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 The introduction of 5th and 6th-generation wireless networks has elevated 

the demand for huge device connectivity, spectral efficacy, and improved 

signal quality. The non-orthogonal multiple access technique (NOMA) has 

been demonstrated to be a candidate to address these requirements. NOMA 

can assist many users using the same resource block by varying the assigned 

power levels fairness to the users. To perform this, the NOMA technique 

superimposes the signals from both the users and transmits them to the 

receiver. On the receiver side, it performs successive interference 

cancellation (SIC) techniques to separate the respective signals. Meanwhile, 

the fading channels also play a major role in deciding the quality of the 

signal that is being transmitted. In our paper, a NOMA system is considered 

in presence of two users having  −  fading channels. The closed-form 

expressions are derived for outage probability and throughput of the system 

in presence of perfect SIC and imperfect SIC. The expressions are 

numerically analyzed by varying various parameters such as fading 

channels, power level coefficients, and the number of antennas at the 

receivers. The obtained results demonstrate that each parameter plays a 

major role in enhancing the quality of each user's signal and the outage 

performance of the system. 
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1. INTRODUCTION 

The non-orthogonal multiple access (NOMA) technique has proven to be productive in trending 

tech-nologies. With the introduction of 5th and 6th generation wireless communication networks, the 

requirement for massive connectivity has grown and this requirement can be satisfied by NOMA because of 

its unique features. NOMA can share its resources among two users at a time, thereby increasing the device 

connectivity and keeping the signal quality. Different from remaining the techniques such as orthogonal 

multiple access (OMA), frequency division multiple access (FDMA), or time division multiple access 

(TDMA), the NOMA can increase the spectral efficiency by utilizing all the available resources without 

wasting it for any guard band or interval [1]. While the data transmission is performed in NOMA, the signals 

get superimposed and then sent to the user. At the user side, successive interference cancellation (SIC) 

technique is performed to separate the superimposed signals [2]. During this procedure, the system will be 

https://creativecommons.org/licenses/by-sa/4.0/
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fully aware of channel state information (CSI). In ideal cases of research, the CSI and SIC are considered to 

be perfect, whereas, in real-time scenarios, these conditions are fully perfect. Therefore considering minimal 

imperfections at any of these would be a given direction of practical researches. 

Though the NOMA has immense advantages for wireless networking, there are major challenges to 

deal with such as multipath fading and shadowing effects. Few statistical models can differentiate the 

multipath fading based on line of sight (LOS) and non-LoS (NLOS) such as Rayleigh, Rice, Rician, 

Nakagami-m [3]-[5]. Researches were performed to understand the effects based on various performance 

measurements such as outage probability, channel capacity, bit error rate, etc. 𝛼 − 𝜂 − 𝜇 is considered to be a 

more generalized fading model for understanding the mathematical evaluations and performance comparison 

in any system. Various authentic studies have evaluated the performance of various fading models such as 

𝛼 − 𝜇, 𝛼 − 𝜂, 𝜂 − 𝜇, 𝜆 − 𝜇 and 𝜅 − 𝜇 [6], [7] in terms of outage probability, bit error rate, and average 

capacity. Moreover, in [8], the author has studied the generalized fading effect of the channels 𝛼 − 𝜂 − 𝜇 

combined. In general, when the fading distributions are considered, in𝜂 − 𝜇, the 𝜂is considered to be the 

correlation between in-phase and quadrature multipath clusters, and 𝜇 defines the number of multipath 

clusters. Similarly, in 𝜅 − 𝜇,  is defined as the ratio between power dominants and 𝜇 defines the number of 

multipath clusters. The special cases of 𝜂 − 𝜇are Rayleigh, Nakagami-m, and Hoyt distributions whereas in 

𝜅 − 𝜇, Rayleigh, Nakagami-m, and Rician distributions. Depending on the performance of the channels, the 

generalized fading channels are evaluated. 

As mentioned, the effect of fading has significant role in analyzing the efficacy of a system. The 

Nakagami-M fading effect was studied for a single user [9] and an entire system [10] in terms of outage 

performance. The implementation of a multiple-input-multiple-output (MIMO) system has shown a 

significant impact in enhancing the spectral efficiency of the system in the NOMA network over the Rayleigh 

fading channel. There are a few types of research that demonstrate the sum-rate performance of the NOMA 

system over various fading channels such as Gaussian, Rayleigh, Nakagami-m, and others. Wang et al. [11] 

have used the multi-user beamforming method in the NOMA system under Rayleigh fading to elevate the 

sum capacity performance. Kimy et al. [12], the authors have developed a new power allocation method for 

the NOMA system over a complex-Gaussian channel to elevate the capacity. Wang et al. [13] considered the 

NOMA downlink system under Nakagami-m fading and analyzed the ergodic sum rate. Men [14] direct-

sequence-code-division multiple access systems were considered under $\alpha-\eta-\mu$ fading channels 

and analyzed the outage performance of the system. Kapucu et al. [15] have studied the sum rate and ergodic 

rate performance of the MIMO-NOMA system with a device pairing method and it has proved that MIMO-

NOMA has a better performance compared to the MIMO-OMA. A similar system was considered with 

beamforming techniques to understand the user pairing effect in [16]. A similar study was performed in [17] 

with a fixed power allocation method in cognitive radio (CR) assisted NOMA system. Various power 

allocation strategies are provided in [18], [19] to enhance the efficiency of the NOMA system. Cooperative 

communications are also applied with NOMA in [20], [21], where the strong user assists the weak user to 

enhance its performance. To perform a similar operation, the authors in [22], [23] have applied the relay 

technique to enhance weak user performance. Regarding a performance analysis for downlink non-

orthogonal multiple accesses (DL-NOMA) systems where the channel gains follow the 𝛼 − 𝜇fading 

distribution in [24], [25]. The authors considered bit error rate (BER), and ergodic capacity (EC). 

Understanding the above studies, there is still a huge requirement to study the effect of various 

fading models in the NOMA system. Though few research articles provide the studies based on 𝛼 − 𝜂 − 𝜇, 

only the ideal cases were considered such as perfect CSI and SIC. Therefore motivated by this analysis, in 

this article, we are aimed to provide a detailed analysis of the outage performance of the NOMA system with 

two users under 𝜂 − 𝜇 fading distribution with different scenarios. Moreover, we consider the imperfect SIC 

scenario and study its effect on the fading channel. The major contributions of this paper include deriving the 

expressions of exact outage probability and throughput of the NOMA system with two users under 𝜂 − 𝜇 

fading distribution facing perfect and imperfect SIC and validating the performance of the system based on 

the expressions obtained, along with Monte-Carlo simulations.  

This paper is organized as follows: In section 2, we introduce and describe the system model and the 

channel characteristics. In section 3, we compute the outage probability (OP) expressions of the system with 

perfect SIC and imperfect SIC. In section 4, we compute the expression for throughput of the system, using 

the previously obtained expressions. In section 5, we evidence the simulations based on expressions obtained 

and in section 6, we conclude the paper. 
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2. SYSTEM MODEL AND CHANNEL CHARACTERISTICS  

2.1. System model 

In this system model, shown in Figure 1. We have considered a base station (BS) transmitting the 

signals between two users 1D  and 2D  using NOMA technique over  −  fading channels. 1D  is consider to 

be having M  antennas and 2D  is consider to be having N antennas. The channel between BS to 1D  is 
1,mg

and BS to 2D  is 
2,mg . The received signal at the two NOMA users destination, 1D  and 2D  are given by [26]. 

 

( )1 1, 1 1 2 2 1 ,m m

my g P x P x  = + +  (1a) 

 

( )2 2, 1 1 2 2 2 ,n n

ny g P x P x  = + +  (1b) 

 

where P denotes the normalized transmission power at the BS, ( )1 0~ 0,m CN N  and ( )2 0~ 0,n CN N  

denotes the noise terms are additive white Gaussian noise (AWGN) at the user node 1D  and 2D , respectively, 

and 1x  and 2x are assumed to be normalised the unity power signal for the two users, i.e., 

   2 2

1 2 1x x= =E E in which E  is the expectation operator. The two user's power allocation factor 
j  

satisfies the relationship 2 1   with 
2

1

1j

j


=

= , which is for the purpose of the user fairness. 

 

 

 
 

Figure 1. Downlink NOMA with  − fading channels 

 

 

In the first phase, the signal to interference-plus-noise ratio (SINR) after treating 1x as interference is 

given by 

 

1 2

2

2 1, 2 1

, 2

1 11 1,

,
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mm

D x

m

P g

P g

  

 
 = =

++
 (2) 

 

where 
2

1 1,mg  and the transmit signal to noise ratio (SNR) calculated at the BS as 0P N = . Note that 

1  and 2  are independent random variables (RVs). It should be noted that imperfect SIC (ipSIC) occurs, the 

SINR of detect 2x  is given as [27] 

 

1 1

, 1 1
, 2
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where ( )
2

~ 0,I Ih CN  in with ( )0 1I I    indicate as the residual interference level caused by ipSIC in 

[28] and ~ ( , )CN x y complex normal distribution with average x  and variance y . 

Similarly, the instantaneous SINR at 2D  to detect 2x  is given as 

 

2 2

2

1 2, 1 2
, 2

2 22, 2

,
11

nn

D x

n

P g

g P

  

 
 = =

++
 (4) 

 

where 

2

2 2, ng  

 

2.2 Channel characteristics 

First, we suppose that the antennas numbers of two users are equivalent, i.e N M= . We have the 

probability density function (PDF) of 1 2  = = is given by [29] (1) 

 

( )
( )

20.5 0.5

0.50.5 0.5

2 2
,

h
xh x H

f x e I x
H

  


  

 

  

− − −

−− −

 
=  
  

 (5) 

 

where ( )x is the Gamma function, ( ).zI  is the modified Bessel function of the first kind,   = E ,  is 

related to the fading severity, ( )12 4h  −= + +  and ( )1 4H  −= −  with 0    . For arbitrary values 

of  . According to [30] (2) the cumulative distribution functions (CDF) of  can be obtained as 

 

( )
( )

( )
( )1 2 2

2 1 2, ;1 2 ; , ,
1 2

F x x x x





   


 
=  + − −
 +

 (6) 

 

where 
( )2

2 2   is the confluent Lauricella function [31], 
( )

1

2 h H



−
 =  and 

( )
2

2 h H



+
 = . For 

integer values of  and with the help of [32], (15) and [33], (8.352.6), ( )F x  can be greatly simplified as 

 

( )
( )

( )( )
( ) ( )

( )( )2 2 1

2

2 1 2
0 0

2 2
1 .

!! 0.5 2

lk lk
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+ −
−

+ − +
= =

  +
= − 
  + +   

   (7) 

 

Finally, we have PDF and CDF of 
2

Ih  are given by [34] 

 

( )2

1
,I

I

x

h
I

f x e 



−

=  (8a) 

 

( )2 1 .I

I

x

h
F x e 

−

= −  (8b) 

 

 

3. ANALYSIS OF OUTAGE PROBABILITY 

The OP of 1D  under ipSIC is calculated as 
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 (9) 

 

where 
2

2 1iR

thi = − , for 1,2i =  is called as target rate at iD , ( )
1

2 2 2 1 2th th     
−

= −    and ( )
1

1 1 1th   
−

=

We assuming ( )
1

2

1 21 , ipSIC

I Dh P  +  can be calculated by 

where 2
2 1iR
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( )

2

2

2 1 2
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S




   
=

−
 and 1

1

1 S




 
= . 

Assuming ( )2

1 2S I eh  + , 1OP  can be calculated by  

 

( )( ) ( ) ( )( )2
1 1

2

1 1 1

0

1 Pr 1 1 1 1 .
I

M
M

ipSIC

D I h
P h f x F x dx    

    = −  + = − − +      
  (10) 

 

Case 1: when , 0     then we using PDF of (8a) and CDF of (7), (10) is given as 
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Using [33] (1.111) and (3.351.3), 
1

ipSIC

DP  is given by 
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Case 2: when , 0   I  then we using PDF of (8) and CDF of (6), (10) is given as 

 

( )

( )
( )( ) ( ) ( )( ) 

1
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 (13) 

 

Specifically, we let 

I

x
q


=  and with the help of Gauss-Laguerre integration in [35] (25.4.45). The closed-

form approximation of the 
1

ipSIC

DP  is can be given as 

 

( )

( )
( ) ( ) ( )( )

1

2
21 2 1

2 1 1 2 1

1

, ;1 2 ; , ,
1 2

M
W

ipSIC

D w w w w

w

P X q q q

 


    
 =

  
   + −  −  

 +  
   (14) 

 

where ( ) ( )1w S I wq q  = + , wX and 
wq  are the weight and abscissas for the Gauss-Laguerre integration, 

respectively. More specifically, 
wq is the w-th zero of Laguerre polynomial ( )W wL q  and the corresponding 
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the w-th weight is given by 
( )

( )

2

2

1

! w

w

W w

W q
X

L q+

=
  

. The parameter W is to ensure a complexity-accuracy trade 

off. 

From (9), the scenario pSIC. We set 
2

0Ih  , we have the outage probability 
1

pSIC

DP  is given by 

 

( ) ( ) ( )

( )

( )( )
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( )( )
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1 2
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I

( )2 max ,

M


 
 
  

 (15) 

 

where ( )max 1 2max ,  = . 

Finally, the outage probability of 2D  is calculated as 

 

  ( ) ( ) ( )
2 2 22 , 2 2 2 2 2 2

1

Pr max 1 Pr 1 Pr .
N

NNn

n N D x th th th

N
n

n

P F     





=

 
  =   = −  = −  =         

 


 (16) 

 

Case 1: when , 0     then we using CDF of (7), (16) is given as 
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Case 2: when , 0   I  then we using CDF of (6), (16) is given as 

 

( )

( )
( )

2

1 2 2

2 2 1 2 2 2, ;1 2 ; , .
1 2

N
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=  + − − 

 +  

 (18) 

 

 

4. THROUGHPUT ANALYSIS  

It may be assessed further using additional metrics, such as the total throughput, which can be 

calculated using the outage probability acquired. The throughput of system can be obtained in delay-limited 

mode at set target rates 1R , 2R . As a result, the throughput may be expressed as follows [36] 

 

( )  
11 11 , , ,DP R ipSIC pSIC = − å å å  (19a) 

 

( )2 2 21 .P R = −  (19b) 

 

 

5. NUMERICAL RESULTS 

We set parameters of   and  in [37] and antennas M  and N of 1U  and 2U , respectively as 2. 

Monte-Carlo results averaging over 
710 independent channel realizations. Target data-rates for the fixed-rate 

transmission 21 1R R= = . Mean values of the channel power gains of interference signal 0.01I = . The 

power allocation coefficients 1 0.2 =  and 2 0.8 = . Number of points for Gauss-Laguerre quadratures as 

40W = . 
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Figure 2 provides the simulation of outage probability versus transmit SNR for various values of 

( , )  fading distribution, with the same number of antennas as 2N M= = . As we can observe that by 

varying the value of  , the outage performance is significantly changing for perfect and imperfect SIC at 

both users. As the   increases, the performance of the users are increasing comparatively, thereby 

enhancing the overall system performance. In the simulation, we can observe that the perfect SIC has better 

performance than the imperfect SIC, which is assumed. It can be called the worst-case scenario as in all cases 

it demonstrates a very low level of performance. 

Figure 3 provides the simulation for outage probability versus transmit SNR for different number of 

antennas at 1D  and 2D , with 21 1R R= = , 0.1 =  and 1.2 = . As we can observe, with the increase in the 

number of antennas, there is a huge difference between the performance of each user in both imperfect and 

perfect SIC. 2D  is the far user and it can be seen that 2D  has the better performance compared to 1D  at both 

the scenarios since it has the highest power allocated to it. This shows the impact of power allocation on 

improving the performance of the users. 
 
 

 
 

Figure 2. Outage probability versus transmit SNR for different values of ( ),   fading distribution, with 

2N M= =  
 
 

 
 
 

Figure 3. Outage probability versus transmit SNR for different number of antennas at 1D  and 2D , with  

21 1R R= = , 0.1 =  and 1.2 =  
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Figure 4 provides the simulation for outage probability versus power allocation coefficients at 2D

for different values of transmit SNR, with ( )1I dB = , 21 0.5R R= = , 0.5 =  and 1 = . We can observe 

the performance of both users in imperfect and perfect SIC. As the power allocation increases for a particular 

user, the performance of that user increases and, the other user's performance is decreasing. The primary 

point to be noticed is with the increase in the transmit SNR, the system performance increases respectively in 

all scenarios. 

Figure 5 provides the simulation for throughput versus transmit SNR for different levels of ipSIC at 

1D , with 1 0.05 = , 2 0.95 = , 0.5 =  and 1 = . As we can observe, by reducing the level of ipSIC, the 

throughput performance of the user is increasing. Meanwhile, the throughput of the pSIC users is also given 

in the simulation, in which, we can observe that 2D  has the better throughput. 

 

 

 
 

Figure 4. Outage probability versus power allocation coefficients at 1D  for different values of transmit SNR, 

with ( )1I dB = , 21 0.5R R= = , 0.5 =  and 1 =  

 

 

 
 

Figure 5. Throughput versus transmit SNR for different levels of imperfect SIC at 1D , with 1 0.05 = , 

2 0.95 = , 0.5 =  and 1 =  
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6 CONCLUSION  

In this paper, we have investigated a NOMA system serving two users 1D  and 2D  with the  −

fading channels. We have considered both the pSIC and ipSIC, at the same time derived the closed-form 

outage probability expressions and system throughput expressions for the same. The obtained simulations 

demonstrate that varying the values of  , keeping   constant, plays a major role in enhancing the 

performance of the system, even in ipSIC mode, comparatively. Along with this, the paper demonstrates the 

performance of the system in various of the cases such as the number of antennas, power level coefficients, 

and transmit SNR. It is primarily noticed that with the increase in the transmit SNR, the outage performance 

of the system is rapidly increasing, irrespective of the scenario. 
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