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Abstract 

Aim: To clarify the high variability in Covid-19-related deaths during the first wave of the 

pandemic, we conducted a modeling study using publicly available data. 

Materials and Methods: We used 13 population- and country-specific variables to predict the 

number of population-standardized Covid-19-related deaths in 43 European countries using 

generalized linear models: percentage of test-standardized number of SARS-CoV-2-cases, 

population density, life expectancy, severity of governmental responses, influenza-vaccination 

coverage, vitamin D status, smoking and diabetes prevalence, cardiovascular disease death 

rate, number of hospital beds, gross domestic product, human development index and 

percentage of people older than 65 years. 

Results: We found that test-standardized number of SARS-CoV-2-cases and flu vaccination 

coverage in the elderly were the most important predictors, together with vitamin D status, 

gross domestic product, population density and government response severity explaining 

roughly two-thirds of the variation in Covid-19 related deaths. The latter variable was 

positively, but only weakly associated with the outcome, i.e., deaths were higher in countries 

with more severe government response. Higher flu vaccination coverage and low vitamin D 

status were associated with more Covid-19 related deaths. Most other predictors appeared to 

be negligible. 

Conclusion: Adequate vitamin D levels are important, while flu-vaccination in the elderly and 

stronger government response were putative aggravating factors of Covid-19 related deaths. 

These results may inform protection strategies against future infectious disease outbreaks. 
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1 Introduction 

The SARS-Corona-Virus 2 (CoV2) pandemic caused an unprecedented worldwide public 

health crisis by its impact on basically every system of human organization (1,2). Untreated 

Covid-19 disease may lead to severe atypical pneumonia (3,4), a cytokine storm and other 

potentially lethal sequelae (5–7). Other potential factors, such as host factors or population 

factors, were not much considered in the scientific and political discourse. For example, there 

is now strong evidence that vitamin D status predicts the risk for and outcome of Covid-19 

infections (8–13). We also know that demographics play a role, as initially mostly elderly 

patients with a mean age above 70 years have been severely affected (14,15). However, 

during the initial phase of the CoV2 outbreak, there was a wide variation in lethality across 

countries and regions. This variation is partially shrouded by the fact that most agencies and 

their dashboards propagate unstandardized figures of cases and deaths. A publication that 

estimated excess death rates in the US during the early time of the CoV2 pandemic as 

compared with the same months of previous years reveals a wide variation from -71,9 deaths 

per 100.000 inhabitants in North Dakota to 299,1 deaths per 100.000 inhabitants in New York 

City, with seven states actually exhibiting less excess mortality than in the previous 

comparison years, and 12 US states presenting with excess mortality figures below 10 per 

100.000 inhabitants (16). The same is true for Europe: Miles and colleagues listed excess 

deaths of 21% for Spain, 20% for the UK, 18% for Italy down to 6% for Sweden, 3% for 

Portugal, -1% for Germany, -3% for Denmark and -4% for Norway during the first wave of 

the pandemic (17). 

In order to be better prepared for future infectious disease outbreaks, there is clearly a need to 

understand what might have caused such variation in death numbers during the first wave of 

the pandemic. Are there population variables, public health variables, or individual-specific 

factors that can be identified that make this variation understandable? This was the guiding 

question of this modeling study. 

2 Materials and Methods 

We extracted data for 44 European countries for which the number of Covid-19 related deaths 

per 1.000.000 inhabitants up until 31
st
 August 2020 was known. This date was chosen since it 

approximately marked the end of the first infection wave in Europe (18,19). The following 13 

variables were used as putative predictors of the dependent variable “standardized Covid-19 

related deaths” which we subsequently refer to as “y” (Supplementary Table 1): (i) the test-

standardized number of cases (in %), calculated as the number of cases in a country divided 

by the number of tests in that country × 100; (ii) the influenza (flu) vaccination rate in the 

elderly; (iii) life expectancy (in years); (iv) the population density (people per km
2
); (v) mean 

Government Response Severity Index (GRSI) that describes the number and severity of non-

pharmaceutical interventions employed between 15th March and 15th August 2020; (vi) 

vitamin D status (25(OH)D<50nmol/l/ ≥50nmol/l); (vii) cardiovascular disease (CVD) death 

rate; (viii) diabetes prevalence; (ix) smoking habits (average percentage of male and female 

smokers); (x) percentage of elderly (people older than 65 years); (xi) gross domestic product; 

(xii) human development index; (xiii) hospital beds (number of beds per thousand 

inhabitants). The data sources are given in Supplementary Data File 1. 



Because the distribution of y followed a gamma distribution well (Figure 1), we calculated 

generalized linear models (GLMs) on a gamma-distributed variable with a log-link function. 

Since a log-transformation produced an outcome variable with an approximately normal 

distribution (Shapiro-Wilk normality test p=0.864, Figure 1), we also calculated standard 

multiple linear regression models (LRMs) on log(y). During the initial check of modeling 

assumptions, one outlier (Andorra) was identified and removed from the sample 

(Supplementary Data File 1). 

The final sample thus included 43 European countries of which 40 had known flu vaccination 

rates, 37 had known flu vaccination rates and GRSI values, and 31 had no missing variable 

values. To utilize as many cases as possible for multivariable modeling (20) missing variable 

values were imputed with multiple imputation by chained equations using the R package 

‘mice’ (21). A total of 100 imputation data sets were created. Each was used to fit the 

regression models, and the model parameters were averaged over all 100 model fits. 

Different regression models were pre-specified according to plausible scientific hypothetical 

explanations for Covid-19 related deaths, reflecting the scientific practice of evaluating 

multiple pre-specified working hypotheses for their ability to explain the observed data (22). 

To complement the set of pre-specified hypotheses, one additional model was built using the 

Least Absolute Shrinkage and Selection Operator (LASSO), a variable selection method that 

shrinks the regression coefficients of less important predictors to zero (23). Instead of 

performing multiple null hypothesis testing, we ranked the different models according to their 

evidence constituted by the data by using the bias-corrected Akaike Information criterion 

(22). 

Because of the skewed distribution of some of the predictors, we first fitted a univariable 

model for each predictor and its log transform, and chose to use the latter for multivariable 

modeling if it resulted in a AICc reduction by at least 2 compared to its non-transformed 

values. In this way, it was found that test-standardized cases, population density and CVD 

death rate resulted in significantly better model fits as log-transformed variables. 

As the simplest hypothesis, we assumed that the number of deaths could be predicted by the 

number of test-standardized cases: 

y ~ log(test-standardized cases) (1) 

The second most-plausible simple hypothesis was that in addition to the number of cases, the 

severity of governmental responses, whose concept was to prevent infections, would allow 

better predictions of the outcome: 

y ~ log(test-standardized cases) + GRSI (2) 

A third model was motivated by an interesting paper showing that the flu vaccination rate in 

the elderly was significantly correlated at r = .68 with Covid-19 related deaths in Europe (24). 

Furthermore, early clinical data have indicated that vitamin D has protective effects against 

Covid-19, which would be expected based on its immune-modulatory functions (1). Finally, a 

modeling study by Liang et al. found that the number of hospital beds in a country was 
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associated with decreased Covid-19 mortality (25). In model 3, we therefore investigated the 

impact of flu vaccinates rates, nation-wide vitamin D status and the number of hospital beds, 

which all could be seen as features of the health care system: 

y ~ log(test-standardized cases) + vitamin D status + hospital beds + flu vaccination rate (3) 

During the first wave of the pandemic, elderly people were far more susceptible to Covid-19 

related deaths (19,26), whereby an inverse association between vitamin D levels and Covid-

19 severity was shown in an Italian study (27). These findings motivated the construction of a 

fourth model which attempted to predict Covid-19 related deaths based on vitamin D status 

and demographics: 

y ~ log(test-standardized cases) + vitamin D status + life expectancy + percentage of elderly 

(4) 

Besides old age, it was soon revealed during the early phase of the pandemic that 

cardiovascular disease (19), diabetes (28) and smoking (29,30) are associated with Covid-19 

severity. The fifth hypothesis therefore assumed that population-level morbidity predictors 

would be relevant for predicting Covid-19 related deaths: 

  y ~ log(test-standardized cases) + vitamin D status + smoking habits + log(CVD death rate) 

+ diabetes prevalence (5) 

Previous modeling studies also tested for associations between Covid-19 related deaths and 

different country-specific predictors such as the gross domestic product and percentage of the 

elderly (25,31). The sixth hypothesis therefore correlated Covid-19 deaths with such country-

specific predictors: 

y ~ log(test-standardized cases) + vitamin D status + log(population density) + life 

expectancy + gross domestic product + human development index + percentage of 

elderly (6) 

The seventh model was the full model using all 13 predictors which was included as a 

reference model (22). 

Finally, an eighth model was built using a data-driven approach. To this aim, for each 

imputed dataset the most important variables were selected from the full set of 13 predictors 

using the LASSO method in a LRM predicting log(y). LASSO performs variable selection by 

shrinking the regression coefficients of the less important predictors to zero (32). The 

following variables were selected into the majority (>50) of models: 

y ~ log(test-standardized cases) + vitamin D status + GRSI + flu vaccination rate + 

log(CVD death rate) + log(population density) + GDP (8) 

The best model was identified as the one with the smallest AICc, and all other models were 

compared to the best model by computing AICc differences △𝑖, probabilities 𝑤𝑖 of model 𝑖 

being the best model (in the Kullback-Leibler information sense) and evidence ratios 𝐸𝑖,𝑗 =



𝑤𝑖/𝑤𝑗 (22). Model adequacy was measured by R
2 

, the proportion of variance explained by 

the predictors; for the GLMs a Kullback-Leibler divergence-based R
2 

measure was used (33). 

All analyses were calculated with R version 4.0.2, and statistical significance was defined as 

p-values <0.01. A detailed description of the statistics is given in Supplementary Data File 1.  

 

3 Results 

Figure 2 shows a so-called corrgram (34) for the 13 variables that we used for modeling, 

whereby only the significant (p<0.01) correlations have been depicted. Smoking prevalence 

and cardiovascular disease death rate, but not diabetes prevalence, were inversely and 

significantly correlated with life expectancy, the human development index and gross 

domestic product. No significant correlations existed for vitamin D levels with any of the 

other variables. 

The results of both the GLMs (assuming a Gamma distribution for the outcome variable y) 

and the LRMs fitted to log(y) are presented in Table 1. The GLMs and LRMs yielded 

qualitatively similar results for all eight hypotheses considered. Test-standardized cases alone 

were able to explain about 20% of the variance in y or log(y), respectively, while the full 

model (model 7) was able to explain 64-67% as judged by the adjusted KL-R
2
 values. As 

expected, test-standardized cases were positive and the most significant predictors of Covid-

19 related deaths in all models. As also expected, sufficient vitamin D status was associated 

with fewer deaths, although the association was only significant at the conventional p = 0.05 

level in models 7 and 8, but not at p =0.01, as stipulated. Surprisingly, however, it was found 

that the GRSI was no significant predictor of Covid-19 related deaths, and even exhibits a 

positive association (i.e. more stringent measures predicting higher death rates). Also 

surprisingly, flu vaccination rates were significantly and positively related to the outcome, 

i.e., there were more deaths in countries with higher flu-vaccination coverage. The number of 

hospital beds, percentage of elderly, human development index and smoking and diabetes 

prevalence, were not strongly associated with Covid-19 related deaths. In contrast, the GDP 

was found to be a significant predictor in models 7 and 8 with a higher GDP being associated 

with more Covid-19 related deaths. 

A ranking of the different models is given in Table 2. The evidence clearly favored the data-

driven model 8 which was built by first selecting variables using the LASSO method. 

Compared with this model, all other models were basically ruled out by the strength of 

evidence. This shows that a specific combination of government-, population- and country-

specific factors were important for predicting Covid-19-related deaths. This final model 8 was 

thereby able to explain roughly two-thirds of the variance in outcomes, similar to the full 

model 7, but using seven less predictors. 

In order to check if our results are dependent on the imputation of missing variables, we 

refitted the final GLM and LRM model to the original dataset with missing variables removed 

(Table 3). These models resulted in qualitatively very similar results as model 8 in Table 1 

and confirmed that the two most important predictors of standardized COVID-19 deaths were 
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again flu vaccination rates and the number of test-standardized cases, which were both 

positively associated with the outcome. GDP was also confirmed as a significant and 

positively associated predictor of Covid-19 deaths, and vitamin D status now reached the 

threshold of statistical significance.in the GLM (p=0.00573). 

4 Discussion 

Modeling Covid-19 related death rates in 43 European countries during the initial phase of the 

outbreak until August 2020, unravels some interesting findings: 

a) Unsurprisingly, test-standardized CoV2-cases predict the number of deaths. This 

variable on its own was able to explain about 20% of the variance. 

b) Surprisingly, the stringency of government responses correlated positively with 

Covid-19 related death rates, i.e., stricter government response was associated with 

more deaths; however, it was not a significant predictor. 

c) Also surprisingly, the second-most important predictor was the flu-vaccination 

coverage in the elderly: the higher this vaccination rate is, the more Covid-19 

related deaths we see in a country. 

d) We confirmed that population-wide vitamin D status may have acted protectively 

against COVID-19 related deaths during the initial phase of the outbreak. It was a 

highly significant predictor in the best GLM fitted to the dataset with no missing 

variables (Table 3). 

e) Countries with a higher GDP experienced a higher Covid-19 associated death rate. 

These findings are strengthened by the fact that two different models reached the same 

conclusions: a GLM predicting a gamma-distributed outcome variable with log-linked 

predictors and a standard multiple LRM with identity link functions of predictors on a log-

transformed outcome variable. 

It is easy to understand that more CoV2 cases translate into more Covid-19 related deaths. 

The importance of this predictor on its own is underlined by the fact that it is able to explain 

roughly 20% of Covid-19 related deaths. However, there remains variance to be explained by 

other factors. Although we do not assume we have captured all important variables, we have 

captured at least some as only six variables were able to explain about two-thirds of the total 

variance. A reassuring finding was that country-wide vitamin D status was inversely 

associated with Covid-19 related deaths, consistent with clinical and epidemiological data (8–

13). Most surprising and most counterintuitive are the two findings that there are more Covid-

19 related deaths in countries with higher flu vaccination coverage in the elderly, and, in 

addition, that the severity of governments’ responses with non-pharmaceutical interventions 

was non-significant and counterintuitive in its effect (Table 1).  

How can this strong association between flu vaccination rates and Covid-19 related deaths be 

explained? A careful randomized trial of flu vaccination in children showed that children who 

were vaccinated against influenza were better protected against influenza but suffered a 

fourfold higher risk of other respiratory virus dependent diseases (35). This might have to do 

with unknown mechanisms that disturb the ecology of pathogens, known as the virus 



interference phenomenon. A study conducted during the 2017/2018 influenza season revealed 

that flu vaccination was associated with a 36% increased odds of contracting respiratory 

coronavirus diseases (odds ratio 95% confidence interval 1.14-1.63, p<0.01), while affording 

specific protection against influenza and parainfluenza viruses (36). 

Thus, the negative impact of flu vaccination might have to do with several mechanisms: First, 

the virus interference phenomenon as shown for non-CoV2 coronaviruses (36); second, the 

fact that the immunological load on an organism that has to deal with a flu vaccine binds 

resources that cannot be mustered against a new and dangerous pathogen like CoV2. Third, it 

might also be the case that immune-enhancers in vaccines, such as aluminum derivates which 

are potentially toxic, burden the organism and hamper natural immunity. For example, it was 

shown experimentally in chicks that aluminum can disturb vitamin D metabolism (37). 

Furthermore, it has been argued that influenza vaccines are produced in eggs and other cell-

systems that are not routinely tested against corona-viruses. Hence, corona-virus proteins 

from other corona-viruses might be present in these vaccines and induce allergic reactions 

against the novel CoV2 (38). Although these biological mechanisms would support the 

hypothesis that higher flu vaccination rates increased Covid-19 mortality rates, we cannot rule 

out the possibility that flu vaccination rate is simply a non-causal confounder strongly 

associated with some other (untested) variable, so that further research is needed to resolve 

this issue. Our finding is also in contrast to data from the US (39,40). However, the 

correlation between flu vaccination and COVID-19 death rate in the US is much lower than in 

Europe (24), probably because there is little variation in influenza vaccine coverage in the US. 

Our results are derived from population-level data in Europe in the elderly, which might 

describe a specifically susceptible fraction of the population.  

Non-pharmaceutical interventions were widely hailed in modeling studies as having 

prevented higher incidence figures of cases and deaths (41–43). While this might be true for 

some countries and some single interventions, some authors are skeptical (44–49). Careful 

modeling studies for Germany, for instance, show that, although Germany was comparatively 

early to react – first measures were introduced on March 8 and shortly after this a full country 

lockdown was enacted – the peak of the infection and of the reproduction numbers was 

reached in nearly all 420 German districts on or around March 8 and thus none of the non-

pharmaceutical interventions could have been causally related to the reduction of cases, and 

hence deaths (50,51). The ensuing reduction of cases is a misattribution: it is not due to the 

lockdown, but obviously to the fact that the virus followed its own dynamic which needs to be 

better understood (52). Thus, there is independent evidence that non-pharmaceutical 

interventions are less effective than often thought. This would explain the weak association 

with Covid-19 related deaths in our analysis. Interestingly, our observation that the GRSI was 

positively associated with Covid-19 related deaths during the first phase of the pandemic 

replicates an earlier modeling study by Annaka which included data from 108 countries and in 

which this association was even significant in Ordinary Least Squares regression (31). 

We find it quite remarkable that only six variables help to explain roughly two-thirds of the 

variation in Covid-19 related deaths. Because vitamin D status was one of them, it might be 

interesting to study other variables related to health. Vitamin D entered the best model 
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number 8 with a comparatively large regression coefficient and was highly significant in a 

GLM fit to the complete dataset. Vitamin D seems to be an important predictor, as models 

without it are clearly inferior. For example, removing vitamin D status as a predictor from the 

GLM 8 fitted to the complete dataset resulted in a significantly worse model fit (AICc = 424.4 

vs. 362.0) and less efficiency in explaining variance (KL-R
2

adj = 0.684 vs. KL-R
2

adj = 0.726). 

Thus, as a theoretically and numerically strong predictor, vitamin D strongly improves model 

fit and therefore we conclude that vitamin D was protective against death during the first 

wave of the Covid-19 pandemic. Its lack of strong statistical significance in models fit to the 

imputed dataset is likely due to the coarse grained nature of our data and uncertainty in 

imputation of missing values. 

The limitations of our approach need to be kept in mind: 

First, there was collinearity among some of the variables we used for modeling (Figure 2). 

However,  no significantcorrelations existed among the six variables in the best model (Figure 

3). This was supported by the computation of variance inflation factors  which were all <1.65, 

showing that there was no significant collinearity between these six variables. In particular, 

flu vaccination rate had the least collinearity with the other predictors (variance inflation 

factor = 1.2). 

Second, we were unable to find flu vaccination data, GRSI and some other data for all 

countries. We tried to overcome this limitation through multiple imputation by chained 

equations, and the results were consistent with an analysis using only the cases for which 

every variable value was known. 

Third, one potential problem we cannot remedy is the notorious unreliability of data or 

differences in the definition of cases, of deaths, and in reporting standards. This can be seen in 

the fact that Belgium is a clear outlier in all analyses that decreases the fit of the model. It is 

well known that the definition of Covid-19 related deaths in Belgium was more lenient than in 

other countries. Also, there is some evidence that some authoritarian governments tended to 

manipulate (downplayed) their Covid-19 death data (31), which could have biased our results. 

In his country-level model study, Annaka (31)accounted for such a putative reporting bias by 

including the HRV transparency index developed by Hollyer et al. (53) which he used as a 

proxy for data transparency. However, the HRV index was originally not intended for 

assessing the transparency of pandemic death reporting; in addition, its latest version (the one 

used by Annaka) dates to the year 2010 and was only available for 21 of the 43 countries 

included in our analysis (median index 4.403, range -0.685−5.636); that Denmark scored 

worst with an HRV index of only -0.685 also appears counterintuitive and questions the 

application of this index to judge the transparency of Covid-19 related deaths reporting. The 

fact that we restricted the analysis to European countries of which the large majority 

nowadays is characterized as democratic would have mitigated the putative effects of data 

transparency bias.  

Vitamin D estimates also have several uncertainties, such as having been measured in rather 

small cohorts, in different years and during different times of the year. Whenever possible, we 

preferred vitamin D values from the literature that had been measured in elderly people and 



during winter/spring. There was a weak positive correlation between a country’s 

representative 25(OH)D concentrations and latitude (Kendall’s τ=0.255, p=0.0438), pointing 

towards vitamin D supplementation having a stronger influence on  vitamin D status than 

living in southern latitudes. Also, Covid-19 reporting systems might be less reliable in some 

countries compared with others. These are the limits of our data and our analyses. But 

considering the fact that the whole world, politicians and public health officials use exactly 

the same data for their decisions should allow us to use them for analysis. One should 

remember that being a case, when considering the number of tests in a country, has only a 

weak relationship with becoming a fatality. It has been shown that the case fatality rate during 

the first wave was much less than previously assumed and estimated to be 0.15% (54). In 

Germany the case-fatality rate has been calculated from well documented cohorts to be 0.12 

to 0.35% (55,56). The still widely circulating higher case fatality rates are due to the fact that 

they are largely calculated using raw, absolute figures without knowledge of the real 

prevalence (57). But also standardized figures might be unreliable. Often the same person is 

tested multiple times. Thus, we likely overestimate the number of cases by some margin. This 

would mean: the true link between being a case and becoming a fatality is probably even 

weaker. 

Considering all these weaknesses our paper also has some strengths. First, care was taken to 

ensure that the essential requirements for linear modeling were met. Second, we pre-specified 

plausible hypotheses (expressed as GLMs or LRMs) and used a robust model comparison 

framework based on Kullback-Leibler information to compare them, in this way 

automatically incorporating penalties for potential overfitting. Third, restricting the analysis to 

Europe means that we have a comparatively homogeneous sample which nevertheless has 

enough variability. While all countries issued warnings the way NPIs were implemented 

differed widely, from suggestions and recommendations in Sweden to very strict stay-at-home 

orders that were policed in Spain, from nearly no regard in Belarus to strict political measures 

in Italy. Thus, we likely have seen a representative laboratory for the world, except that we do 

not cover any variance in ethnicity. 

5 Conclusions 

In conclusion we see that Covid-19 related deaths during the first wave were most importantly 

dependent on the percentage of test-positive cases and flu-vaccination rate among the elderly 

in a country, whereby larger flu vaccination rates were associated with higher Covid-19 

related deaths. The third important predictor was the GDP, followed by country-wide vitamin 

D status in the elderly, for which a causal relationship appears well supported by clinical and 

mechanistic evidence. These variables predict the variability in Covid-19 related deaths much 

better than the severity of governmental responses, the availability of hospital beds, smoking 

and diabetes prevalence or CVD death rates. Overall, we were able to show that a specific 

combination of government response-, population- and country-specific predictors was able to 

explain roughly two-thirds of the variance in Covid-19 related deaths. This might encourage 

others to look for additional factors that may explain the remainder of the variability in cases 

and deaths during the initial phases of the CoV2 outbreak. Ultimately, using the insights from 

modeling studies such as ours may help to be better prepared against future infectious disease 

outbreaks. 
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Figure captions 

Figure 1: Left: Observed distribution of the outcome variable “Covid-19 related deaths per 1 

million inhabitants” and a gamma distribution (rate = 0.00438, shape = 0.9270) fitted through 

maximum likelihood estimation. Right: Observed distribution of the log-transformed outcome 

variable, with a best-fit normal distribution. 

Figure 2: Corrgram showing the Spearman correlation coefficients for all significant 

correlations among the 13 variables used for modeling (N=31, countries with missing 

variables removed). 

Figure 3: Corrgram showing the Spearman correlation coefficients for all pairs of the six 

variables included in the best model (N=31, countries with missing variables removed). The 

strongest correlation was observed between vitamin D and the gross domestic product which 

was almost significant (p=0.013).
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Table 1: Parameters of the generalized linear models fitted to standardized deaths and and linear models fitted to the logarithm of standardized deaths 

Model 1 Generalized linear model Linear model 

Variable Regression 
coefficient 

p-value KL-R2 KL-R2
adj. Regression coefficient p-value R2 R2

adj. 

log(test-standardized cases [%]) 0.600 (0.164) 0.00076 0.218 0.199 0.568 (0.165) 0.0014* 0.225 0.206 

Model 2 Generalized linear model Linear model 

Variable Regression 
coefficient 

p-value KL-R2 KL-R2
adj. Regression coefficient p-value R2 R2

adj. 

log(test-standardized cases [%]) 0.609 (0.159) 0.00047 0.297 0.261 0.498 (0.165) 0.0045* 0.286 0.250 

GRSI 0.037 (0.017) 0.035 0.032 (0.017) 0.075 

Model 3 Generalized linear model Linear model 

Variable Regression 
coefficient 

p-value KL-R2 KL-
R2

adj. 

 Regression coefficient p-value R2 R2
adj. 

log(test-standardized cases [%]) 0.729 (0.145) 1.9×10-5* 0.524 0.474  0.678 (0.157) 0.00013* 0.491 0.437 

Vitamin D status (sufficient vs. 
deficient) 

-0.299 (0.367) 0.425 -0.510 (0.348) 0.154 

Hospital beds per 1000 0.025 (0.068) 0.710 0.011 (0.064) 0.859 

Flu vaccination rate [%] 0.032 (0.007) 3.1×10-5* 0.029 (0.007) 0.00029* 

Model 4 Generalized linear model Linear model 

Variable Regression 
coefficient 

p-value KL-R2 KL-
R2

adj. 

 Regression coefficient p-value R2 R2
adj. 

log(test-standardized cases [%]) 0.730 (0.131) 2.9×10-6* 0.498 0.446  0.695 (0.164) 0.00016* 0.424 0.363 

Vitamin D status (sufficient vs. 
deficient) 

-0.472 (0.287) 0.109 -0.416 (0.374) 0.275 

Life expectancy [years] 0.189 (0.040) 4.1×10-5* 0.155 (0.050) 0.0043* 

Elderly [%] -0.033 (0.051) 0.533 0.005 (0.069) 0.943 

Model 5 Generalized linear model Linear model 

Variable Regression 
coefficient 

p-value KL-R2 KL-R2
adj. Regression coefficient p-value R2 R2

adj. 

log(test-standardized cases [%]) 0.709 (0.151) 8.3×10-5* 0.551 0.490 0.735 (0.158) 5.3×10-5* 0.504 0.437 

Vitamin D status (sufficient vs. -0.363 (0.307) 0.248 -0.488 (0.346) 0.170 



deficient) 

Smoking prevalence [%] -0.007 (0.029) 0.806 -0.006 (0.030) 0.844 

log(CVD death rate) -0.999 (0.388) 0.020 -0.985 (0.392) 0.020 

Diabetes prevalence [%] -0.09 (0.07) 0.185 -0.112 (0.080) 0.174 

Model 6   

log(test-standardized cases [%]) 0.961 (0.171) 6.0×10-6* 0.557 0.484 0.894 (0.198) 0.00013* 0.516 0.436 

log(population density [km-2]) 0.222 (0.113) 0.058 0.127 (0.133) 0.325 

Life expectancy [years] -0.011 (0.076) 0.883 0.011 (0.087) 0.886 

Gross domestic product 2.6×10-5 
(1.5×10-5) 

0.088 3.8×10-5 (1.7×10-5) 0.037 

Human development index 1.94 (5.52) 0.726 -3.9 (6.4) 0.549 

Elderly [%] 0.077 (0.062) 0.224 0.110 (0.074) 0.152 

Model 7   

log(test-standardized cases [%]) 0.968 (0.148) 1.7×10-6* 0.773 0.671 0.951 (0.172) 1.3×10-5* 0.756 0.647 

GRSI 0.030 (0.015) 0.055 0.030 (0.018) 0.118 

Vitamin D status (sufficient vs. 
deficient) 

-0.716 (0.326) 0.043 -0.763 (0.372) 0.055 

Flu vaccination rate 0.019 (0.006) 0.0055* 0.020 (0.007) 0.011 

Life expectancy [years] -0.046 (0.112) 0.685 -0.070 (0.123) 0.575 

log(population density [km-2]) 0.092 (0.107) 0.399 0.062 (0.124) 0.623 

Smoking prevalence [%] -0.014 (0.022) 0.520 -0.022 (0.025) 0.350 

log(CVD death rate) -0.037 (0.769) 0.962 -0.165 (0.936) 0.862 

Diabetes prevalence [%] -0.058 (0.069) 0.414 -0.047 (0.082) 0.572 

Hospital beds per 1000 0.032 (0.072) 0.657 0.065 (0.082) 0.433 

GDP 3.8×10-5 
(1.2×10-5) 

0.0055* 4.2×10-5 (1.4×10-5) 0.0074* 

Human development index -2.5 (5.2) 0.630 -2.8 (6.2) 0.654 

Elderly [%] 0.088 (0.057) 0.143 0.097 (0.065) 0.150 

Model 8   

log(test-standardized cases [%]) 0.844 (0.123) 9.1×10-7* 0.727 0.681 0.809 (0.147) 1.1×10-5* 0.689 0.634 

GRSI 0.021 (0.011) 0.071 0.021 (0.014) 0.154 

Vitamin D status (sufficient vs. -0.704 (0.283) 0.023 -0.801 (0.332) 0.024 
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deficient) 

Flu vaccination rate [%] 0.021 (0.005) 0.00021* 0.021 (0.006) 0.0015* 

log(population density [km-2]) 0.127 (0.097) 0.209 0.099 (0.111) 0.379 

GDP 2.8×10-5 
(7.3×10-6) 

0.0070* 3.0×10-5 (9.0×10-6) 0.0023* 

GDP: Gross domestic product; GRSI: Government Response Severity Index; CVD: Cardiovascular disease; *p<0.01 (statistically significant) 

 

 



  

 1 

Table 2: Comparison of the eight different models specified in equations (1-8) 2 

  Generalized linear model Linear regression model 

Rank Model AICc △𝑖  𝑤𝑖 𝐸8,𝑖 Model AICc △𝑖  𝑤𝑖 𝐸8,𝑖 

1 8 505.1 0.0 0.9998 1 8 104.9 0 0.999 1 

2 7 524.2 19.1 <0.0001 13805 3 120.3 15.4 0.0005 2211 

3 3 524.8 19.7 <0.0001 19376 7 121.8 16.9 0.0002 4781 

4 5 524.9 19.8 <0.0001 19641 5 121.9 17.1 0.0002 5083 

5 6 527.5 22.42 <0.0001 73783 6 123.9 19.1 <0.0001 13940 

6 4 527.5 22.43 <0.0001 74275 4 125.7 20.8 <0.0001 33247 

7 2 538.5 33.4 <0.0001 >100000 2 129.7 24.8 <0.0001 >100000 

8 1 541.3 36.2 <0.0001 >100000 1 130.7 25.8 <0.0001 >100000 

Models were ranked according to increasing AICc, i.e., the higher AICc the less parsimonious the 3 

model and the worse the fit in relation to the number of variables employed. AICc: Bias-corrected 4 

Akaike Information Citerion; △𝑖: Difference in AICc to the best model (models with △>15-20 must 5 

be judged to be implausible); 𝑤𝑖: probability of model 𝑖 being the Kullback-Leibler best model; 𝐸8,𝑖: 6 

evidence ratio between model 8 (the best model) and model 𝑖  7 

 8 

 9 

  10 
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Table 3 – Results of the full generalized linear models fitted to the original dataset with missing variables 11 
removed (intercept not reported) 12 

 Full generalized linear 

model (N=31) 

Full linear regression 

model (N=31) 

Variables Coefficient 

Estimate 

(SE) 

p-value Coefficient 

Estimate 

(SE) 

p-value 

log(test-standardized cases [%]) 0.812 

(0.143) 

7.6×10
-6

* 0.824 

(0.174) 

7.9×10
-5

* 

GRSI 0.015 

(0.011) 

0.192 0.012 

(0.014) 

0.393 

Flu vaccination rate [%] 0.026 

(0.005) 

8.6×10
-6

* 0.024 

(0.006) 

0.00026* 

Vitamin D status (sufficient vs. 

deficient) 

-0.777 

(0.256) 

0.0057* --0.798 

(0.311) 

0.017 

log( population density [km
-2

]) 0.142 

(0.097) 

0.156 0.161 

(0.117) 

0.182 

Gross domestic product 2.8×10
-5

 

(7.3×10
-6

) 

0.00064* 3.1×10
-5

 

(8.8×10
-6

) 

0.0016* 

Model quality   

KL-R
2
 0.781 0.762 

Adjusted KL-R
2
 0.726 0.703 

GRSI: Government Response Stringency Index; SE: Standard error; *p<0.01 (statistically 13 

significant); *p<0.01 (statistically significant) 14 
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