTM).
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