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 Scientific research is currently considered one of the key factors in the 

development of our life. It plays a significant role in managing our business, 

study, and work more conveniently. One of the important aspects when it 

comes to scientific research is the level of collaboration among 

researchers/disciplines. The collaboration between two different disciplines 

contributes to obtaining more reliable solutions for our everyday issues. 

Therefore, it is needed to understand the collaboration patterns among 

researchers and come up with convenient strategies for strengthening this kind 

of collaboration. In this work, we aim at investigating the patterns of scientific 

collaboration among researchers across disciplines. To this end, we generate a 

co-authorship network for several disciplines. The generated network reveals 

many interesting facts regarding the collaboration patterns among researchers 

who work in the same/different disciplines. We involve several measurements 

in this study that evaluate different aspects, which is of interest to the research 

communities since most of the studies in the literature measure specific 

aspects. Moreover, we propose a novel metric for measuring scientific 

collaboration in a research community and use it to benchmark the 

collaboration among disciplines. Finally, we use the obtained results/facts in 

providing recommendations for scientific communities. 
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1. INTRODUCTION 

Data mining and artificial intelligence fields are intertwined and have caused a paradigm shift in the 

literature of data analysis. It currently plays a crucial role in analyzing and comprehensively understanding 

our data [1]. The analysis of data can be performed in many different techniques such as traditional statistical 

approaches. However, with the advent of complex networks, researchers have become able to deeply 

investigate the relations among data entities. In complex networks, data can be formed as a network structure 

with nodes and edges such that friendship networks, citation networks, collaboration networks, road 

networks, gene networks, and co-authorship networks. In the context of this work, a co-authorship network 

can be represented as a graph, in which the nodes denote network authors and edges among them that are 

formed when co-authoring articles. Co-authorship networks have been used for investigating the 

collaboration patterns that might exist among scientific researchers [2]. In a co-authorship network [3], two 

or more authors are considered to be connected if they have co-authored an article. Figure 1 shows a simple 

example of how a co-authorship network is generated. Given 6 authors (R1 to R6), and 3 articles (Article 1, 

https://creativecommons.org/licenses/by-sa/4.0/
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Article 2, and Article 3). As can be seen in the figure, a network of 6 nodes is generated including the edges 

among them. These edges are generated based on co-authoring in articles. The concept of co-authorship is 

also used to measure the scientific status of a researcher in a particular research community as well as 

predicting future potential collaboration [4], [5]. Investigating co-authorship networks is important since it 

plays a significant role in understanding the dissemination of knowledge within research communities. The 

analysis approach of this work is based on concepts inspired by the complex networks field [6]. This field has 

emerged from computer science graph theory, statistics, and sociology. Furthermore, using this field of study 

enables us to deeply investigate the relations among network actors (authors). This approach is a technique 

that generates a network and measures its properties. For instance, one can analyze the relationships among 

research groups or collaborating teams using network measurements at different levels. The characteristics of 

a network can be described in two levels [7]: at the entire network level and individual level. In the former, 

we can measure the density, diameter, clusters (research communities) of a network. In the latter, we can 

analyze the centrality of network nodes such as degree, betweenness, and closeness centralities. Each of these 

measurements can be used to extract a specific fact on the network/node. However, these measurements, 

separately, cannot measure the overall performance of a network/node. 

 

 

 
 

Figure 1. An Example of generating a co-authorship network 

 

 

Recently, the area of co-authorship networks has attracted research communities due to its role in 

improving and strengthening the collaboration patterns among researchers. Revealing the patterns of this kind 

of collaboration has been studied in the literature such as the distinguished studies of Newman [3] and 

Girvan-Newman [8], they used three bibliographic datasets for three fields of study; biology, mathematics, 

and physics. The goal of these studies was to investigate the collaboration patterns among the authors who 

work in the same area of study as well as among the three mentioned areas. They used statistical tools in the 

analysis approach. One of the interesting results that were obtained, the biological scientists have a strong 

tendency to co-author papers with authors from the same field, and this tendency is significantly decreased 

for mathematicians or physicists. These results were also confirmed in the study of Coccia and Bozeman [9]. 

In another study by Newman [10], they generated three networks for three areas of research; Computer 

Science, Physics, and Biomedical Research. They investigated and studied these networks and found the 

best-connected scientists in terms of the strength of collaboration. In the analysis, they used network 

centrality measurements. In 2013, Divakarmurthy and Menezes [11] investigated the collaboration patterns 

and citation patterns among the authors of the association for computing and machinery (ACM). They 

generated two collaboration networks; the first one was based on the citation of articles and the second was 

based on publications only without considering articles' citations. They used several network measurements 

such as degree centrality, betweenness centrality, closeness centrality, and the characteristics of community 

structure in evaluating authors. They also compared the results of the two generated networks to rank authors. 

Furthermore, the characteristics of Social Networks can also be considered as a useful tool in understanding 

the collaboration patterns among researchers as presented in the distinguished work of Barabasi et al. [12]. 

They considered the evolution of the social network of scientific collaboration in deeply understanding what 

is driving the collaboration patterns that exist among researchers. 

The main problem in the literature is the lack of providing a deep evaluation of the performance of 

research communities/researchers in terms of collaboration. Most of the works perform the evaluation based 

on fixed factors (e.g., the number of published articles and citations) or the evaluation is performed using a 

single network measurement that reflects one fact on a network/author. Furthermore, the majority of works in 

the literature were performed using specific repositories. This case might force the evaluation to be biased to 
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the themes (e.g., area of research) of the repository considered in the analysis, which leads to unreliable 

results.  

According to the aforementioned description, we have distinguished two main gaps and can be 

summarized as: 

 Most of the works in the literature considered few fields of research from a particular repository (e.g., 

ACM, IEEE). In fact, investigating the relations/collaboration among disciplines need to include as 

many disciplines as possible and varying the repositories aiming at enriching the dataset with fruitful 

items and eventually provides more reliable results. 

 Most of the proposed approaches use a particular measurement that evaluates and reflects one fact on a 

discipline/author. In this case, the evaluation process looks at the problem from one angle, which is not 

sufficient when seeking a comprehensive analysis. 

In this article, we try to fill the aforementioned gaps and come up with results and recommendations 

for research communities. Hence, the contributions of this work can be summarized as: 

 Generate a co-authorship network that includes mainly 6 major disciplines (and subdisciplines). Many 

repositories are used and the data collection is performed on Google Scholar. This makes the dataset 

colorful of items and the analysis to be more comprehensive and reliable. 

 Propose a novel metric that can evaluate the strength of collaboration in a research community 

(discipline). This metric is based on several network measurements, which gives a view from different 

angles (utilizing different features) and obtain a more accurate evaluation. 

We believe that filling the aforementioned gaps will make the difference between our work and the 

works in the literature. There are many web applications (e.g., Publons, Scopus, Google Scholar) that 

evaluate the scientific status of an institution/researcher using well-known indicators such as h-index, Cite-

Score in Scopus, or Impact Factor (SCIE and SSCI) in Clarivate. However, our approach evaluates the 

scientific collaboration based on the relations among disciplines/researchers and this feature is not available 

in current web applications. The main advantage of our work is that; it can be used (or integrated) to 

implement a web application that provides recommendations for a research community in real-time, which is 

a new service that can be shared. 

This article is organized as; the next section includes our research methodology including the dataset 

collection and network measurements. Section 3 contains the results obtained and a discussion on the 

generated co-authorship network and the proposed metric. Finally, we conclude our article in section 4. 

 

 

2. RESEARCH METHOD 

2.1.  Data collection 

The dataset of this work was collected from worldwide authors. The collection process was 

performed on Google Scholar. We designed a special-purpose crawler for retrieving the data using the R 

language. The collected dataset included information on researchers and the articles they have authored/co-

authored. We generated a co-authorship network using the collected dataset that includes researcher name, 

discipline, affiliation, number of articles published, articles' titles, number of co-authors in each article and 

co-authors names, journal/conferences name for each article, and publishing year. The total number of 

authors in our dataset was about 3444 authors after removing the noisy data. The strategy that was used in 

dealing with the co-authorship network was based on classifying authors into groups of disciplines. The 

fields of chemistry, physics, and biology were formed as a science group (SC). In the same way, engineering 

group (EN) including architectural, civil, mechanical, and electrical fields; computing group (CO) including 

computer science, mathematics, statistics, and operations research; education group (EDU); agriculture group 

(AG); and business and administration group (BA) including marketing, finance, accounting, and business 

administration. The dataset contains 6 main disciplines, which are our targeted disciplines in this work. It 

should be mentioned that the number of articles used in this work was 12,532. Dividing this number on the 

number of authors taken in this work (3444) leads to having an average of 3.6 papers per author in our co-

authorship network, taking into considerations there are single-author papers with no collaborators. The data 

collection had the issue of author name disambiguation. To solve this issue, we used a particular strategy, 

which states that distinguishing authors can be performed through their ORCID numbers. However, in case 

of this identifier is not available for a particular author, we used his/her name along with his/her affiliation as 

the primary key in the database. Furthermore, we took into considerations that this issue cannot exist with the 

authors from the same institution. As mentioned, our co-authorship network contains international authors 

from worldwide institutions. During the data collection, our crawler went through two depths. More 

precisely, in depth-1 the crawler started randomly with a publication and took its main author and co-authors 

(if available). Then, the crawler looked for those co-authors if they appear as the main authors/co-authors in 

other publications and extract their information, which is depth-2. We strongly believed that this strategy 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 4, December 2021:  1103 - 1114 

1106 

further enriched our dataset with colorful patterns of collaboration, which is our purpose in this work. The 

generated network included 3444 nodes and 4240 edges. 

 

2.2.  Network measurements 

 The analysis of this work was based on many network measurements, each of which has the ability 

to reveal a particular fact on the co-authorship network. The main reason behind using these indicators was to 

enable readers to understand each measurement and what can evaluate in a co-authorship network. These 

measurements can be either used at the node (author) level or network (community or discipline) level. Now, 

we consider our network graph G=(N, E), where N represents network nodes and E represents network edges. 

The measurements we have used in this work are: 

 Clustering Coefficient (C): it reflects the tendency of network nodes to cluster together [13]. The value 

of C depends on the number of triangles that are formed by a particular node (3 nodes connected to each 

other). In a co-authorship network, C measures the tendency of authors in co-authoring articles and can 

be local clustering coefficient (Ci) or global clustering coefficient (CG). The former can be defined for 

each author as: 

 

𝐶𝑖 =
2|{𝑙𝑗𝑘: 𝑛𝑗 , 𝑛𝑘 ∈ 𝑁𝑖 , 𝑙𝑗𝑘 ∈ 𝐸}|

𝑘𝑖(𝑘𝑖 − 1)
 

(1) 

 

where 𝑙𝑗𝑘 is an article between the authors 𝑛𝑗 and 𝑛𝑘. 𝑁𝑖 is the total network authors and 𝑘𝑖 is the neighbors' 

authors in the network. On the other hand, the average clustering coefficient (global) (𝐶) of a network 𝐺 can 

be defined as: 

 

𝐶𝐺 =
∑𝑛
𝑖=1 𝐶𝑖
𝑁

 (2) 

 

where 𝐶𝑖 is defined in (1) and 𝑁 is the number of network authors. 

 Average Path Length (𝑙): for all possible pairs of authors in the network, it is defined as the average 

number of paths (steps) for all the shortest paths among the pairs of authors [13]. It shows the average 

shortest distance among authors and can be defined as: 

 

𝑙 =
1

𝑛(𝑛 − 1)
∑

𝑖≠𝑗

 

(3) 

 

where 𝑑𝑖𝑗 is the length between author 𝑖 and author 𝑗. 

 Diameter (𝑂): for a network, it is the longest path among all the shortest paths [14]. In our work, it 

calculates the distance between the farthest authors in the network. 

 Density (𝐷): it is the proportion of the number of network edges to the number of potential (possible) 

edges in that network, which means how close a network to be a fully-connected [14]. It shows the 

collaboration density among authors as well as the potential collaboration among authors and can be 

defined as: 

 

𝐷𝐺 =
2(𝐸(𝐺))

𝑁(𝑁 − 1)
 

(4) 

 

 Communities (𝑐𝑢): refers to the groups of nodes in a network that are densely connected with each 

other. In co-authorship networks, it reveals the research groups that have articles in common 

(collaborative groups). In our work, we used the Girvan-Newman Clustering algorithm [8] to find the 

number of research communities in the network and for each discipline. This algorithm detects the links 

(edges) that connect network communities then removes these links and leaves only the communities 

themselves. This technique uses a centrality measurement called betweenness. 

 Betweenness Centrality (𝐶𝑏): it shows how many times a node appears in the shortest path of network 

pairs [14]. It reveals the importance of a particular node in the flow of information within a network. In 

other words, it represents the importance of an author in a research community. In this work, 𝐶𝑏 shows 

how influential an author in a research community and within a discipline. 𝐶𝑏 of the author 𝑗 can be 

defined: 
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𝐶𝑏(𝑗) = ∑

𝑖≠𝑗≠𝑘

𝜎𝑖𝑘(𝑗)

𝜎𝑖𝑘
 

(5) 

 

where 𝜎𝑖𝑘 is the shortest path between the authors 𝑖 and 𝑘. 𝜎(𝑗) is the number of paths that pass through 

author 𝑗. 
 Degree Centrality (𝐶𝑑): it reflects the number of connections that a particular node has in a network 

[14]. In the context of this work, it reflects the actual number of papers an author has published. 

 Closeness Centrality (𝐶𝑐): it represents the reciprocal of the sum of all the shortest paths of a node to 

other network nodes [14]. It shows how close an author to other authors in a research community and 

can be described as: 

 

𝐶𝑐(𝑖) =
𝑁 − 1

∑𝑗 𝑑(𝑗𝑖)
 

(6) 

 

where 𝑑(𝑖𝑗) is the distance between the authors 𝑖 and 𝑗. This measurement will be further used in the 

proposed metric. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Co-authorship network 
As mentioned, our co-authorship network (CAN) was generated based on a particular strategy. It 

states that when two authors have participated in co-authoring an article, a link is established between them. 

This strategy was also followed in [8], [10], [11], [15]. CAN network consisted of 3444 authors and the 

number of edges was 4240 that connecting the authors. The visualization of the network is shown in Figure 2, 

which shows the dense level of co-authoring articles among authors from different disciplines. In the figure, 

the size of nodes reflects the frequency of collaboration of a particular author in the CAN network. 

 

 

 
 

Figure 2. Visualization of CAN network, different colors reflect different disciplines 

 

 

Moreover, according to the Girvan-Newman Clustering algorithm [8], CAN include 486 potential 

research communities with a strong modularity level of 0.875 as shown in Figure 3. Also, all the potential 

communities include authors from different disciplines, which is a positive indicator of the future of scientific 

collaboration among disciplines. It should be mentioned that the number of communities is dynamic and 

changed over time. 

Figure 4 depicts the degree distribution of the CAN network, which followed a power-law. 

According to [3], [12], co-authorship networks follow this kind of distribution since there exist few authors 

with a high degree (authored/co-authored large number of articles), while a large number of authors with low 
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degree. This phenomenon reflects one of the most important features in co-authorship networks. Based on the 

distinguished work of Barabasi and Bonabeau [16], when the degree distribution of a network follows a 

power-law, the network is considered to be Scale-Free Network. Therefore, the nodes of CAN network 

evolution are governed by the preferential attachment feature according to [12], [17]. This feature reflects 

important facts on a network. One of these facts is that the newly connected authors prefer to attach to the 

highly connected authors within the network. It can be inferred, fresh researchers should try to consider 

senior researchers for their future collaborations because this leads to improve their positions in the research 

community and eventually improve the quality of their researches. 

 

 

  
  

Figure 3. Modularity level; measures the strength of 

splitting a network into groups or communities. High 

values of modularity reflect dense connections among 

the extracted communities (disciplines) 

Figure 4. Degree distribution of CAN network (a 

power-law distribution) 

 

 

Furthermore, we benchmarked the CAN network with other co-authorship networks in the literature. 

The goal of this comparison is to see how our network performs compared to other networks. Table 1 

presents a comparison between CAN and 4 other co-authorship networks, namely, ACM, Biology, and 

Physics networks [11], and Engineering network [18]. According to the aforementioned table, the C value of 

CAN reflected a weak tendency of authors to collaborate. Also, the tendency (C) of authors from the same 

discipline is stronger than in authors from different disciplines. The 𝑙 value was higher compared to the 

benchmarking networks. This means the shortest distance among CAN authors is longer than what was 

obtained from other networks. Moreover, CAN is less dense compared to the benchmarking (Density 

(D)=0.001), this is due to the number of disciplines (and subdisciplines) compared to the other networks. 

Finally, the Diameter (O) is 19 in CAN, which is higher than the other networks.  

The above-mentioned results confirm our first claim in this work. The performance of CAN in terms 

of network measurements (C, l, D, O) underperformed the benchmarking networks. This means evaluating a 

coauthorship network needs to have a dataset that is colorful in disciplines and repositories. 

 

 
Table 1. Comparison between the can network and other similar co-authorship networks 

Network 𝑪 𝒍 D O 

CAN (multidisciplinary from several repositories) 0.016 7.613 0.001 19 

ACM (multidisciplinary from ACM repository) 0.060 4.990 0.01 15 

Biology (uni-disciplinary from ACM repository) 0.880 4.920 0.01 6 

Physics uni-disciplinary from ACM repository 0.450 6.190 0.01 9 

Engineering (uni-disciplinary from CNPq repository) 0.293 8.464 0.015 13 

 

 

3.2.  Disciplines network 

In this section, we extracted 6 sub-networks from CAN, each of which represents a particular 

discipline group. Practically, it is needed to perform a comparison among these disciplines in terms of the 

measurements mentioned in section 2.2. Table 2 presents the disciplines with the corresponding values of 

measurements. It can be observed that the SC discipline group has the highest number of communities, which 

reflects the highest level of collaboration among the other disciplines. In fact, a high number of communities 

in a network reflects the strong tendency of their authors to collaborate. 
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Furthermore, when observing the number of communities in a network, the number of authors in that 

network should also be observed and taken into considerations. Therefore, we see that the performance of a 

network in terms of forming research communities should be measured according to (as we propose) the ratio 

(𝑟) of the number of scientific communities (or research groups) (𝑐𝑢) to the actual number of authors 

(number of nodes) as: 

 

𝑟(𝑑𝑖𝑠) =
1

𝑁
𝑐𝑢(𝑑𝑖𝑠) (7) 

 

where 𝑑𝑖𝑠 denotes a discipline. According to 𝑟, most of the groups have almost close levels of forming 

communities as shown in Table 2. This leads to a better evaluation when investigating the scientific 

collaboration among authors in a co-authorship network. Furthermore, in the CAN network, the largest 

number of scientific communities has existed in the SC group. It also has the second-highest tendency of 

authors to cluster and collaborate with each other. It is inferred that increasing the number of research groups 

plays a significant role in increasing the research productivity of that group. Therefore, we found that about 

35% of the research articles in our network belong to the SC group. This result was also verified in other 

works in the literature such as [3], [10], [12], [19], [20]. These works found that the authors in the field of 

Science have strong tendencies to collaborate. On the other hand, although its small number of communities, 

the engineering discipline (EN) reflects the strong relations (C=0.347) of its authors to collaborate and co-

author articles with a high dense level of collaboration (D=0.011) compared to the other disciplines. Yet, 

there is a difference between the number of communities and the strengths of these communities (the strength 

of authors’ connections in a community). Furthermore, when comparing our results with the results of [11], 

the worldwide researchers of the Engineering discipline reflect approximately the same pattern of 𝐶 in terms 

of their tendency to collaborate. As can be seen, each network measurement can be considered as an indicator 

to reflect a specific fact on network communities and the collaboration patterns in disciplines. 

 

 

Table 2. In comparisons of the disciplines, the values are ordered based on the number of communities that 

each group has in its network (from high to low) 
Discipline network # of cu # of authors r C l D O 

SC 118 624 0.189 0.319 5.330 0.005 15 

EDU 89 549 0.162 0.309 2.575 0.006 7 

CO 81 398 0.203 0.234 4.018 0.007 9 

AG 67 462 0.145 0.28 2.439 0.008 6 

EN 66 620 0.106 0.347 4.056 0.011 10 

BA 65 791 0.082 0.232 4.806 0.01 10 

 

 

3.3.  CAN best connected authors 

As mentioned, network measurements can be used in two levels (network and node levels). In this 

section, the CAN network is analyzed based on node-level measurements. We aim at using centrality 

measurements for evaluating authors from different disciplines. The goal of this analysis is to reveal the 

disciplines that have the best-connected authors based on authors’ relations. The other reason for this analysis 

is to have an indicator for our further discussions. Table 3 ranks CAN authors based on the values of 

betweenness centrality (𝐶𝑏) measurement and the frequency of collaboration with other authors. In the 

context of co-authorship networks, 𝐶𝑏 reveals how influential an author in a research community. It shows 

the number of times an author appears in the shortest paths of network pairs. The results show that the 

science discipline (SC) has 4 authors out of the top 10 best-connected authors. Furthermore, in addition to the 

frequency of collaborations, the position of an author in a research community is another important factor 

that can be used in assessing an author. For instance, the CAN network has authors with more than 122 

published articles but their positions in the network do not make them influential. This means the positions of 

authors in a research community play a crucial role in the level of collaboration in the whole community. In 

section 3.1, we showed that the CAN network is scale-free and the concept of preferential attachment [21] is 

applicable. Therefore, increasing the level of collaboration among CAN authors can also be obtained when 

the authors tend to be connected and attached (collaborate) to best-connected authors within the network. 

This specific case leads to an increase in the number of triangles in the network (3 authors are connected and 

collaborated), which eventually increases the global clustering coefficient of the network. The concept of 

preferential attachment is based on the concepts of clustering coefficient and degree centrality. This means 

when an author has a strong tendency to collaborate and he/she has frequently collaborated with other 

authors, the probability of preferential attachment is also increased. The results show that the probability of 
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preferential attachment in Science and Engineering disciplines is the highest compared to other disciplines 

(0.758 and 0.701 respectively), while all the other disciplines have less than 0.3. 

 

3.4.  CAN best connected authors 

This section shows the current trends in collaboration among disciplines. The analysis of this section 

is important insofar as it investigates the integration of the disciplines that are considered in this work.  

Figure 5 depicts how CAN disciplines are connected and collaborated with each other in terms of co-

authoring articles. In this figure, each discipline group is represented as a node, and the edge between the two 

disciplines is formed if there was a collaboration between them. Usually, the collaboration among disciplines 

is almost performed when inspiring theories from a discipline and involving them in another one. The figure 

also depicts the level of collaboration between each pair of disciplines, which is represented by the weight of 

edges The size of nodes reflects the actual size of the disciplines in terms of the number of co-authored 

articles. It is clear that some pairs of disciplines reflect a high level of collaboration such as the pairs (CO-

EDU, BA-CO, EN-CO, and SC-AG). The integration among disciplines leads the value of 𝐶 to be 0.583, 

which is acceptable, and 𝑙 among CAN pairs equals 1.58, which is long compared to the size of this graph. 

Moreover, the highest value of 𝐶𝑏 was gained by the engineering discipline (EN), which reflects the strong 

tendency of the authors in this discipline to collaborate and contribute more to other disciplines. Practically, 

the integration of a particular field of research with other fields opens the horizon to the authors of both fields 

to come up with new contributions that will significantly improve the quality of research and share the 

knowledge. 

 

 

Table 3. Top 10 best-connected authors according to their disciplines. The items in this table are ascendingly 

ordered based on the values of Cb. The frequency of collaborations is also listed in the table, which expresses 

the number of co-authored articles of an author 
Discipline Group Field of Study 𝐶𝑏 Collaboration Frequency 

SC Physics 476227.25 122 

SC Chemistry 393431.53 56 

EDU Computer Education 365928.79 34 

AG Animal Production 325392.82 33 

EN Architectural 285042.29 31 

SC Chemistry 245861.18 38 

BA BA 242574.54 41 

BA Marketing 209667.36 44 

SC Chemistry 203790.99 46 

BA BA 195877.80 35 

 

 

 
 

Figure 5. The collaboration among the disciplines in CAN network. The weight of the edges reflects the 

strength of the collaboration for each pair of disciplines 

 

 



Int J Artif Intell ISSN: 2252-8938  

 

 Measuring scientific collaboration in co-authorship networks (Basim Mahmood) 

1111 

3.5.  The proposed approach 

In the previous sections, we measured the level of collaboration among authors/disciplines. The way 

we followed was based on standard network measurements. In this section, we describe the proposed metric 

and how it is used for measuring scientific collaboration in disciplines. 

In developing the proposed metric, we were inspired by the concept of social capital in sociology 

[20]-[22]. In social communities, social capital can be defined as the collectively shared values, cooperation, 

and reciprocity among individuals [20]. Social capital is not a measurement for network nodes, instead; it 

evaluates the relations among nodes [23]. Therefore, we propose to incorporate centrality measurements in 

developing a novel metric for measuring the global level of collaboration in academic communities. 

Furthermore, clustering coefficient measurement is an expression of the authors’ tendency to collaborate with 

others. Therefore, we propose to incorporate it into the proposed metric. Since we are investigating scientific 

collaboration among academic communities, we also propose to use the term collaboration capital (CC). This 

term is used in business and economic contexts [24] referring to the collaborative processes that improve the 

outcomes. The value of CC for a particular author represents the collective centralities and the clustering 

values of that author. On the other hand, the value of CC for a community (discipline) represents the average 

values of all authors in a discipline (means CC). The selected measurements give our proposed metric the 

ability to deeply investigate the relations among authors as well as their positions in CAN structure. We 

believe this way is efficient in evaluating the collaboration capital in a research community. Moreover, our 

metric looks at the network from many different points of view because it combines the characteristics of 

many measurements (features) in one strong metric.  

The value of 𝐶𝐶 for a particular author 𝑖 in a scientific community (𝑐𝑢) can be defined as: 

 

𝐶𝐶𝑐𝑢(𝑖) =∑

𝑛

𝑖=1

(𝐶𝐸(𝑖) + 𝑐(𝑖)) 
(8) 

 

where 𝑐 is the clustering coefficient of author 𝑖 in a community 𝑐𝑢. 𝐶𝐸 represents the collective value of the 

centrality measurements of a particular author and can be formalized as: 

 

𝐶𝐸(𝑖) = (𝐶𝑏(𝑖) + 𝐶𝑐(𝑖))
𝐶𝑑(𝑖) (9) 

 

where 𝐶𝑏, 𝐶𝑐, and 𝐶𝑑 are betweenness as shown in (5), closeness as shown in (6), and degree centralities for 

author 𝑖 respectively. The power (𝐶𝑑) in (9) reflects the frequency of collaborations of an author. This will 

contribute to increasing 𝐶𝐶 because the frequency of collaboration is considered as an important factor that 

should be given its actual role when measuring scientific collaboration. 

According to the aforementioned description, the CC of a particular community or discipline 

represents the average collaboration capital values of the authors in that discipline as: 

 

𝐶𝐶𝑐𝑢 =
∑𝑁
𝑖=1 𝐶𝐶𝑐𝑢(𝑖)

𝑁
 (10) 

 

In the experimental results, the value of 𝐶𝐶 of a discipline follows a power-law distribution (long-

tail distribution). All the values were normalized to be in the range of 0 and 1. The 𝐶𝐶 of each discipline is 

shown in Table 4. It can be observed that the CO and EN disciplines outperform the other disciplines in terms 

of collaboration capital as well as the strong ability of their authors to collaborate. On the other hand, SC 

discipline does not reflect a high performance of CC. Although four of the top 10 best-connected authors in 

the CAN network are from the SC discipline, the results show that its collaboration capital underperformed 

the aforementioned two disciplines. We believe this is due to First: the high level of variations in the 

clustering coefficient of authors, which is reasonable because the degree distribution of the CAN network 

follows a power-law. Second, the creation of links among network authors is controlled by the concept of 

preferential attachment as stated in [25]. 

According to the performance of the proposed metric (collaboration capital), we see that the results 

show a different perspective from what we have analyzed in the previous sections. For instance, the 

performance of the Science discipline is changed when it comes to collaboration capital. Therefore, using one 

measurement in evaluating scientific collaboration is insufficient and not reliable. This result confirms our 

second claim in this work. The evaluation should be performed using a metric that looks at the problem from 

many different angles aiming at having a clear view and coming up with an accurate and reliable assessment.  
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Table 4. Mean collaboration capital for CAN disciplines 
Discipline # of Authors Mean CC 

CO 398 0.145 

EN 620 0.126 

SC 624 0.08 

AG 462 0.075 

BA 791 0.07 

EDU 549 0.043 

 

 

3.6.  Recommendations 

Based on the obtained results, we summarize our recommendations by the following: 

 The concepts of complex networks can be considered as powerful tools in understanding the 

collaboration patterns in co-authorship networks and this is due to the ability of each concept in 

analyzing network relations from a different perspective. Therefore, developers can benefit from these 

concepts when designing academic assessment tools. 

 The preferential attachment feature in coauthorship networks plays a significant role in improving 

research quality. Therefore, it is of benefit for the institutions to encourage this kind of feature within 

their academic settings. 

 The process of measuring the level of collaboration does not depend on a specific metric, it depends on 

the aspect we are investigating. For instance, one can measure the tendency of a researcher/community 

to collaborate with others; the clustering coefficient can be involved in this case. In the same context, 

when exploring the most influential authors in a community; betweenness centrality measurement can 

be used. 

 The number of authors in a discipline is not an important factor for strengthening the collaboration 

level. Instead, the number of research groups (communities) is an effective indicator that contributes to 

increasing the level of collaboration among authors. This feature also enriches the quality of research 

with colorful experiences and provides more trusted and flexible solutions for our life issues. 

 Improving the collaboration level is not only about the quantity of the co-authored articles, it is also 

about with whom the authors are connected (collaborated). 

 The concept of social capital in sociology is applicable in co-authorship networks and can be in the 

form of CC, which is very useful when it comes to scientific collaboration assessment. 

 According to the obtained results, there are some facts on the scientific collaboration in disciplines such 

that; the authors in Science and Agriculture disciplines reflected high performance in terms of co-

authoring articles, the Engineering discipline authors have strong tendencies to collaborate, and 

Computer Science discipline outperforms the other disciplines in terms of collaboration capital. 

 

 

4. CONCLUSION 

In this work, we investigated and analyzed the collaboration patterns among authors from different 

disciplines considering 6 of them, namely; science, engineering, computing, education, administration and 

economics, and agriculture. We generated a co-authorship network called CAN network containing all the 

aforementioned disciplines (and subdisciplines). The dataset in this work was collected from Google Scholar 

including 3444 authors and 12,532 articles retrieved from many different repositories. We also proposed a 

novel metric to measure what we called CC. The analysis of this work showed that; accurate evaluating of 

coauthorship networks can be obtained when including more disciplines and involve different repositories in 

the dataset. The results also showed that measuring the scientific collaboration in a research community 

needs to adopt a metric that can capture most of the possible features in that community aiming at producing 

a more precise evaluation. In future work, we plan to investigate our coauthorship network using more 

measurements (e.g., Eigencentrality and bridging centrality). We also plan to develop a social-driven 

approach using some social theories (e.g., assortativity) in exploring research communities and predict future 

collaboration among disciplines.  
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