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Abstract: This paper presents the summations of single terms and successive terms of geometric 

series and computation of the first derivative of geometric series in a different way. This idea 

will be useful for researchers who are involving in finding the scientific solutions. 
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Introduction  

In the earlier days, geometric series served as a vital role in the development of differential and 

integral calculus and as an introduction to Taylor series and Fourier series. This article presents 

the summations of single terms and successive terms of geometric series [1-4] and computation 

of the first derivative of geometric series in a different way. 

 

Summation of one term of geometric series: 

1 =
𝑥 − 1

𝑥 − 1
, 𝑥 =

𝑥2 − 𝑥

𝑥 − 1
,  𝑥2 =

𝑥3 − 𝑥2

𝑥 − 1
, 𝑥3 =

𝑥4 − 𝑥3

𝑥 − 1
   , ⋯ , 𝑥𝑛 =

𝑥𝑛+1 − 𝑥𝑛

𝑥 − 1
. 

 

Summation of two successive terms of geometric series: 

1 + 𝑥 =
𝑥2 − 1

𝑥 − 1
, 𝑥 + 𝑥2 =

𝑥3 − 𝑥

𝑥 − 1
,   𝑥2 + 𝑥3 =

𝑥4 − 𝑥2

𝑥 − 1
  , ⋯ ,    𝑥𝑛−1 + 𝑥𝑛 =

𝑥𝑛+1 − 𝑥𝑛−1

𝑥 − 1
. 

 

Summation of three successive terms of geometric series: 

1 + 𝑥 + 𝑥2 =
𝑥3 − 1

𝑥 − 1
, 𝑥 + 𝑥2 + 𝑥3 =

𝑥4 − 𝑥

𝑥 − 1
, ⋯ , 𝑥𝑛−2 + 𝑥𝑥−1 + 𝑥𝑛 =

𝑥𝑛+1 − 𝑥𝑛−2

𝑥 − 1
. 

 

Similarly, we can continue these expressions up to multiple successive terms of geometric series.    

  

Summation of various successive terms of geometric series: 

∑ 𝑥𝑖

𝑛

𝑖=𝑘

= 𝑥𝑘 + 𝑥𝑘+1 + 𝑥𝑘+2 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛 =
𝑥𝑛+1 − 𝑥𝑘

𝑥 − 1
. 

∑ 𝑥𝑖

𝑛

𝑖=−𝑘

= 𝑥−𝑘 + 𝑥−𝑘+1 + 𝑥−𝑘+2 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛 =
𝑥𝑛+1 − 𝑥−𝑘

𝑥 − 1
. 

∑ 𝑥𝑖

𝑛

𝑖=1

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛 =
𝑥𝑛+1 − 1

𝑥 − 1
. 

 

mailto:anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584


First Derivative of Geometric Series  

The first derivative of geometric series [5] is found here without using the differential calculus: 

 

∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

=
𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
. 

 

Here, ∑ 𝑥𝑖

𝑛−1

𝑖=0

+ ∑ 𝑥𝑖

𝑛−1

𝑖=1

+ ∑ 𝑥𝑖

𝑛−1

𝑖=2

+ ⋯ + ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−2

+ ∑ 𝑥𝑖

𝑛−1

𝑖=𝑛−1

= ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

  and  

 

𝑥𝑛 − 1

𝑥 − 1
+

𝑥𝑛 − 𝑥

𝑥 − 1
+

𝑥𝑛 − 𝑥2

𝑥 − 1
+ ⋯ +

𝑥𝑛 − 𝑥𝑛−2

𝑥 − 1
+

𝑥𝑛 − 𝑥𝑛−1

𝑥 − 1
=

𝑛𝑥𝑛 − ∑ 𝑥𝑖𝑛−1
𝑖=0

𝑥 − 1
 

=
𝑛𝑥𝑛 − (

𝑥𝑛 − 1
𝑥 − 1 )

𝑥 − 1
=

(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
. 

Thus, ∑(𝑖 + 1)𝑥𝑖

𝑛−1

𝑖=0

=
(𝑛𝑥 − 𝑛 − 1)𝑥𝑛 + 1

(𝑥 − 1)2
, (𝑥 ≠ 1). 

This result denotes the first derivative [5] of geometric series. 
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