Observational constraints on the atmospheric dynamics of the inspiraling ultra-hot Jupiter WASP-12 b

THE OHIO STATE UNIVERSITY

DEPARTMENT OF ASTRONOMY

Anusha Pai Asnodkar¹, Ji Wang¹, Chenliang Huang², Ilya Ilyin³, Klaus Strassmeier³

MOTIVATION

- WASP-12 b is an ultra-hot Jupiter known for its inspiraling orbit and extreme tidal distortion.
- Previous works report empirical evidence of WASP-12 b's mass loss (Li et al. 2010, Haswell et al. 2012, Jensen et al. 2018).
- Jensen et al. 2018 note that their simultaneous detection of $H\alpha$ and non-detection of $H\beta$ is inconsistent. This discrepancy remains unresolved.

TRANSMISSION SPECTROSCOPY

We analyze two optical, high-resolution transit data sets from PEPSI (LBT).

The semi-transparent terminator of WASP-12 b's atmosphere will show excess in-transit absorption at wavelengths that correspond to different atomic and molecular species.

The Ohio State University, Department of Astronomy ³Leibniz-Institute for Astrophysics Potsdan

0.98

z 0.96

0.94

We use the p-winds code (Dos Santos et al. 2022)

outflow in combination with

the formalism in Huang et al. 2017 to estimate the

Balmer series population

absorption signals and find

1010 g/s would produce a

signature under the model

detectable (> 3σ) H α

assumptions.

that an outflow rate of \dot{M} >

levels. We inject the resulting H α and H β

to model a planetary

BALMER ABSORPTION ANALYSIS

Contrary to previous literature, we do not observe statistically significant detections of H_{α} or H_{β} absorption in WASP-12 b's atmosphere.

We run an injection-retrieval analysis to place an upper-limit constraint on the radial extent of WASP-12 b's hydrogen envelope. A 3σ detection of either H α or H β would not be sensitive down to the planet's Roche lobe with our data quality. The status of the planet's atmospheric escape is *inconclusive* from this analysis.

Phase 0.00 050 100 Velocity (km/s) 1.000 $\dot{M} = 10^{10} \text{ g/s}$ Phase 0.00 $\dot{M} = 10^{10} \text{ g/s}$ 6562 6563 6564 6565 Velocity (km/s)

How absorption from p-winds model

 $\dot{M} = 10^{12} \text{ g/s}$

Wavelength (Å)

COMPARISON WITH JENSEN ET AL. 2018

Upon injecting an H α signal of comparable strength to the detection in Jensen et al. 2018, we conclude that we should be able to observe such strong absorption (depth \sim 6%) with our data guality. Our non-detection could indicate that WASP-12 b's atmospheric outflow is time-variable.

Species	Detected?
Fe I Fe II Ti I Ti II	> × × ×

Acknowledgements

We would like to thank the David G. Price Fellowship in Astronomical Instrumentation for funding A.P.A.'s work

Contact

paiasnodkar.1@osu.edu apaiasno.github.io