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 In the field of audio classification, audio signals may be broadly divided into 

three classes: speech, music and events. Most studies, however, neglect that 

real audio soundtracks can have any combination of these classes 

simultaneously. This can result in information loss, thus compromising the 

knowledge discovery. In this study, a novel feature, “Entrocy”, is proposed 

for the detection of music in both pure form and overlapping with the other 

audio classes. Entrocy is defined as the variation of the information  

(or entropy) in an audio segment over time. Segments, which contain music, 

were found to have lower Entrocy since there are fewer abrupt changes over 

time. We have also compared Entrocy with existing music detection features 

and the entrocy showing a good performance 
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1. INTRODUCTION 

Automatic classification of real-world audio soundtracks into speech music and/or other events, 

particularly when overlaps take place, is a challenging problem. Classification is important in archive 

management, information mining from big data and many other applications. No previous study has 

been general enough to propose a universal system that will maximize information retrieval for further 

information mining [1]. Much of the previous research found in the literature focused on classifying 

soundtracks into speech or music, in a mutually exclusive manner. Automatic classification of overlapped 

soundtracks into speech and/or music, when the two sometimes overlap, is a particularly challenging 

problem, since overlapping can contaminate relevant characteristics and features, causing incorrect 

classification or information loss. This problem has been recognized by the Audio and Acoustics Signal 

Processing challenge (AASP), which is sponsored by the IEEE Signal Processing Society. One conclusion 

drawn from the AASP was that “the task of recognizing individual potentially overlapping sounds becomes 

significantly challenging and the performance of systems that are even prepared to deal with polyphonic 

content falls dramatically” [1]. Although it is well understood that the overlapping of the classes might 

mitigate the information retrieval system’s performance, little research has been performed with the aim of 

addressing this problem.  

To name some, Shokouhi et al. [2] proposed an overlapped speech detection algorithm with a 

presence of noise condition to estimate the likelihood of overlapping speech. Zhang [3] presented an 

approach to segmentation and annotation of audio-visual data, which uses three main categories: silence, 

with or without music components, and each of the last two categories further classified into more 
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components. Four types of audio features were used, namely, the short-time energy function, the short-time 

average zero-crossing rate, the short-time fundamental frequency and the spectral peak tracks. 

The segmentation performance of the proposed method of music, speech with background music and sound 

effect with background music detection was up to 94.5%, 86% and 87.5% respectively.  

Lee [4] has suggested a robust musical pitch detection algorithm for identifying the presence of 

music in noisy, highly-variable environmental recordings such as the soundtracks of consumer video 

recordings and the detection of music in ambient audio by using pitch. Lee has also reported improved 

music/speech discrimination results with vocals present using the proposed features when combined with 

rhythm and 4 Hz Modulation Energy (4HzE). The use of these features has achieved 91.4% accuracy where 

it is combined with a variance of spectral flux and rhythm. For speech/music discrimination, Sell et al. [5] 

has derived new features from chroma vector based on the musical tonality.  

Tomonori [6] has investigated four sets of features for background music detection. The first set of 

empirical features (EMPR) included 4-Hz modulation energy, the percentage of low-energy frames, the 

spectral centroid, the spectral roll-off point (Spectral Roll-off point Frequency denotes the frequency below 

which 85% of the spectrum magnitude can be found. Most of the signal power is concentrated within a 

certain range of frequencies.), the spectral flux (spectral flux refers to how quickly the power spectrum of a 

signal is changing, calculated by comparing the power spectrum for one frame against the 

power spectrum from the previous frame), and the zero-crossing rate. The second set is spectral power from 

the linear-scaled frequency (SPEC). The third set is spectral power features with the Mel-frequencies 

(SPMF). The fourth set is Mel-frequency cepstral coefficients MFCCs, and empirical features (EMPR). The 

experimental results show that the EMPR feature set provides the highest music detection accuracy with high 

music- speech mixing ratio, whereas the SPMF set reflects the highest results with the low music-speech 

ratio (-10 dB and -20dB). Tzanetakis [7] implemented a real-time speech/ music discrimination system with 

the following features: Spectral centroid, spectral flux, pitch, MFCC, linear prediction (LPC), zero crossings, 

RMS, and spectral roll-off.  

However, the semantic review shows there is no single feature space, which promises to address  

the problem stated above of real world audio. Ravindran et al. explore the utilization of physiologically 

impressed auditory features with each physiologically motivated and applied mathematical audio 

classification techniques [8]. The authors have a tendency to use features derived from a biophysically 

defendable model of the early auditory system for audio categorization employing a neural network 

classifier. The authors have also employed a Gaussian-mixture-model (GMM)-based classifier for the aim of 

comparison and show that the neural-network-based performance is better. Further, the authors used features 

from a more advanced model of the sensory system and show that the features calculated from this model 

outperform the features extracted from the early modality stage. The features provide sensible classification 

performance with solely one-second information segments used for learning and testing phase. Bisot et al. [9] 

have suggested a supervised nonnegative matrix factorization (NMF) model for overlapping event detection 

in real audio soundtracks. The authors have begun by highlight the efficacy of non-Euclidean NMF to learn 

representations for distinguishing and classifying acoustic events in a multi-label setting. Thereafter, the 

authors suggested training a classifier and using NMF decomposition in a joint optimization problem.  

This has been done with a general β-divergence version of the nonnegative task-driven dictionary-learning 

model. An experimental appraisal is performed on the event set of the DCASE 2016 task3 challenge.  

The suggested supervised NMF-based system enhances performance over the baseline system.  

Nam et al., have developed a method for perceiving sound resources in a mixture. The suggested 

method employed the regression technique, in which the author estimate the relative proportion of sound 

sources in the given mixture sound signal. Furthermore, the magnitudes of the sound resources were 

estimated without actually separating the sources. The basic strategy that utilised is based on supervised 

source separation using probabilistic latent component analysis (PLCA) [10]. A dictionary of the basic 

components has been estimated from the isolated training data of that mixture. Thereafter, a set of mixture 

weights of the relative proportion of each source has estimated from the given mixture source without 

actually separating the sources. The suggested approach has tested on a blend of 5 of sounds and reveals that 

it's convincing in precisely appraising the relative magnitudes of the sounds in the mixture. 

The Audio and Acoustics Signal Processing challenge (AASP) [11], which is sponsored by IEEE 

signal processing society, provides a competition to classify real-world scene signals with overlap and 

without overlap issues, but the scope is limited to speech and other indoor/outdoor events; no music scores 

have been included. The objective was to detect prominent events and ignore other contents of the 

soundtracks. One of the AASP conclusions was “For the polyphonic case, the task of recognizing individual 

potentially overlapping sounds becomes significantly challenging and the performance of systems that are 

even prepared to deal with polyphonic content falls dramatically” [11]. In [12-13] a new technique has been 

proposed for non-exclusive classification through deploying a timestamp with three classifiers, each of which 
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works as a sensor to detect its particular classes. Thus, the start and ending of each class can be determined 

even when overlapped. In this work, ‘the classification decision is based on the variation behavior across a 

number of consecutive frames at the same time (visualization of sound)’. For example, an audio file 

comprising car engines, babble noise, cars moving, shut and open buses doors is more likely to  

be a bus station.  
 

 

2. DATABASE 

Three standard audio classes (speech and music and event sound) were considered in this work.  

The audio samples in the training dataset were collected from the GTZAN music/speech collection [14], 

AASP [6], DVD audio tracks, TV and BBC broadcast. The AASP challenge provided two datasets: one for 

scenes or soundscapes classification (SC) and the other one for event classification. The AASP data was 

gathered from 10 different places in the London area: Inside an office, park, quiet street, open market, 

restaurant, supermarket, tube train, tube station, bus and busy Street. The event dataset collected from inside 

the office is further divided into two sets: monophonic denoted as ‘office live’ (OL) and polyphonic denoted 

as ‘office synthetic’ (OS). Event types used were: alert (beep sound), clearing throat, cough, door slam, 

drawer, keyboard clicks, keys (keys put on table), knock (door knock), laughter, mouse click, page turn, pen 

drop, phone, printer, speech and switch. The speech and music from the GTZAN dataset were mixed with 

OL audio or pink noise to generate two different datasets, G1 and G2. G1 consisted of eight groups: pure-

speech, pure-music, pure-ambient/event, speech over music (SM), speech over event (SE), music- event, 

speech (MSE) - music- event (ME) or silence. The second dataset G2 was generated by mixing speech and 

music with pink noise in 20 dB and 25 dB SNR for further validation. All the mixed classes were mixed 

using the same strategy, as explained in [13]. 
 

 

3. RATIONALE AND DEFINITION 

Existing features for classification are predominantly established on artificially tailored  

non-overlapping audio clips. A real world audio soundtrack might include one of the segment types 

explained earlier. An alternative feature has therefore been proposed for improving the detection of the music 

occurrences, and has shown promising results for cases where the music was pure or overlapping with other 

classes. The essential idea in employing the frequency calculation as a feature is to indicate the amount of 

uncertainty across a number of consecutive frames. This has been done through a combination of entropy and 

frequency and therefore we call it entrocy. The assumption here as has mentioned before is ‘the classification 

decision is based on the variation behavior across a number of consecutive frames at the same time 

(visualization of sound).  

Entropy and frequency calculations have evolved separately. The theory of entropy was proposed 

for the first time by Shannon [15] to measure the degree of information in the signal through calculation of 

the probability density function (pdf) of each sample in the frame; the randomness distribution of the data is 

also represented. Entropy is employed in diverse classification problems and had been providing adequate 

results through the ability to detect the complexity of a signal. The range of its application varies from 

images, automatic speech recognition, health and ecology. It is also applied to [16] calculating the entropy of 

audio spectra for discriminating clean speech/noisy speech, and is proposed as a feature for robust automatic 

speech recognition (ASR). Misra [16] had shown that clean speech has a lower level of spectral entropy than 

noisy speech because the mean of abrupt changes is higher in a noisy environment. In [17], the same feature 

was applied on the sub-band of short-time Fourier transform (STFT) and combined with some of the MFCC 

bands to improve the result of the ASR in a noisy environment; this feature was called spectral entropy.  

The maxent technique refers to the maximum entropy model, proposed for the first time by [18] as a 

statistical model for natural language processing and has since been deployed in diverse applications. 

 

 

4. EXPERIMENTAL METHOD 

Our classification scheme started by resampling each audio file to a standard sample rate of 22.05 

kHz, 16 bit resolution. Each audio file is segmented with a time window with size of 1102 samples and 50% 

overlap into a series of analytical frames. The overlap has been selected to trade off with the increasing 

frequency resolution (number of frequency bins). We then calculated the entropy for each frame as defined in 

the following equation.  
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where p(xi) is the value of the probability mass function (pmf) at X = xi and n represents the length of the 

frame. The probability mass function (pmf) of each sample in the frame can be defined as follows.  

 

      iii xsXSsprxXprxpr  )(:   (2) 

 

- Entropy is normalized to the logarithm of the frame length to eliminate the dependency on the frame’s 

length. Therefore, the entropy value will be between 0, and 1 in the case of maximum randomness. 

Thus, the gradient descent runs much faster and converges in less iteration. 

- The experimental results, as shown in the Table 1, indicate that most of the music genre frames have 

higher randomness (entropy) than the speech.  
 

 

Table 1. Entropy values for speech and music frames 
Frame type No. of frames Mean of entropy Std of entropy 

Speech 13959 0.527 0 

Music 11964 0.642 0 

 

 

- Then after, the calculated entropy vector H, which extracted from N frames, is segmented into 32 

samples segments, for frequency calculation. A smaller window results in more compression of the 

frequency axis as Fs/window size becomes smaller. Consequently, a larger window gives higher 

resolution in the frequency domain. However, increasing the resolution is valid as long as the signal 

remains stationary.  

- The segmentation is applied with a moving window 16 samples (50%) at a time on the calculated 

entropy vector (H). 

 

 (3) 

 

For spectral analysis purposes, each segment is multiplied by Hanning window. The Discrete Cosine 

Transform (DCT) is then calculated for each segment using (3). The DCT method is used to calculate the 

variance of each 32 adjacent entropy values.  

where,  
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The centre of gravity, which reflects the spectral shape of the ith entropy segment, is also calculated 

from the DCT coefficients and is defined as 
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where, F is the number of DCT coefficients , f is the frequency centre and E(k) is the magnitude of 

the DCT coefficients calculated using (3). 

The average of the segments here will not be equal to zero. Therefore, the first coefficient is ignored 

to eliminate the mean and the final output is represented by 16 coefficients (15- as frequency bins and one 

reflecting the centre of frequency gravity). Figure 1 shows the procedure for the entrocy feature calculation. 

The suggested method is simple and also computationally efficient. The entrocy calculation is done without 

any computationally expensive optimizations or sophisticated mathematical operations performed in any of 

the above calculation stages. The method is straightforward to understand and relates to audio content, 

complexity and homogeneity. Moreover, the construction is general and can be applied in most of the audio 



IJ-AI  ISSN: 2252-8938  

 

Overlapped music segmentation using a new effective feature and random forests... (Philip J. Duncan) 

185 

information retrieval studies such as music/speech discrimination, segmentation, music information  

retrieval or classification. 

 

 

 
 

Figure 1. Entrocy calculation procedure 

 

 

5. ENTROCY VALIDATION 

For the purposes of Entrocy validation, an experiment to build a module for detection of music 

against all other classes has been carried out. The samples that contain music score (music or mix) will be 

labelled as 1 and the remaining samples will be labelled as 0. The machine learning method used is the 

Random Forests technique trained with varying numbers of trees; it has been established empirically that 

1000 trees are an optimal size. Figure 2 shows a simple random forest, with 20 trees using the Entrocy 

feature.  

 

 
 

Figure 2. Random forest DTs, Class 1 classes with music, Class 2 without music, features number 

represents the Entrocy coefficients, and the value represents the threshold of hyper-planes respective to the 

feature axis 
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Class 1 represents music, class 2 represents other classes without music occurring; the features number 

represents the Entrocy coefficients, and the numerical value represents the threshold of hyperplanes with 

respect to that feature, which is determined by the Random Forest technique. 

The basic concept of random forest trees is that they are working as collection of hyperplanes 

(threshold), where each threshold is orthogonal to the respective features axis [19]. Figure 3 shows the  

2-Dimensional features (Entrocy coefficients 5 and 3) visualization where the fifth coefficient is localized as 

the X-axis and third coefficient as the Y-axis with their hyperplanes threshold. 

 

 

 
 

Figure 3. Feature Spaces with their respective thresholds from Figure 2 

 

 

6. MACHINE LEARNING METHOD 

As discussed in the preceding section, the purpose of this paper is to design feature based on 

transformation of raw audio data to categorize music occurrences?, motivated by the characteristics of data 

distribution, variation and direction. For the training, testing and validation a random forest technique is 

deployed. During the past decades, many segmentation and classification systems have been developed.  

The adoption and development of classification methods are typically application driven. Some examples of 

those methods are (Dhanalakshmi et al.) audio categorization using radial basis function neural networks 

(RBFNN), which is based on radial Basis Function (RBF), or distan ce function, as activation function for 

hidden layer’s neurons and SVM reliant on event type into six different categories (music, news, cartoon, 

movie, sports and advertisements), Hidden Markov Models and Gaussian Mixture Models and 

neural Network [20]. 

Random forest is considered to be the modern generation of the decision tree machine learning and 

it is used by many researchers recently, i.e. to improve the discrimination between speech and non-speech 

[21] and to decrease the storage of speech through saving only speech segments. The authors illustrated that 

random forest results were better than other decision tree algorithms. Also, smoothing is used over 5 

segments to improve the results. Random forest was compared against the bagging and bootstrapping 

decision tree algorithms by [22] for classifying environmental audio into five different sets (bird, wind, rain, 

frog and thunder) based on the different size of training samples; the results show that the stability of random 

forest against the other two algorithms.  

Random forest is proposed for the first time by Breiman [23]. Many classification trees are built on 

the same dataset, which randomly divides the data into both test sets (90%), and learning sets (10%).  

The decision trees are different from each other due to samples are dragging randomly (different bootstrap) 

from the training dataset for each tree, this process called “bagging” and considerings only a small random 

subset of the available data features as candidates for each split. This randomisation reduces the correlation 

between individual decision trees. In the testing phase, the test vector passes through all trees in the random 

forest, and each tree makes an independent decision. The final decision will be the class which has the most 

votes over all subtrees in the random forest. i.e, if the random forest consists of four trees used to classify an 

object into three classes, then the prediction will be for the class, which has the highest vote over all four 

trees. The trees are growing based on the following strategy.  

https://ieeexplore.ieee.org/document/1716539/
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To conclude, the construction of DTs starts at the root node then continuously partitions the feature space.  

A classification tree is established consuming a labelled data,
  miyxv ii 1,, 

, where xi is the data 

samples and yi the respective class labels [24]: 

- The Number of trees (B) is determined by the user at the beginning. Each tree is trained independently 

of the others with a randomly selected subset of the training set per tree. 

- The Out-of-bag (OOB) technique is employed for selection of the training samples, the training data set 

is divided into three parts, two of which are used for tree construction with the ability to swap, and the 

last one is left “out of bag” for testing. It is possible that some of the samples might be replicated in 

more than one tree and other of the samples never picked, as shown in Figure 4. Each tree in the RFs 

randomly selects a set of features and training samples from the training vector. OOB is used to 

calculate both the estimated error of the forests and the variable importance. This property makes RFs 

more robust against noise and the dependency on dataset problem. 

- A binary split function, 
   1,0,  jxSp 

 which is associated with each internal node, passes the 

patterns x at either internal node j to the left or right child node based on the decision (0 or 1).  

This procedure is repeated for all features to select the best one to split. Then parameters j
 are 

optimised for all tree nodes during training, to select features with a higher information gain (impurity 

function). In general, splitting refers to determining which feature should be used and at which node by 

measuring impurity gain, and the optimal cut-point for that feature. The feature with the highest information 

gain value is selected to behave as a root node, which is used to split the dataset. In other words, features are 

organised based on the priority (importance) from the top down. 

 

 

 
 

Figure 4. Subset samples selection (RF) 

 

 

In this experiment, the goal as discussed for building a module for music against all other classes, 

the features vector will be (N*3) where N represents a number of samples and respective single class label.  

In the training phase, the samples which content on the music score will be labeled as 1 and the rest samples 

as 0. The random forest trained with 1000 trees as explained before. 

 

 

7. RESULTS AND DISCUSSION 

The results of the experimental method indicate that the pure music/pure speech discrimination was 

significant where Zero Crossing Ratio ZCR or entrocy is used with all samples selected from GTZAN dataset 

described above. Table 2 and Table 3 illustrate the results of the two classification scenarios. The error rate is 

defined as the ratio between the misclassified samples and a total number of samples. The music group 

included all samples with music background (Music (M), Speech over Music (SM), Speech over Music and 
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Event (SME) and Music over Event (ME)) and the group without music included all other samples.  

From Table 2, the results show that ZCR outperformed other features since speech samples have a higher rate 

of zero crossing than pure music. However, it has failed when used to discriminate between classes with and 

without music due to an under-fitting problem, which has led to non-convergence, while entrocy presents 

high performance in music/non-music discrimination. 

 

 

Table 2. Speech/ Music discrimination Error Rate, 

the ratio between number of misclassified frames and 

total number of frames n each group 
Features Pure Music Pure Speech 

ZCR 5.33% 3.75% 

Entrocy 8.60% 10.48% 

Spectral Entropy 49.53% 63.85% 

Spectral Centroid 60.84% 42.13% 
Roll_Off 42.37% 36.00% 

Chroma 29.12% 59.18% 
 

Table 3. Music detection Error Rate, the ratio 

between number of misclassified frames and total 

number of frames in each group 
Features with Music without Music 

ZCR 25.87% 82.25% 

Entrocy 12.26% 17.46% 

Spectral Entropy 34.07% 38.48% 

Spectral Centroid 41.40% 44.46% 
Roll_Off 62.83% 36.78% 

Chroma 61.31% 37.62% 
 

 

 

Consequently, ZCR has been combined with entrocy to recognize samples with music from samples 

without music. It has achieved the best results when detecting the presence or absence of music with high 

accuracy. The classification performance of music, SM, ME, SME, Speech, Speech with Event background 

and Event was up to 94.19%, 95.33%, 94.31%, 81.68%, 67.82%, 86.34% and 95.90% respectively. 

Finally, pink noise was mixed with speech and music in two different signals to noise ratios (SNR) 20 and 25 

dB in place of an event. Figure 5 shows the error rate respective to each mixing group. As noticed the results 

presented here may facilitate improvements in music detection when training the system on a specific class of 

things i.e. noise here are better than when using wide range of events.  

 

 

 
 

Figure 5. Entrocy Error Rate for music detection 

 

 

8. CONCLUSION 

A novel feature, ’entrocy’ is proposed in this paper for classification of overlapped audio comprising 

three main classes (speech, music and event). It reflects the class randomness level fluctuation over time. 

It is logical to identify the class based on estimating the homogeneity of changes through the frequency of the 

segments contents. This is the key to information preservation through detecting a particular class even when 

overlapped with other classes and will be the basis for non-exclusive segmentation highlighted in [25]. 

Music, speech and event sounds can be consistently detected and segmented through developing one module 

belonging to each class. For the music module, random forest machine learning using the entrocy feature has 

shown promising results. Event sound recognition is challenging since there is often no prior knowledge 

about how many different types of events there are likely to be, and which ones are of interest. 

Therefore, an ad hoc approach might be best for event processing based on the application due to the event 

sounds being an open set. When the (OL) dataset or pink noise is employed, the entrocy is effective for the 

detection of music occurrences.  

We therefore conclude that entrocy has great potential as a feature for overlapped audio 

classification and has outperformed existing features in the overlapped condition. In addition, it provides a 
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cost and time gain for the classification process due to achieving these results with only low dimensional 

features.It has also been observed that for detection of speech, music and event with convenient results a 

longer period of the frame might be beneficial; in this paper 50 ms has been used and the final decision was 

respective to [50ms*32=1.6 seconds]. This is not surprising since the human listener has difficulty 

differentiating isolated sounds having short duration. The experimental results show that the frames that 

involve music, even when overlapping with other audio classes, have lower entrocy than those with music 

absent. It worth noting that this feature will be further evaluated through application in different classification 

areas as future work.  
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