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Abstract

In this book, some notions are introduced about “Neutrosophic Stable”. Two
chapters are devised as “Initial Notions”, and “Modified Notions”. Two manu-
scripts are cited as the references of these chapters which are my 87th, and
88th manuscripts. I’ve used my 87th, and 88th manuscripts to write this book.

In first chapter, there are some points as follow. New setting is introduced to
study stable-dominating number and neutrosophic stable-dominating number
arising from stable-dominated vertices in neutrosophic graphs assigned to neut-
rosophic graphs. Minimum number of stable-dominated vertices, is a number
which is representative based on those vertices. Minimum neutrosophic number
of stable-dominated vertices corresponded to stable-dominating set is called
neutrosophic stable-dominating number. Forming sets from stable-dominated
vertices to figure out different types of number of vertices in the sets from stable-
dominated sets in the terms of minimum number of vertices to get minimum
number to assign to neutrosophic graphs is key type of approach to have these
notions namely stable-dominating number and neutrosophic stable-dominating
number arising from stable-dominated vertices in neutrosophic graphs assigned
to neutrosophic graphs. Two numbers and one set are assigned to a neutrosophic
graph, are obtained but now both settings lead to approach is on demand which
is to compute and to find representatives of sets having smallest number of
stable-dominated vertices from different types of sets in the terms of minimum
number and minimum neutrosophic number forming it to get minimum number
to assign to a neutrosophic graph. Let NTG : (V,E, σ, µ) be a neutrosophic
graph. Then for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by S(NTG); for given vertex n, if sn ∈ E, then s stable-dominates n. Let S
be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates n
where for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The minimum
neutrosophic cardinality between all stable-dominating sets is called neutro-
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sophic stable-dominating number and it’s denoted by Sn(NTG). As concluding
results, there are some statements, remarks, examples and clarifications about
some classes of neutrosophic graphs namely path-neutrosophic graphs, cycle-
neutrosophic graphs, complete-neutrosophic graphs, star-neutrosophic graphs,
complete-bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs,
and wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of stable-dominating number,” and “Setting of neutrosophic
stable-dominating number,” for introduced results and used classes. This
approach facilitates identifying sets which form stable-dominating number and
neutrosophic stable-dominating number arising from stable-dominated vertices
in neutrosophic graphs assigned to neutrosophic graphs. In both settings, some
classes of well-known neutrosophic graphs are studied. Some clarifications for
each result and each definition are provided. The cardinality of set of stable-
dominated vertices and neutrosophic cardinality of set of stable-dominated
vertices corresponded to stable-dominating set have eligibility to define stable-
dominating number and neutrosophic stable-dominating number but different
types of set of stable-dominated vertices to define stable-dominating sets. Some
results get more frameworks and more perspectives about these definitions.
The way in that, different types of set of stable-dominated vertices in the
terms of minimum number to assign to neutrosophic graphs, opens the way
to do some approaches. These notions are applied into neutrosophic graphs
as individuals but not family of them as drawbacks for these notions. Finding
special neutrosophic graphs which are well-known, is an open way to pursue this
study. Neutrosophic stable-dominating notion is applied to different settings
and classes of neutrosophic graphs. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this chapter.

In second chapter, there are some points as follow. New setting is intro-
duced to study stable-resolving number and neutrosophic stable-resolving
number arising from stable-resolved vertices in neutrosophic graphs assigned to
neutrosophic graphs. Minimum number of stable-resolved vertices, is a number
which is representative based on those vertices. Minimum neutrosophic number
of stable-resolved vertices corresponded to stable-resolving set is called neutro-
sophic stable-resolving number. Forming sets from stable-resolved vertices to
figure out different types of number of vertices in the sets from stable-resolved
sets in the terms of minimum number of vertices to get minimum number to as-
sign to neutrosophic graphs is key type of approach to have these notions namely
stable-resolving number and neutrosophic stable-resolving number arising from
stable-resolved vertices in neutrosophic graphs assigned to neutrosophic graphs.
Two numbers and one set are assigned to a neutrosophic graph, are obtained
but now both settings lead to approach is on demand which is to compute
and to find representatives of sets having smallest number of stable-resolved
vertices from different types of sets in the terms of minimum number and
minimum neutrosophic number forming it to get minimum number to assign to
a neutrosophic graph. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
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and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by S(NTG); for given vertices n and n′, if d(s, n) 6= d(s, n′),
then s stable-resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \ S, there’s at least a neutrosophic vertex
s in S such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices, S is
called neutrosophic stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving number
and it’s denoted by Sn(NTG). As concluding results, there are some state-
ments, remarks, examples and clarifications about some classes of neutrosophic
graphs namely path-neutrosophic graphs, cycle-neutrosophic graphs, complete-
neutrosophic graphs, star-neutrosophic graphs, complete-bipartite-neutrosophic
graphs, complete-t-partite-neutrosophic graphs, and wheel-neutrosophic graphs.
The clarifications are also presented in both sections “Setting of stable-resolving
number,” and “Setting of neutrosophic stable-resolving number,” for introduced
results and used classes. This approach facilitates identifying sets which form
stable-resolving number and neutrosophic stable-resolving number arising from
stable-resolved vertices in neutrosophic graphs assigned to neutrosophic graphs.
In both settings, some classes of well-known neutrosophic graphs are studied.
Some clarifications for each result and each definition are provided. The
cardinality of set of stable-resolved vertices and neutrosophic cardinality of set
of stable-resolved vertices corresponded to stable-resolving set have eligibility
to define stable-resolving number and neutrosophic stable-resolving number
but different types of set of stable-resolved vertices to define stable-resolving
sets. Some results get more frameworks and more perspectives about these
definitions. The way in that, different types of set of stable-resolved vertices in
the terms of minimum number to assign to neutrosophic graphs, opens the way
to do some approaches. These notions are applied into neutrosophic graphs
as individuals but not family of them as drawbacks for these notions. Finding
special neutrosophic graphs which are well-known, is an open way to pursue
this study. Neutrosophic stable-resolving notion is applied to different settings
and classes of neutrosophic graphs. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this chapter.

The following references are cited by chapters.

[Ref1] Henry Garrett, “Impacts of Isolated Vertices To Cover Other Vertices in
Neutrosophic Graphs”, ResearchGate 2022 (doi: 10.13140/RG.2.2.16185.44647).

[Ref2] Henry Garrett, “Seeking Empty Subgraphs To Determine Different
Measurements in Some Classes of Neutrosophic Graphs”, ResearchGate 2022
(doi: 10.13140/RG.2.2.30448.53766).

Two chapters are devised as “Initial Notions”, and “Modified Notions”.
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CHAPTER 1

Initial Notions

The following sections are cited as follows, which is my 87th manuscript and I
use prefix 87 as number before any labelling for items.

[Ref1] Henry Garrett, “Impacts of Isolated Vertices To Cover Other Vertices in
Neutrosophic Graphs”, ResearchGate 2022 (doi: 10.13140/RG.2.2.16185.44647).

Impacts of Isolated Vertices To Cover Other Vertices in
Neutrosophic Graphs

1.1 Abstract

New setting is introduced to study stable-dominating number and neutro-
sophic stable-dominating number arising from stable-dominated vertices in
neutrosophic graphs assigned to neutrosophic graphs. Minimum number of
stable-dominated vertices, is a number which is representative based on those
vertices. Minimum neutrosophic number of stable-dominated vertices cor-
responded to stable-dominating set is called neutrosophic stable-dominating
number. Forming sets from stable-dominated vertices to figure out different
types of number of vertices in the sets from stable-dominated sets in the
terms of minimum number of vertices to get minimum number to assign to
neutrosophic graphs is key type of approach to have these notions namely
stable-dominating number and neutrosophic stable-dominating number arising
from stable-dominated vertices in neutrosophic graphs assigned to neutrosophic
graphs. Two numbers and one set are assigned to a neutrosophic graph, are
obtained but now both settings lead to approach is on demand which is to
compute and to find representatives of sets having smallest number of stable-
dominated vertices from different types of sets in the terms of minimum number
and minimum neutrosophic number forming it to get minimum number to
assign to a neutrosophic graph. Let NTG : (V,E, σ, µ) be a neutrosophic graph.
Then for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by S(NTG); for given vertex n, if sn ∈ E, then s stable-dominates n. Let S
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1. Initial Notions

be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates n
where for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The minimum
neutrosophic cardinality between all stable-dominating sets is called neutro-
sophic stable-dominating number and it’s denoted by Sn(NTG). As concluding
results, there are some statements, remarks, examples and clarifications about
some classes of neutrosophic graphs namely path-neutrosophic graphs, cycle-
neutrosophic graphs, complete-neutrosophic graphs, star-neutrosophic graphs,
complete-bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs,
and wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of stable-dominating number,” and “Setting of neutrosophic
stable-dominating number,” for introduced results and used classes. This ap-
proach facilitates identifying sets which form stable-dominating number and
neutrosophic stable-dominating number arising from stable-dominated vertices
in neutrosophic graphs assigned to neutrosophic graphs. In both settings, some
classes of well-known neutrosophic graphs are studied. Some clarifications for
each result and each definition are provided. The cardinality of set of stable-
dominated vertices and neutrosophic cardinality of set of stable-dominated
vertices corresponded to stable-dominating set have eligibility to define stable-
dominating number and neutrosophic stable-dominating number but different
types of set of stable-dominated vertices to define stable-dominating sets. Some
results get more frameworks and more perspectives about these definitions.
The way in that, different types of set of stable-dominated vertices in the
terms of minimum number to assign to neutrosophic graphs, opens the way to
do some approaches. These notions are applied into neutrosophic graphs as
individuals but not family of them as drawbacks for these notions. Finding
special neutrosophic graphs which are well-known, is an open way to pursue this
study. Neutrosophic stable-dominating notion is applied to different settings
and classes of neutrosophic graphs. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.
Keywords: Stable-Dominating Number, Neutrosophic Stable-Dominating

Number, Classes of Neutrosophic Graphs
AMS Subject Classification: 05C17, 05C22, 05E45

1.2 Background

Fuzzy set in Ref. [Ref22] by Zadeh (1965), intuitionistic fuzzy sets in Ref.
[Ref3] by Atanassov (1986), a first step to a theory of the intuitionistic fuzzy
graphs in Ref. [Ref19] by Shannon and Atanassov (1994), a unifying field
in logics neutrosophy: neutrosophic probability, set and logic, rehoboth in
Ref. [Ref20] by Smarandache (1998), single-valued neutrosophic sets in Ref.
[Ref21] by Wang et al. (2010), single-valued neutrosophic graphs in Ref.
[Ref7] by Broumi et al. (2016), operations on single-valued neutrosophic graphs
in Ref. [Ref1] by Akram and Shahzadi (2017), neutrosophic soft graphs in Ref.
[Ref18] by Shah and Hussain (2016), bounds on the average and minimum
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1.3. Motivation and Contributions

attendance in preference-based activity scheduling inRef. [Ref2] by Aronshtam
and Ilani (2022), investigating the recoverable robust single machine scheduling
problem under interval uncertainty in Ref. [Ref4] by Bold and Goerigk (2022),
independent (k+1)-domination in k-trees in Ref. [Ref5] by M. Borowiecki et al.
(2020), Oon upper bounds for the independent transversal domination number in
Ref. [Ref6] by C. Brause et al. (2018), complexity results on open-independent,
open-locating-dominating sets in complementary prism graphs in Ref. [Ref8]
by M.R. Cappelle et al. (2022), general upper bounds on independent k-rainbow
domination in Ref. [Ref9] by S. Bermudo et al. (2019), on the independent
domination polynomial of a graph in Ref. [Ref14] by S. Jahari, and S.
Alikhani (2021), independent domination in finitely defined classes of graphs:
polynomial algorithms in Ref. [Ref15] by V. Lozin et al. (2015), on three
outer-independent domination related parameters in graphs in Ref. [Ref16] by
D.A. Mojdeh et al. (2021), independent Roman {2}−domination in graphs in
Ref. [Ref17] by A. Rahmouni, and M. Chellali (2018), dimension and coloring
alongside domination in neutrosophic hypergraphs in Ref. [Ref11] by Henry
Garrett (2022), three types of neutrosophic alliances based on connectedness
and (strong) edges in Ref. [Ref13] by Henry Garrett (2022), properties of
SuperHyperGraph and neutrosophic SuperHyperGraph in Ref. [Ref12] by
Henry Garrett (2022), are studied. Also, some studies and researches about
neutrosophic graphs, are proposed as a book in Ref. [Ref10] by Henry Garrett
(2022).
In this section, I use two subsections to illustrate a perspective about the
background of this study.

1.3 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 1.3.1. Is it possible to use mixed versions of ideas concerning
“stable-dominating number”, “neutrosophic stable-dominating number” and
“Neutrosophic Graph” to define some notions which are applied to neutrosophic
graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Having connection amid two vertices
have key roles to assign stable-dominating number and neutrosophic stable-
dominating number arising from stable-dominated vertices in neutrosophic
graphs assigned to neutrosophic graphs. Thus they’re used to define new
ideas which conclude to the structure of stable-dominating number and
neutrosophic stable-dominating number arising from stable-dominated vertices
in neutrosophic graphs assigned to neutrosophic graphs. The concept of having
smallest number of stable-dominated vertices in the terms of crisp setting
and in the terms of neutrosophic setting inspires us to study the behavior of
all stable-dominated vertices in the way that, some types of numbers, stable-
dominating number and neutrosophic stable-dominating number arising from
stable-dominated vertices in neutrosophic graphs assigned to neutrosophic
graphs, are the cases of study in the setting of individuals. In both settings,
corresponded numbers conclude the discussion. Also, there are some avenues to
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1. Initial Notions

extend these notions.
The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of stable-dominating number and neutrosophic stable-dominating
number arising from stable-dominated vertices in neutrosophic graphs assigned
to neutrosophic graphs, are highlighted, are introduced and are clarified as
individuals. In section “Preliminaries”, minimum number of stable-dominated
vertices, is a number which is representative based on those vertices, have the
key role in this way. General results are obtained and also, the results about the
basic notions of stable-dominating number and neutrosophic stable-dominating
number arising from stable-dominated vertices in neutrosophic graphs assigned
to neutrosophic graphs, are elicited. Some classes of neutrosophic graphs are
studied in the terms of stable-dominating number and neutrosophic stable-
dominating number arising from stable-dominated vertices in neutrosophic
graphs assigned to neutrosophic graphs, in section “Setting of stable-dominating
number,” as individuals. In section “Setting of stable-dominating number,”
stable-dominating number is applied into individuals. As concluding results,
there are some statements, remarks, examples and clarifications about
some classes of neutrosophic graphs namely path-neutrosophic graphs, cycle-
neutrosophic graphs, complete-neutrosophic graphs, star-neutrosophic graphs,
complete-bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs,
and wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of stable-dominating number,” and “Setting of neutrosophic
stable-dominating number,” for introduced results and used classes. In section
“Applications in Time Table and Scheduling”, two applications are posed for
quasi-complete and complete notions, namely complete-neutrosophic graphs and
complete-t-partite-neutrosophic graphs concerning time table and scheduling
when the suspicions are about choosing some subjects and the mentioned models
are considered as individual. In section “Open Problems”, some problems and
questions for further studies are proposed. In section “Conclusion and Closing
Remarks”, gentle discussion about results and applications is featured. In section
“Conclusion and Closing Remarks”, a brief overview concerning advantages and
limitations of this study alongside conclusions is formed.

1.4 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 1.4.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 1.4.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
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graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V

∑3
i=1 σi(v) is called neutrosophic order of NTG and it’s denoted

by On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 1.4.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path
where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG)− 1;

(ii) : strength of path P : x0, x1, · · · , xO(NTG) is
∧
i=0,··· ,O(NTG)−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called
cycle where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG) − 1, xO(NTG)x0 ∈ E
and there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and
the edge xy implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt where σi is σ on V sii instead V which
mean x 6∈ Vi induces σi(x) = 0. Also, |V sij | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

5



1. Initial Notions

To make them concrete, I bring preliminaries of this article in two upcoming
definitions in other ways.

Definition 1.4.4. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

|V | is called order of NTG and it’s denoted by O(NTG). Σv∈V σ(v) is called
neutrosophic order of NTG and it’s denoted by On(NTG).

Definition 1.4.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then it’s
complete and denoted by CMTσ if ∀x, y ∈ V,xy ∈ E and µ(xy) = σ(x)∧σ(y);
a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path and
it’s denoted by PTH where xixi+1 ∈ E, i = 0, 1, · · · , n − 1; a sequence of
consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called cycle and denoted by
CY C where xixi+1 ∈ E, i = 0, 1, · · · , n − 1, xO(NTG)x0 ∈ E and there are
two edges xy and uv such that µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1); it’s

t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and the edge xy
implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete, then it’s denoted
by CMTσ1,σ2,··· ,σt where σi is σ on V sii instead V which mean x 6∈ Vi induces
σi(x) = 0. Also, |V sij | = si; t-partite is complete bipartite if t = 2, and it’s
denoted by CMTσ1,σ2 ; complete bipartite is star if |V1| = 1, and it’s denoted
by STR1,σ2 ; a vertex in V is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1,σ2 .

Remark 1.4.6. Using notations which is mixed with literatures, are reviewed.

1.4.6.1. NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)), O(NTG), and
On(NTG);

1.4.6.2. CMTσ, PTH,CY C, STR1,σ2 , CMT σ1,σ2 , CMT σ1,σ2,··· ,σt , and
WHL1,σ2 .

Definition 1.4.7. (stable-dominating numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(NTG);

(ii) for given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where

6



1.4. Preliminaries

for all given two vertices in S, there’s no edge between them, then the
set of neutrosophic vertices, S is called stable-dominating set. The
minimum neutrosophic cardinality between all stable-dominating sets is
called neutrosophic stable-dominating number and it’s denoted by
Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

86prp9 Proposition 1.4.8. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then

(i) a vertex dominates if and only if it stable-dominates;

(ii) S is dominating set if and only if it’s stable-dominating set;

(iii) a number is dominating number if and only if it’s stable-dominating
number.

Proposition 1.4.9. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S is
stable-dominating set corresponded to stable-dominating number if and only if
for every neutrosophic vertex s in S, there’s at least a neutrosophic vertex n in
V \ S such that {s′ ∈ S | s′n ∈ E} = {s}.

Proposition 1.4.10. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

Proposition 1.4.11. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and O(NTG)− 1.

Proposition 1.4.12. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then
stable-dominating number is between one and On(NTG)−minx∈V

∑3
i=1 σi(x).

In next part, clarifications about main definition are given. To avoid
confusion and for convenient usages, examples are usually used after every part
and names are used in the way that, abbreviation, simplicity, and summarization
are the matters of mind.

Example 1.4.13. In Figure (1.1), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,

7



1. Initial Notions

there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-dominating set. The
minimum cardinality between all stable-dominating sets is called stable-
dominating number and it’s denoted by S(NTG) = 1; and corresponded
to stable-dominating sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(NTG) = 0.9; and corresponded to stable-dominating sets are

{n4}.

1.5 Setting of stable-dominating number

In this section, I provide some results in the setting of stable-dominating
number. Some classes of neutrosophic graphs are chosen. Complete-neutrosophic
graph, path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic
graph, bipartite-neutrosophic graph, t-partite-neutrosophic graph, and wheel-
neutrosophic graph, are both of cases of study and classes which the results are
about them.

8



1.5. Setting of stable-dominating number

Figure 1.1: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG1

Proposition 1.5.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

S(CMTσ) = 1.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates if and only if it stable-dominates so as dominating is the same
with stable-dominating, by Proposition (1.4.8), and S has one member. All
stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(CMTσ) = 1;
and corresponded to stable-dominating sets are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

Thus
S(CMTσ) = 1.

�

Proposition 1.5.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 1.5.3. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets corresponded to stable-dominating
number is O(CMTσ).

9
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Proposition 1.5.4. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets is O(CMTσ).

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.5. In Figure (1.2), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-dominating set. The
minimum cardinality between all stable-dominating sets is called stable-
dominating number and it’s denoted by S(CMTσ) = 1; and corresponded
to stable-dominating sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

10
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Figure 1.2: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG2

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMTσ) = 0.9; and corresponded to stable-dominating sets are

{n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 1.5.6. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

S(PTH) = dO(PTH)
3 e.

Proof. Suppose PTH : (V,E, σ, µ) is a path-neutrosophic graph. Let
n1, n2, . . . , nO(PTH) be a path-neutrosophic graph. For given two vertices,
x and y, there’s one path from x to y. In the setting of path, a vertex of
dominating set corresponded to dominating number dominates if and only if
it stable-dominates since a vertex dominates neighbors thus in S, there aren’t
any neighbors and all vertices are neighborless in S. All stable-dominating sets
corresponded to stable-dominating number are

{n1, n4, n7, . . . , nO(PTH)−4, nO(PTH)−1},
{n2, n5, n8, . . . , nO(PTH)−4, nO(PTH)−1},
. . . .

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called

11
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neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(PTH) = dO(PTH)
3 e

and corresponded to stable-dominating sets are

{n1, n4, n7, . . . , nO(PTH)−4, nO(PTH)−1},
{n2, n5, n8, . . . , nO(PTH)−4, nO(PTH)−1},
. . . .

Thus
S(PTH) = dO(PTH)

3 e.

�

Proposition 1.5.7. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
stable-dominating number is equal to dominating number.

Example 1.5.8. There are two sections for clarifications where d ≥ 0.

(a) In Figure (1.3), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(PTH) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n4}, {n2, n5};
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(iv) there are four stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3, n5},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are three stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(PTH) = 2.6; and corresponded to
stable-dominating sets are

{n1, n4}.

(b) In Figure (1.4), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
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s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(PTH) = 2; and corresponded to stable-dominating
sets are

{n2, n5};

(iv) there are six stable-dominating sets

{n2, n5}, {n1, n4, n6}, {n1, n4, n6},
{n1, n3, n5}, {n1, n3, n6}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there’s one stable-dominating set

{n2, n5},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(PTH) = 3.8; and corresponded to
stable-dominating sets are

{n2, n5}.

Proposition 1.5.9. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(CY C) ≥ 3. Then

S(CY C) = dO(CY C)
3 e.

Proof. Suppose CY C : (V,E, σ, µ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. Let

x1, x2, · · · , xO(CY C)−1, xO(CY C), x1
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Figure 1.3: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG3

Figure 1.4: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG4

be a cycle-neutrosophic graph CY C : (V,E, σ, µ). In the setting of cycle, a
vertex of dominating set corresponded to dominating number dominates if and
only if it stable-dominates since a vertex dominates neighbors thus in S, there
aren’t any neighbors and all vertices are neighborless in S. All stable-dominating
sets corresponded to stable-dominating number are

{n1, n4, n7, . . . , nO(CY C)−4, nO(CY C)−1},
{n2, n5, n8, . . . , nO(CY C)−4, nO(CY C)−1},
. . . .

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
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1. Initial Notions

by
S(CY C) = dO(CY C)

3 e

and corresponded to stable-dominating sets are

{n1, n4, n7, . . . , nO(CY C)−4, nO(CY C)−1},
{n2, n5, n8, . . . , nO(CY C)−4, nO(CY C)−1},
. . . .

Thus
S(CY C) = dO(CY C)

3 e.

�

Proposition 1.5.10. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.5.11. There are two sections for clarifications.

(a) In Figure (1.5), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n5}, {n3, n6}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CY C) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n5}, {n3, n6};
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1.5. Setting of stable-dominating number

(iv) there are five stable-dominating sets

{n1, n4}, {n2, n5}, {n3, n6},
{n1, n3, n5}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are three stable-dominating setsc

{n1, n4}, {n2, n5}, {n3, n6},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n5}, {n3, n6}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(CY C) = 2.2; and corresponded to
stable-dominating sets are

{n1, n4}.

(b) In Figure (1.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t stable-dominate since
a vertex couldn’t dominate itself. Thus two vertices are necessary in
S;

(iii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},
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For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CY C) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3};

(iv) there are five stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are five stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(CY C) = 2.8; and corresponded to
stable-dominating sets are

{n2, n5}.
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1.5. Setting of stable-dominating number

Figure 1.5: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG5

Figure 1.6: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG6

Proposition 1.5.12. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

S(STR1,σ2) = 1.

Proof. Suppose STR1,σ2 : (V,E, σ, µ) is a star-neutrosophic graph. An edge
always has center, c, as one of its endpoints. All paths have one as their lengths,
forever. In the setting of star, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as dominating
is the same with stable-dominating, by Proposition (1.4.8), and S has one
member. All stable-dominating sets corresponded to stable-dominating number
are

{c}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
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vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(STR1,σ2) = 1;

and corresponded to stable-dominating sets are

{c}.

Thus
S(STR1,σ2) = 1.

�

Proposition 1.5.13. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph. Then
stable-dominating number is equal to dominating number.

Proposition 1.5.14. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-dominating sets is two.

Proposition 1.5.15. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-dominating sets corresponded to stable-
dominating number is one.

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 1.5.16. There is one section for clarifications. In Figure (1.7), a
star-neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one path,
precisely one edge between them and there’s no path despite them;

(ii) in the setting of star, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
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1.5. Setting of stable-dominating number

stable-dominating number and it’s denoted by S(STR1,σ2) = 1; and
corresponded to stable-dominating sets are

{n1};

(iv) there are two stable-dominating sets

{n1}, {n2, n3, n4, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(STR1,σ2) = 1.9; and corresponded to stable-dominating sets are

{n1}.

Proposition 1.5.17. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph which isn’t star-neutrosophic graph which means |V1|, |V2| ≥ 2. Then

S(CMCσ1,σ2) = min{|V1|, |V2|}.

Proof. Suppose CMCσ1,σ2 : (V,E, σ, µ) is a complete-bipartite-neutrosophic
graph. Every vertex in a part and another vertex in opposite part stable-
dominates any given vertex. Assume same parity for same partition of vertex
set which means V1 has odd indexes and V2 has even indexes. In the setting
of complete-bipartite, a vertex of dominating set corresponded to dominating
number dominates if and only if it doesn’t stable-dominate so as dominating is
the different with stable-dominating, by S has two neighbors in the setting of
dominating which is impossible in the setting of stable-dominating.
All stable-dominating sets corresponded to stable-dominating number are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1}
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Figure 1.7: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG7

where |V1| 6= |V2| and |V1| = min{|V1|, |V2|}.
All stable-dominating sets corresponded to stable-dominating number are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1},
{n2, n4, n6, n8, . . . , nO(CMCσ1,σ2 )−i−6, nO(CMCσ1,σ2 )−i−4, nO(CMCσ1,σ2 )−i−2}

where |V1| = |V2|.
For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(CMCσ1,σ2) = min{|V1|, |V2|}

and corresponded to stable-dominating sets are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1}

where |V1| 6= |V2| and |V1| = min{|V1|, |V2|}.
Or

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1},
{n2, n4, n6, n8, . . . , nO(CMCσ1,σ2 )−i−6, nO(CMCσ1,σ2 )−i−4, nO(CMCσ1,σ2 )−i−2}

where |V1| = |V2|.
Thus

S(CMCσ1,σ2) = min{|V1|, |V2|}.

�

Proposition 1.5.18. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then stable-dominating number isn’t equal to dominating number.
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Proposition 1.5.19. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| 6= |V2|. Then the number of stable-dominating sets is one.

Proposition 1.5.20. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| 6= |V2|. Then the number of stable-dominating sets corresponded
to stable-dominating number is one.

Proposition 1.5.21. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| = |V2|. Then the number of stable-dominating sets is two.

Proposition 1.5.22. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| = |V2|. Then the number of stable-dominating sets corresponded
to stable-dominating number is two.

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 1.5.23. There is one section for clarifications. In Figure (1.8),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-bipartite, a vertex of dominating set corres-
ponded to dominating number dominates as if it doesn’t stable-dominate
so as dominating is the different with stable-dominating, by S has two
neighbors in the setting of dominating which is impossible in the setting
of stable-dominating;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}, {n2, n3}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(CMCσ1,σ2) = 2; and
corresponded to stable-dominating sets are

{n1, n4}, {n2, n3};

(iv) there are two stable-dominating sets

{n1, n4}, {n2, n3},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;
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Figure 1.8: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG8

(v) there are two stable-dominating sets

{n1, n4}, {n2, n3},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}, {n2, n3}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMCσ1,σ2) = 2.9; and corresponded to stable-dominating sets are

{n1, n4}, {n2, n3}.

Proposition 1.5.24. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where t ≥ 3. Then

S(CMCσ1,σ2,··· ,σt) = min{|V1|, |V2|, . . . , |Vt|}.

Proof. Suppose CMCσ1,σ2,··· ,σt : (V,E, σ, µ) is a complete-t-partite-
neutrosophic graph. Every vertex in a part is stable-dominated by another
vertex in another part. In the setting of complete-t-partite, a vertex of dominat-
ing set corresponded to dominating number dominates if and only if it doesn’t
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stable-dominate so as dominating is the different with stable-dominating, by
S has two neighbors in the setting of dominating which is impossible in the
setting of stable-dominating.
All stable-dominating sets corresponded to stable-dominating number are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1 and

V1 ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

All stable-dominating sets corresponded to stable-dominating number are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

{n2
1, n

2
2, n

2
3, n

2
4, . . . , n

2
O(CMCσ1,σ2,··· ,σt )−2, n

2
O(CMCσ1,σ2,··· ,σt )−1, n

2
O(CMCσ1,σ2,··· ,σt )}

{n3
1, n

3
2, n

3
3, n

3
4, . . . , n

3
O(CMCσ1,σ2,··· ,σt )−2, n

3
O(CMCσ1,σ2,··· ,σt )−1, n

3
O(CMCσ1,σ2,··· ,σt )}

. . .

{ns−2
1 , ns−2

2 , ns−2
3 , . . . , ns−2

O(CMCσ1,σ2,··· ,σt )−2, n
s−2
O(CMCσ1,σ2,··· ,σt )−1, n

s−2
O(CMCσ1,σ2,··· ,σt )}

{ns−1
1 , ns−1

2 , ns−1
3 , . . . , ns−1

O(CMCσ1,σ2,··· ,σt )−2, n
s−1
O(CMCσ1,σ2,··· ,σt )−1, n

s−1
O(CMCσ1,σ2,··· ,σt )}

{ns1, ns2, ns3, ns4, . . . , , nsO(CMCσ1,σ2,··· ,σt )−2, n
s
O(CMCσ1,σ2,··· ,σt )−1, n

s
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s and

V1, V2, V3, . . . , Vs ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(CMCσ1,σ2,··· ,σt) = min{|V1|, |V2|, . . . , |Vt|}

and corresponded to stable-dominating sets are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1 and

V1 ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.
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Or

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

{n2
1, n

2
2, n

2
3, n

2
4, . . . , n

2
O(CMCσ1,σ2,··· ,σt )−2, n

2
O(CMCσ1,σ2,··· ,σt )−1, n

2
O(CMCσ1,σ2,··· ,σt )}

{n3
1, n

3
2, n

3
3, n

3
4, . . . , n

3
O(CMCσ1,σ2,··· ,σt )−2, n

3
O(CMCσ1,σ2,··· ,σt )−1, n

3
O(CMCσ1,σ2,··· ,σt )}

. . .

{ns−2
1 , ns−2

2 , ns−2
3 , . . . , ns−2

O(CMCσ1,σ2,··· ,σt )−2, n
s−2
O(CMCσ1,σ2,··· ,σt )−1, n

s−2
O(CMCσ1,σ2,··· ,σt )}

{ns−1
1 , ns−1

2 , ns−1
3 , . . . , ns−1

O(CMCσ1,σ2,··· ,σt )−2, n
s−1
O(CMCσ1,σ2,··· ,σt )−1, n

s−1
O(CMCσ1,σ2,··· ,σt )}

{ns1, ns2, ns3, ns4, . . . , , nsO(CMCσ1,σ2,··· ,σt )−2, n
s
O(CMCσ1,σ2,··· ,σt )−1, n

s
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s and

V1, V2, V3, . . . , Vs ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

Thus
S(CMCσ1,σ2,··· ,σt) = min{|V1|, |V2|, . . . , |Vt|}.

�

Proposition 1.5.25. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then stable-dominating number is equal to dominating number.

Proposition 1.5.26. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1. Then the number of
stable-dominating sets is one.

Proposition 1.5.27. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1. Then the number of
stable-dominating sets corresponded to stable-dominating number is one.

Proposition 1.5.28. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s. Then the number of
stable-dominating sets is s.

Proposition 1.5.29. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s. Then the number of
stable-dominating sets corresponded to stable-dominating number is s.

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 1.5.30. There is one section for clarifications. In Figure (1.9), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;
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1.5. Setting of stable-dominating number

(ii) in the setting of complete-t-partite, a vertex of dominating set corres-
ponded to dominating number dominates as if it doesn’t stable-dominate
so as dominating is the different with stable-dominating, by S has two
neighbors in the setting of dominating which is impossible in the setting
of stable-dominating;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
for all given two vertices in S, there’s no edge between them, then the set
of neutrosophic vertices, S is called stable-dominating set. The minimum
cardinality between all stable-dominating sets is called stable-dominating
number and it’s denoted by S(CMCσ1,σ2,··· ,σt) = 2; and corresponded to
stable-dominating sets are

{n1, n4};

(iv) there’s one stable-dominating set

{n1, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1, n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMCσ1,σ2,··· ,σt) = 2.9; and corresponded to stable-dominating sets
are

{n1, n4}.
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Figure 1.9: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG9

Proposition 1.5.31. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then

S(WHL1,σ2) = 1.

Proof. Suppose WHL1,σ2 : (V,E, σ, µ) is a wheel-neutrosophic graph. The
argument is elementary. All vertices of a cycle

n1, n2, n3, · · · , nO(WHL1,σ2 )−3, nO(WHL1,σ2 )−2, nO(WHL1,σ2 )−1, n1

join to one vertex, c = nO(WHL1,σ2 ). For every vertices, the minimum number
of edges amid them is either one or two because of center and the notion of
neighbors. In the setting of wheel, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as dominating
is the same with stable-dominating, by Proposition (1.4.8), and S has one
member. All stable-dominating sets corresponded to stable-dominating number
are

{c(nO(WHL1,σ2 ))}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least
a neutrosophic vertex s in S such that s stable-dominates n where for all given
two vertices in S, there’s no edge between them, then the set of neutrosophic
vertices, S is called stable-dominating set. The minimum cardinality between
all stable-dominating sets is called stable-dominating number and it’s denoted
by

S(WHL1,σ2) = 1
and corresponded to stable-dominating sets are

{c(nO(WHL1,σ2 ))}.

Thus
S(WHL1,σ2) = 1.

�
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1.5. Setting of stable-dominating number

Proposition 1.5.32. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 1.5.33. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-dominating sets corresponded to stable-
dominating number is one.

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.5.34. There is one section for clarifications. In Figure (1.10), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one edge
between them;

(ii) in the setting of wheel, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(WHL1,σ2) = 1; and
corresponded to stable-dominating sets are

{n1};

(iv) there are three stable-dominating sets

{n1}, {n2, n4}, {n3, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1};

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

29
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Figure 1.10: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG10

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(WHL1,σ2) = 1.9; and corresponded to stable-dominating sets are

{n1}.

1.6 Setting of neutrosophic stable-dominating number

In this section, I provide some results in the setting of neutrosophic stable-
dominating number. Some classes of neutrosophic graphs are chosen. Complete-
neutrosophic graph, path-neutrosophic graph, cycle-neutrosophic graph, star-
neutrosophic graph, bipartite-neutrosophic graph, t-partite-neutrosophic graph,
and wheel-neutrosophic graph, are both of cases of study and classes which the
results are about them.

Proposition 1.6.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x).
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1.6. Setting of neutrosophic stable-dominating number

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of dominating set corresponded to dominating number
dominates if and only if it stable-dominates so as dominating is the same
with stable-dominating, by Proposition (1.4.8), and S has one member. All
stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x)

and corresponded to stable-dominating sets are

{n1}, {n2}, {n3}, {n4}, . . . , {nO(CMTσ)−3}, {nO(CMTσ)−2}, {nO(CMTσ)−1}, {nO(CMTσ)}.

Thus

Sn(CMTσ) = min
x∈V

3∑
i=1

σi(x).

�

Proposition 1.6.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 1.6.3. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets corresponded to stable-dominating
number is O(CMTσ).

Proposition 1.6.4. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-dominating sets is O(CMTσ).

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.6.5. In Figure (1.11), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;
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(ii) in the setting of complete, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-dominating set. The
minimum cardinality between all stable-dominating sets is called stable-
dominating number and it’s denoted by S(CMTσ) = 1; and corresponded
to stable-dominating sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
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1.6. Setting of neutrosophic stable-dominating number

Figure 1.11: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG11

The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMTσ) = 0.9; and corresponded to stable-dominating sets are

{n4}.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 1.6.6. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

Sn(PTH) = min
|S|=dO(PTH)

3 e

∑
x∈S

3∑
i=1

σi(x).

Proof. Suppose PTH : (V,E, σ, µ) is a path-neutrosophic graph. Let
n1, n2, . . . , nO(PTH) be a path-neutrosophic graph. For given two vertices,
x and y, there’s one path from x to y. In the setting of path, a vertex of
dominating set corresponded to dominating number dominates if and only if
it stable-dominates since a vertex dominates neighbors thus in S, there aren’t
any neighbors and all vertices are neighborless in S. All stable-dominating sets
corresponded to stable-dominating number are

{n1, n4, n7, . . . , nO(PTH)−4, nO(PTH)−1},
{n2, n5, n8, . . . , nO(PTH)−4, nO(PTH)−1},
. . . .

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(PTH) = min
|S|=dO(PTH)

3 e

∑
x∈S

3∑
i=1

σi(x)

33



1. Initial Notions

and corresponded to stable-dominating sets are

{n1, n4, n7, . . . , nO(PTH)−4, nO(PTH)−1},
{n2, n5, n8, . . . , nO(PTH)−4, nO(PTH)−1},
. . . .

Thus

Sn(PTH) = min
|S|=dO(PTH)

3 e

∑
x∈S

3∑
i=1

σi(x).

�

Proposition 1.6.7. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
stable-dominating number is equal to dominating number.

Example 1.6.8. There are two sections for clarifications where d ≥ 0.

(a) In Figure (1.12), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(PTH) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n4}, {n2, n5};

(iv) there are four stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3, n5},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;
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(v) there are three stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(PTH) = 2.6; and corresponded to
stable-dominating sets are

{n1, n4}.

(b) In Figure (1.13), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(PTH) = 2; and corresponded to stable-dominating
sets are

{n2, n5};
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Figure 1.12: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG12

(iv) there are six stable-dominating sets

{n2, n5}, {n1, n4, n6}, {n1, n4, n6},
{n1, n3, n5}, {n1, n3, n6}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there’s one stable-dominating set

{n2, n5},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n2, n5}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(PTH) = 3.8; and corresponded to
stable-dominating sets are

{n2, n5}.
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Figure 1.13: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG13

Proposition 1.6.9. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(CY C) ≥ 3. Then

Sn(CY C) = min
|S|=dO(CYC)

3 e

∑
x∈S

3∑
i=1

σi(x).

Proof. Suppose CY C : (V,E, σ, µ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. Let

x1, x2, · · · , xO(CY C)−1, xO(CY C), x1

be a cycle-neutrosophic graph CY C : (V,E, σ, µ). In the setting of cycle, a
vertex of dominating set corresponded to dominating number dominates if and
only if it stable-dominates since a vertex dominates neighbors thus in S, there
aren’t any neighbors and all vertices are neighborless in S. All stable-dominating
sets corresponded to stable-dominating number are

{n1, n4, n7, . . . , nO(CY C)−4, nO(CY C)−1},
{n2, n5, n8, . . . , nO(CY C)−4, nO(CY C)−1},
. . . .

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(CY C) = min
|S|=dO(CYC)

3 e

∑
x∈S

3∑
i=1

σi(x)
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and corresponded to stable-dominating sets are

{n1, n4, n7, . . . , nO(CY C)−4, nO(CY C)−1},
{n2, n5, n8, . . . , nO(CY C)−4, nO(CY C)−1},
. . . .

Thus

Sn(CY C) = min
|S|=dO(CYC)

3 e

∑
x∈S

3∑
i=1

σi(x).

�

Proposition 1.6.10. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 1.6.11. There are two sections for clarifications.

(a) In Figure (1.14), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n5}, {n3, n6}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CY C) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n5}, {n3, n6};
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(iv) there are five stable-dominating sets

{n1, n4}, {n2, n5}, {n3, n6},
{n1, n3, n5}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are three stable-dominating setsc

{n1, n4}, {n2, n5}, {n3, n6},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n5}, {n3, n6}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(CY C) = 2.2; and corresponded to
stable-dominating sets are

{n1, n4}.

(b) In Figure (1.15), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates as if it doesn’t stable-dominate since
a vertex couldn’t dominate itself. Thus two vertices are necessary in
S;

(iii) in the setting of cycle, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates since
a vertex dominates neighbors thus in S, there aren’t any neighbors
and all vertices are neighborless in S;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},
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For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CY C) = 2; and corresponded to stable-dominating
sets are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3};

(iv) there are five stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are five stable-dominating sets

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}, {n2, n4}, {n2, n5},
{n1, n3}, {n5, n3},

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertex n in
V \S, there’s at least a neutrosophic vertex s in S such that s stable-
dominates n where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called stable-
dominating set. The minimum neutrosophic cardinality between
all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by Sn(CY C) = 2.8; and corresponded to
stable-dominating sets are

{n2, n5}.
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1.6. Setting of neutrosophic stable-dominating number

Figure 1.14: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG14

Figure 1.15: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG15

Proposition 1.6.12. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

Sn(STR1,σ2) =
3∑
i=1

σi(c).

Proof. Suppose STR1,σ2 : (V,E, σ, µ) is a star-neutrosophic graph. An edge
always has center, c, as one of its endpoints. All paths have one as their lengths,
forever. In the setting of star, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as dominating
is the same with stable-dominating, by Proposition (1.4.8), and S has one
member. All stable-dominating sets corresponded to stable-dominating number
are

{c}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
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vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(STR1,σ2) =
3∑
i=1

σi(c)

and corresponded to stable-dominating sets are

{c}.

Thus

Sn(STR1,σ2) =
3∑
i=1

σi(c).

�

Proposition 1.6.13. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph. Then
stable-dominating number is equal to dominating number.

Proposition 1.6.14. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-dominating sets is two.

Proposition 1.6.15. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-dominating sets corresponded to stable-
dominating number is one.

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 1.6.16. There is one section for clarifications. In Figure (1.16), a
star-neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one path,
precisely one edge between them and there’s no path despite them;

(ii) in the setting of star, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
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1.6. Setting of neutrosophic stable-dominating number

there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(STR1,σ2) = 1; and
corresponded to stable-dominating sets are

{n1};

(iv) there are two stable-dominating sets

{n1}, {n2, n3, n4, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(STR1,σ2) = 1.9; and corresponded to stable-dominating sets are

{n1}.

Proposition 1.6.17. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph which isn’t star-neutrosophic graph which means |V1|, |V2| ≥ 2. Then

Sn(CMCσ1,σ2) = min
|Vi|=min{|V1|,|V2|}

∑
x∈Vi

3∑
i=1

σi(x).

Proof. Suppose CMCσ1,σ2 : (V,E, σ, µ) is a complete-bipartite-neutrosophic
graph. Every vertex in a part and another vertex in opposite part stable-
dominates any given vertex. Assume same parity for same partition of vertex
set which means V1 has odd indexes and V2 has even indexes. In the setting
of complete-bipartite, a vertex of dominating set corresponded to dominating
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Figure 1.16: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG16

number dominates if and only if it doesn’t stable-dominate so as dominating is
the different with stable-dominating, by S has two neighbors in the setting of
dominating which is impossible in the setting of stable-dominating.
All stable-dominating sets corresponded to stable-dominating number are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1}

where |V1| 6= |V2| and |V1| = min{|V1|, |V2|}.
All stable-dominating sets corresponded to stable-dominating number are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1},
{n2, n4, n6, n8, . . . , nO(CMCσ1,σ2 )−i−6, nO(CMCσ1,σ2 )−i−4, nO(CMCσ1,σ2 )−i−2}

where |V1| = |V2|.
For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(CMCσ1,σ2) = min
|Vi|=min{|V1|,|V2|}

∑
x∈Vi

3∑
i=1

σi(x)

and corresponded to stable-dominating sets are

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1}

where |V1| 6= |V2| and |V1| = min{|V1|, |V2|}.
Or

{n1, n3, n5, n7, . . . , nO(CMCσ1,σ2 )−i−5, nO(CMCσ1,σ2 )−i−3, nO(CMCσ1,σ2 )−i−1},
{n2, n4, n6, n8, . . . , nO(CMCσ1,σ2 )−i−6, nO(CMCσ1,σ2 )−i−4, nO(CMCσ1,σ2 )−i−2}
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where |V1| = |V2|.
Thus

Sn(CMCσ1,σ2) = min
|Vi|=min{|V1|,|V2|}

∑
x∈Vi

3∑
i=1

σi(x).

�

Proposition 1.6.18. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then stable-dominating number isn’t equal to dominating number.

Proposition 1.6.19. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| 6= |V2|. Then the number of stable-dominating sets is one.

Proposition 1.6.20. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| 6= |V2|. Then the number of stable-dominating sets corresponded
to stable-dominating number is one.

Proposition 1.6.21. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| = |V2|. Then the number of stable-dominating sets is two.

Proposition 1.6.22. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph where |V1| = |V2|. Then the number of stable-dominating sets corresponded
to stable-dominating number is two.

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 1.6.23. There is one section for clarifications. In Figure (1.17),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-bipartite, a vertex of dominating set corres-
ponded to dominating number dominates as if it doesn’t stable-dominate
so as dominating is the different with stable-dominating, by S has two
neighbors in the setting of dominating which is impossible in the setting
of stable-dominating;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}, {n2, n3}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
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stable-dominating number and it’s denoted by S(CMCσ1,σ2) = 2; and
corresponded to stable-dominating sets are

{n1, n4}, {n2, n3};

(iv) there are two stable-dominating sets

{n1, n4}, {n2, n3},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there are two stable-dominating sets

{n1, n4}, {n2, n3},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}, {n2, n3}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMCσ1,σ2) = 2.9; and corresponded to stable-dominating sets are

{n1, n4}, {n2, n3}.

Proposition 1.6.24. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where t ≥ 3. Then

Sn(CMCσ1,σ2,··· ,σt) = min
|Vi|=min{|V1|,|V2|,...,|Vt|}}

∑
x∈Vi

3∑
i=1

σi(x).

Proof. Suppose CMCσ1,σ2,··· ,σt : (V,E, σ, µ) is a complete-t-partite-
neutrosophic graph. Every vertex in a part is stable-dominated by another
vertex in another part. In the setting of complete-t-partite, a vertex of dominat-
ing set corresponded to dominating number dominates if and only if it doesn’t
stable-dominate so as dominating is the different with stable-dominating, by
S has two neighbors in the setting of dominating which is impossible in the
setting of stable-dominating.
All stable-dominating sets corresponded to stable-dominating number are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}
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Figure 1.17: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG17

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1 and

V1 ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

All stable-dominating sets corresponded to stable-dominating number are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

{n2
1, n

2
2, n

2
3, n

2
4, . . . , n

2
O(CMCσ1,σ2,··· ,σt )−2, n

2
O(CMCσ1,σ2,··· ,σt )−1, n

2
O(CMCσ1,σ2,··· ,σt )}

{n3
1, n

3
2, n

3
3, n

3
4, . . . , n

3
O(CMCσ1,σ2,··· ,σt )−2, n

3
O(CMCσ1,σ2,··· ,σt )−1, n

3
O(CMCσ1,σ2,··· ,σt )}

. . .

{ns−2
1 , ns−2

2 , ns−2
3 , . . . , ns−2

O(CMCσ1,σ2,··· ,σt )−2, n
s−2
O(CMCσ1,σ2,··· ,σt )−1, n

s−2
O(CMCσ1,σ2,··· ,σt )}

{ns−1
1 , ns−1

2 , ns−1
3 , . . . , ns−1

O(CMCσ1,σ2,··· ,σt )−2, n
s−1
O(CMCσ1,σ2,··· ,σt )−1, n

s−1
O(CMCσ1,σ2,··· ,σt )}

{ns1, ns2, ns3, ns4, . . . , , nsO(CMCσ1,σ2,··· ,σt )−2, n
s
O(CMCσ1,σ2,··· ,σt )−1, n

s
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s and

V1, V2, V3, . . . , Vs ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(CMCσ1,σ2,··· ,σt) = min
|Vi|=min{|V1|,|V2|,...,|Vt|}}

∑
x∈Vi

3∑
i=1

σi(x)
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and corresponded to stable-dominating sets are

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1 and

V1 ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

Or

{n1
1, n

1
2, n

1
3, n

1
4, . . . , n

1
O(CMCσ1,σ2,··· ,σt )−2, n

1
O(CMCσ1,σ2,··· ,σt )−1, n

1
O(CMCσ1,σ2,··· ,σt )}

{n2
1, n

2
2, n

2
3, n

2
4, . . . , n

2
O(CMCσ1,σ2,··· ,σt )−2, n

2
O(CMCσ1,σ2,··· ,σt )−1, n

2
O(CMCσ1,σ2,··· ,σt )}

{n3
1, n

3
2, n

3
3, n

3
4, . . . , n

3
O(CMCσ1,σ2,··· ,σt )−2, n

3
O(CMCσ1,σ2,··· ,σt )−1, n

3
O(CMCσ1,σ2,··· ,σt )}

. . .

{ns−2
1 , ns−2

2 , ns−2
3 , . . . , ns−2

O(CMCσ1,σ2,··· ,σt )−2, n
s−2
O(CMCσ1,σ2,··· ,σt )−1, n

s−2
O(CMCσ1,σ2,··· ,σt )}

{ns−1
1 , ns−1

2 , ns−1
3 , . . . , ns−1

O(CMCσ1,σ2,··· ,σt )−2, n
s−1
O(CMCσ1,σ2,··· ,σt )−1, n

s−1
O(CMCσ1,σ2,··· ,σt )}

{ns1, ns2, ns3, ns4, . . . , , nsO(CMCσ1,σ2,··· ,σt )−2, n
s
O(CMCσ1,σ2,··· ,σt )−1, n

s
O(CMCσ1,σ2,··· ,σt )}

where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s and

V1, V2, V3, . . . , Vs ∈ {Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}.

Thus

Sn(CMCσ1,σ2,··· ,σt) = min
|Vi|=min{|V1|,|V2|,...,|Vt|}}

∑
x∈Vi

3∑
i=1

σi(x).

�

Proposition 1.6.25. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then stable-dominating number is equal to dominating number.

Proposition 1.6.26. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1. Then the number of
stable-dominating sets is one.

Proposition 1.6.27. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = 1. Then the number of
stable-dominating sets corresponded to stable-dominating number is one.

Proposition 1.6.28. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s. Then the number of
stable-dominating sets is s.

Proposition 1.6.29. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where |{Vi| |Vi| = min{|V1|, |V2|, . . . , |Vt|}}| = s. Then the number of
stable-dominating sets corresponded to stable-dominating number is s.
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1.6. Setting of neutrosophic stable-dominating number

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 1.6.30. There is one section for clarifications. In Figure (1.18), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-t-partite, a vertex of dominating set corres-
ponded to dominating number dominates as if it doesn’t stable-dominate
so as dominating is the different with stable-dominating, by S has two
neighbors in the setting of dominating which is impossible in the setting
of stable-dominating;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set of
neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S, there’s
at least a neutrosophic vertex s in S such that s stable-dominates n where
for all given two vertices in S, there’s no edge between them, then the set
of neutrosophic vertices, S is called stable-dominating set. The minimum
cardinality between all stable-dominating sets is called stable-dominating
number and it’s denoted by S(CMCσ1,σ2,··· ,σt) = 2; and corresponded to
stable-dominating sets are

{n1, n4};

(iv) there’s one stable-dominating set

{n1, n4},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1, n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1, n4}.
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1. Initial Notions

Figure 1.18: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG18

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(CMCσ1,σ2,··· ,σt) = 2.9; and corresponded to stable-dominating sets
are

{n1, n4}.

Proposition 1.6.31. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph with
center c. Then

Sn(WHL1,σ2) =
3∑
i=1

σi(c).

Proof. Suppose WHL1,σ2 : (V,E, σ, µ) is a wheel-neutrosophic graph. The
argument is elementary. All vertices of a cycle

n1, n2, n3, · · · , nO(WHL1,σ2 )−3, nO(WHL1,σ2 )−2, nO(WHL1,σ2 )−1, n1

join to one vertex, c = nO(WHL1,σ2 ). For every vertices, the minimum number
of edges amid them is either one or two because of center and the notion of
neighbors. In the setting of wheel, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as dominating
is the same with stable-dominating, by Proposition (1.4.8), and S has one
member. All stable-dominating sets corresponded to stable-dominating number
are

{c(nO(WHL1,σ2 ))}.
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1.6. Setting of neutrosophic stable-dominating number

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a set
of neutrosophic vertices [a vertex alongside triple pair of its values is called
neutrosophic vertex.]. If for every neutrosophic vertex n in V \S, there’s at least a
neutrosophic vertex s in S such that s stable-dominates n where for all given two
vertices in S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-dominating
number and it’s denoted by

Sn(WHL1,σ2) =
3∑
i=1

σi(c)

and corresponded to stable-dominating sets are

{c(nO(WHL1,σ2 ))}.

Thus

Sn(WHL1,σ2) =
3∑
i=1

σi(c).

�

Proposition 1.6.32. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then stable-dominating number is equal to dominating number.

Proposition 1.6.33. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-dominating sets corresponded to stable-
dominating number is one.

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 1.6.34. There is one section for clarifications. In Figure (1.19), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one edge
between them;

(ii) in the setting of wheel, a vertex of dominating set corresponded to
dominating number dominates if and only if it stable-dominates so as
dominating is the same with stable-dominating, by Proposition (1.4.8),
and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
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1. Initial Notions

called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum cardinality between all stable-dominating sets is called
stable-dominating number and it’s denoted by S(WHL1,σ2) = 1; and
corresponded to stable-dominating sets are

{n1};

(iv) there are three stable-dominating sets

{n1}, {n2, n4}, {n3, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-dominating number so as neutrosophic cardinality is characteristic;

(v) there’s one stable-dominating set

{n1};

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating number
so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number are

{n1}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be a
set of neutrosophic vertices [a vertex alongside triple pair of its values is
called neutrosophic vertex.]. If for every neutrosophic vertex n in V \ S,
there’s at least a neutrosophic vertex s in S such that s stable-dominates
n where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-dominating set.
The minimum neutrosophic cardinality between all stable-dominating
sets is called neutrosophic stable-dominating number and it’s denoted by
Sn(WHL1,σ2) = 1.9; and corresponded to stable-dominating sets are

{n1}.

1.7 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.
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1.8. Case 1: Complete-t-partite Model alongside its stable-dominating number
and its neutrosophic stable-dominating number

Figure 1.19: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number. 87NTG19

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (1.1), clarifies about the
assigned numbers to these situations.

Table 1.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 87tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

1.8 Case 1: Complete-t-partite Model alongside its
stable-dominating number and its neutrosophic
stable-dominating number

Step 4. (Solution) The neutrosophic graph alongside its stable-dominating
number and its neutrosophic stable-dominating number as model, propose
to use specific number. Every subject has connection with some subjects.
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Figure 1.20: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number 87NTG20

Thus the connection is applied as possible and the model demonstrates
quasi-full connections as quasi-possible. Using the notion of strong on
the connection amid subjects, causes the importance of subject goes in
the highest level such that the value amid two consecutive subjects, is
determined by those subjects. If the configuration is star, the number
is different. Also, it holds for other types such that complete, wheel,
path, and cycle. The collection of situations is another application of its
stable-dominating number and its neutrosophic stable-dominating number
when the notion of family is applied in the way that all members of
family are from same classes of neutrosophic graphs. As follows, there
are five subjects which are represented as Figure (1.20). This model is
strong and even more it’s quasi-complete. And the study proposes using
specific number which is called its stable-dominating number and its
neutrosophic stable-dominating number. There are also some analyses
on other numbers in the way that, the clarification is gained about being
special number or not. Also, in the last part, there is one neutrosophic
number to assign to this model and situation to compare them with same
situations to get more precise. Consider Figure (1.20). In Figure (1.20),
an complete-t-partite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one
path with length one or one path with length two between them;

(ii) in the setting of complete-t-partite, a vertex of dominating set
corresponded to dominating number dominates as if it doesn’t stable-
dominate so as dominating is the different with stable-dominating, by
S has two neighbors in the setting of dominating which is impossible
in the setting of stable-dominating;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}.
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1.9. Case 2: Complete Model alongside its Neutrosophic Graph in the
Viewpoint of its stable-dominating number and its neutrosophic

stable-dominating number
For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that s
stable-dominates n where for all given two vertices in S, there’s no
edge between them, then the set of neutrosophic vertices, S is called
stable-dominating set. The minimum cardinality between all stable-
dominating sets is called stable-dominating number and it’s denoted
by S(CMCσ1,σ2,··· ,σt) = 2; and corresponded to stable-dominating
sets are

{n1, n4};

(iv) there’s one stable-dominating set

{n1, n4},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there’s one stable-dominating set

{n1, n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1, n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-
dominating number and it’s denoted by Sn(CMCσ1,σ2,··· ,σt) = 2.9;
and corresponded to stable-dominating sets are

{n1, n4}.

1.9 Case 2: Complete Model alongside its
Neutrosophic Graph in the Viewpoint of its
stable-dominating number and its neutrosophic
stable-dominating number

Step 4. (Solution) The neutrosophic graph alongside its stable-dominating
number and its neutrosophic stable-dominating number as model, propose
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Figure 1.21: A Neutrosophic Graph in the Viewpoint of its stable-dominating
number and its neutrosophic stable-dominating number 87NTG21

to use specific number. Every subject has connection with every given
subject in deemed way. Thus the connection applied as possible and
the model demonstrates full connections as possible between parts but
with different view where symmetry amid vertices and edges are the
matters. Using the notion of strong on the connection amid subjects,
causes the importance of subject goes in the highest level such that the
value amid two consecutive subjects, is determined by those subjects. If
the configuration is complete multipartite, the number is different. Also, it
holds for other types such that star, wheel, path, and cycle. The collection
of situations is another application of its stable-dominating number and
its neutrosophic stable-dominating number when the notion of family
is applied in the way that all members of family are from same classes
of neutrosophic graphs. As follows, there are four subjects which are
represented in the formation of one model as Figure (1.21). This model is
neutrosophic strong as individual and even more it’s complete. And the
study proposes using specific number which is called its stable-dominating
number and its neutrosophic stable-dominating number for this model.
There are also some analyses on other numbers in the way that, the
clarification is gained about being special number or not. Also, in the
last part, there is one neutrosophic number to assign to these models as
individual. A model as a collection of situations to compare them with
another model as a collection of situations to get more precise. Consider
Figure (1.21). There is one section for clarifications.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;
(ii) in the setting of complete, a vertex of dominating set corresponded

to dominating number dominates if and only if it stable-dominates
so as dominating is the same with stable-dominating, by Proposition
(1.4.8), and S has one member;

(iii) all stable-dominating sets corresponded to stable-dominating number
are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
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values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum cardinality between all
stable-dominating sets is called stable-dominating number and it’s
denoted by S(CMTσ) = 1; and corresponded to stable-dominating
sets are

{n1}, {n2}, {n3},
{n4};

(iv) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

as if it’s possible to have one of them as a set corresponded
to neutrosophic stable-dominating number so as neutrosophic
cardinality is characteristic;

(v) there are four stable-dominating sets

{n1}, {n2}, {n3},
{n4},

corresponded to stable-dominating number as if there’s one stable-
dominating set corresponded to neutrosophic stable-dominating
number so as neutrosophic cardinality is the determiner;

(vi) all stable-dominating sets corresponded to stable-dominating number
are

{n1}, {n2}, {n3},
{n4}.

For given vertex n, if sn ∈ E, then s stable-dominates n. Let S be
a set of neutrosophic vertices [a vertex alongside triple pair of its
values is called neutrosophic vertex.]. If for every neutrosophic vertex
n in V \ S, there’s at least a neutrosophic vertex s in S such that
s stable-dominates n where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is
called stable-dominating set. The minimum neutrosophic cardinality
between all stable-dominating sets is called neutrosophic stable-
dominating number and it’s denoted by Sn(CMTσ) = 0.9; and
corresponded to stable-dominating sets are

{n4}.

1.10 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
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ideas to make new settings which are eligible to extend and to create new study.
Notion concerning its stable-dominating number and its neutrosophic stable-
dominating number are defined in neutrosophic graphs. Thus,

Question 1.10.1. Is it possible to use other types of its stable-dominating
number and its neutrosophic stable-dominating number?

Question 1.10.2. Are existed some connections amid different types of its
stable-dominating number and its neutrosophic stable-dominating number in
neutrosophic graphs?

Question 1.10.3. Is it possible to construct some classes of neutrosophic graphs
which have “nice” behavior?

Question 1.10.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 1.10.5. Which parameters are related to this parameter?

Problem 1.10.6. Which approaches do work to construct applications to create
independent study?

Problem 1.10.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

1.11 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses two definitions concerning stable-dominating number and
neutrosophic stable-dominating number arising from stable-dominated vertices
in neutrosophic graphs assigned to neutrosophic graphs. Minimum number
of stable-dominated vertices, is a number which is representative based on
those vertices. Minimum neutrosophic number of stable-dominated vertices
corresponded to stable-dominating set is called neutrosophic stable-dominating
number. The connections of vertices which aren’t clarified by minimum number
of edges amid them differ them from each other and put them in different
categories to represent a number which is called stable-dominating number and
neutrosophic stable-dominating number arising from stable-dominated vertices
in neutrosophic graphs assigned to neutrosophic graphs. Further studies could
be about changes in the settings to compare these notions amid different
settings of neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (1.2), some
limitations and advantages of this study are pointed out.
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Table 1.2: A Brief Overview about Advantages and Limitations of this Study 87tbl

Advantages Limitations
1. Stable-Dominating Number of Model 1. Connections amid Classes

2. Neutrosophic Stable-Dominating Number of Model

3. Minimal Stable-Dominating Sets 2. Study on Families

4. Stable-Dominated Vertices amid all Vertices

5. Acting on All Vertices 3. Same Models in Family
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CHAPTER 2

Modified Notions

The following sections are cited as follows, which is my 88th manuscript and I
use prefix 88 as number before any labelling for items.

[Ref2] Henry Garrett, “Seeking Empty Subgraphs To Determine Different
Measurements in Some Classes of Neutrosophic Graphs”, ResearchGate 2022
(doi: 10.13140/RG.2.2.30448.53766).

Seeking Empty Subgraphs To Determine Different Measurements
in Some Classes of Neutrosophic Graphs

2.1 Abstract

New setting is introduced to study stable-resolving number and neutrosophic
stable-resolving number arising from stable-resolved vertices in neutrosophic
graphs assigned to neutrosophic graphs. Minimum number of stable-resolved
vertices, is a number which is representative based on those vertices. Minimum
neutrosophic number of stable-resolved vertices corresponded to stable-resolving
set is called neutrosophic stable-resolving number. Forming sets from stable-
resolved vertices to figure out different types of number of vertices in the sets
from stable-resolved sets in the terms of minimum number of vertices to get
minimum number to assign to neutrosophic graphs is key type of approach to
have these notions namely stable-resolving number and neutrosophic stable-
resolving number arising from stable-resolved vertices in neutrosophic graphs
assigned to neutrosophic graphs. Two numbers and one set are assigned to
a neutrosophic graph, are obtained but now both settings lead to approach
is on demand which is to compute and to find representatives of sets having
smallest number of stable-resolved vertices from different types of sets in the
terms of minimum number and minimum neutrosophic number forming it to
get minimum number to assign to a neutrosophic graph. Let NTG : (V,E, σ, µ)
be a neutrosophic graph. Then for given vertices n and n′, if d(s, n) 6= d(s, n′),
then s stable-resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \ S, there’s at least a neutrosophic vertex
s in S such that s stable-resolves n and n′ where for all given two vertices
in S, there’s no edge between them, then the set of neutrosophic vertices, S
is called stable-resolving set. The minimum cardinality between all stable-
resolving sets is called stable-resolving number and it’s denoted by S(NTG);
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for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and
n′. Let S be a set of neutrosophic vertices [a vertex alongside triple pair of
its values is called neutrosophic vertex.]. If for every neutrosophic vertices
n and n′, in V \ S, there’s at least a neutrosophic vertex s in S such that s
stable-resolves n and n′ where for all given two vertices in S, there’s no edge
between them, then the set of neutrosophic vertices, S is called neutrosophic
stable-resolving set. The minimum neutrosophic cardinality between all stable-
resolving sets is called neutrosophic stable-resolving number and it’s denoted by
Sn(NTG). As concluding results, there are some statements, remarks, examples
and clarifications about some classes of neutrosophic graphs namely path-
neutrosophic graphs, cycle-neutrosophic graphs, complete-neutrosophic graphs,
star-neutrosophic graphs, complete-bipartite-neutrosophic graphs, complete-t-
partite-neutrosophic graphs, and wheel-neutrosophic graphs. The clarifications
are also presented in both sections “Setting of stable-resolving number,” and
“Setting of neutrosophic stable-resolving number,” for introduced results and
used classes. This approach facilitates identifying sets which form stable-
resolving number and neutrosophic stable-resolving number arising from stable-
resolved vertices in neutrosophic graphs assigned to neutrosophic graphs. In
both settings, some classes of well-known neutrosophic graphs are studied.
Some clarifications for each result and each definition are provided. The
cardinality of set of stable-resolved vertices and neutrosophic cardinality of set
of stable-resolved vertices corresponded to stable-resolving set have eligibility
to define stable-resolving number and neutrosophic stable-resolving number
but different types of set of stable-resolved vertices to define stable-resolving
sets. Some results get more frameworks and more perspectives about these
definitions. The way in that, different types of set of stable-resolved vertices in
the terms of minimum number to assign to neutrosophic graphs, opens the way
to do some approaches. These notions are applied into neutrosophic graphs
as individuals but not family of them as drawbacks for these notions. Finding
special neutrosophic graphs which are well-known, is an open way to pursue
this study. Neutrosophic stable-resolving notion is applied to different settings
and classes of neutrosophic graphs. Some problems are proposed to pursue this
study. Basic familiarities with graph theory and neutrosophic graph theory are
proposed for this article.

Keywords: Stable-Resolving Number, Neutrosophic Stable-Resolving

Number, Classes of Neutrosophic Graphs
AMS Subject Classification: 05C17, 05C22, 05E45

2.2 Background

Fuzzy set in Ref. [Ref22] by Zadeh (1965), intuitionistic fuzzy sets in Ref.
[Ref3] by Atanassov (1986), a first step to a theory of the intuitionistic fuzzy
graphs in Ref. [Ref19] by Shannon and Atanassov (1994), a unifying field
in logics neutrosophy: neutrosophic probability, set and logic, rehoboth in
Ref. [Ref20] by Smarandache (1998), single-valued neutrosophic sets in Ref.
[Ref21] by Wang et al. (2010), single-valued neutrosophic graphs in Ref.
[Ref7] by Broumi et al. (2016), operations on single-valued neutrosophic graphs
in Ref. [Ref1] by Akram and Shahzadi (2017), neutrosophic soft graphs in Ref.
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[Ref18] by Shah and Hussain (2016), bounds on the average and minimum
attendance in preference-based activity scheduling inRef. [Ref2] by Aronshtam
and Ilani (2022), investigating the recoverable robust single machine scheduling
problem under interval uncertainty in Ref. [Ref4] by Bold and Goerigk (2022),
independent (k+1)-domination in k-trees in Ref. [Ref5] by M. Borowiecki et al.
(2020), Oon upper bounds for the independent transversal domination number in
Ref. [Ref6] by C. Brause et al. (2018), complexity results on open-independent,
open-locating-dominating sets in complementary prism graphs in Ref. [Ref8]
by M.R. Cappelle et al. (2022), general upper bounds on independent k-rainbow
domination in Ref. [Ref9] by S. Bermudo et al. (2019), on the independent
domination polynomial of a graph in Ref. [Ref14] by S. Jahari, and S.
Alikhani (2021), independent domination in finitely defined classes of graphs:
polynomial algorithms in Ref. [Ref15] by V. Lozin et al. (2015), on three
outer-independent domination related parameters in graphs in Ref. [Ref16] by
D.A. Mojdeh et al. (2021), independent Roman {2}−domination in graphs in
Ref. [Ref17] by A. Rahmouni, and M. Chellali (2018), dimension and coloring
alongside domination in neutrosophic hypergraphs in Ref. [Ref11] by Henry
Garrett (2022), three types of neutrosophic alliances based on connectedness
and (strong) edges in Ref. [Ref13] by Henry Garrett (2022), properties of
SuperHyperGraph and neutrosophic SuperHyperGraph in Ref. [Ref12] by
Henry Garrett (2022), are studied. Also, some studies and researches about
neutrosophic graphs, are proposed as a book in Ref. [Ref10] by Henry Garrett
(2022).
In this section, I use two subsections to illustrate a perspective about the
background of this study.

Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.2.1. Is it possible to use mixed versions of ideas concerning “stable-
resolving number”, “neutrosophic stable-resolving number” and “Neutrosophic
Graph” to define some notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Having connection amid two
vertices have key roles to assign stable-resolving number and neutrosophic
stable-resolving number arising from stable-resolved vertices in neutrosophic
graphs assigned to neutrosophic graphs. Thus they’re used to define new ideas
which conclude to the structure of stable-resolving number and neutrosophic
stable-resolving number arising from stable-resolved vertices in neutrosophic
graphs assigned to neutrosophic graphs. The concept of having smallest number
of stable-resolved vertices in the terms of crisp setting and in the terms of
neutrosophic setting inspires us to study the behavior of all stable-resolved
vertices in the way that, some types of numbers, stable-resolving number and
neutrosophic stable-resolving number arising from stable-resolved vertices in
neutrosophic graphs assigned to neutrosophic graphs, are the cases of study in
the setting of individuals. In both settings, corresponded numbers conclude the
discussion. Also, there are some avenues to extend these notions.
The framework of this study is as follows. In the beginning, I introduce
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basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of stable-resolving number and neutrosophic stable-resolving
number arising from stable-resolved vertices in neutrosophic graphs assigned
to neutrosophic graphs, are highlighted, are introduced and are clarified as
individuals. In section “Preliminaries”, minimum number of stable-resolved
vertices, is a number which is representative based on those vertices, have
the key role in this way. General results are obtained and also, the results
about the basic notions of stable-resolving number and neutrosophic stable-
resolving number arising from stable-resolved vertices in neutrosophic graphs
assigned to neutrosophic graphs, are elicited. Some classes of neutrosophic
graphs are studied in the terms of stable-resolving number and neutrosophic
stable-resolving number arising from stable-resolved vertices in neutrosophic
graphs assigned to neutrosophic graphs, in section “Setting of stable-resolving
number,” as individuals. In section “Setting of stable-resolving number,” stable-
resolving number is applied into individuals. As concluding results, there
are some statements, remarks, examples and clarifications about some classes
of neutrosophic graphs namely path-neutrosophic graphs, cycle-neutrosophic
graphs, complete-neutrosophic graphs, star-neutrosophic graphs, complete-
bipartite-neutrosophic graphs, complete-t-partite-neutrosophic graphs, and
wheel-neutrosophic graphs. The clarifications are also presented in both
sections “Setting of stable-resolving number,” and “Setting of neutrosophic
stable-resolving number,” for introduced results and used classes. In section
“Applications in Time Table and Scheduling”, two applications are posed for
quasi-complete and complete notions, namely complete-neutrosophic graphs and
complete-t-partite-neutrosophic graphs concerning time table and scheduling
when the suspicions are about choosing some subjects and the mentioned models
are considered as individual. In section “Open Problems”, some problems and
questions for further studies are proposed. In section “Conclusion and Closing
Remarks”, gentle discussion about results and applications is featured. In section
“Conclusion and Closing Remarks”, a brief overview concerning advantages and
limitations of this study alongside conclusions is formed.

Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 2.2.2. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 2.2.3. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The

66



2.2. Background

added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) :
∑
v∈V

∑3
i=1 σi(v) is called neutrosophic order of NTG and it’s denoted

by On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) :
∑
e∈E

∑3
i=1 µi(e) is called neutrosophic size of NTG and it’s denoted

by Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 2.2.4. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path
where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG)− 1;

(ii) : strength of path P : x0, x1, · · · , xO(NTG) is
∧
i=0,··· ,O(NTG)−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xt is

µ∞(x0, xt) =
∨

P :x0,x1,··· ,xt

∧
i=0,··· ,t−1

µ(xixi+1);

(iv) : a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called
cycle where xixi+1 ∈ E, i = 0, 1, · · · ,O(NTG) − 1, xO(NTG)x0 ∈ E
and there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and
the edge xy implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete,
then it’s denoted by Kσ1,σ2,··· ,σt where σi is σ on V sii instead V which
mean x 6∈ Vi induces σi(x) = 0. Also, |V sij | = si;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).
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To make them concrete, I bring preliminaries of this article in two upcoming
definitions in other ways.

Definition 2.2.5. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], and µi : E → [0, 1]. We add one condition
on it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

|V | is called order of NTG and it’s denoted by O(NTG). Σv∈V σ(v) is called
neutrosophic order of NTG and it’s denoted by On(NTG).

Definition 2.2.6. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then it’s
complete and denoted by CMTσ if ∀x, y ∈ V,xy ∈ E and µ(xy) = σ(x)∧σ(y);
a sequence of consecutive vertices P : x0, x1, · · · , xO(NTG) is called path and
it’s denoted by PTH where xixi+1 ∈ E, i = 0, 1, · · · , n − 1; a sequence of
consecutive vertices P : x0, x1, · · · , xO(NTG), x0 is called cycle and denoted by
CY C where xixi+1 ∈ E, i = 0, 1, · · · , n − 1, xO(NTG)x0 ∈ E and there are
two edges xy and uv such that µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1); it’s

t-partite where V is partitioned to t parts, V s1
1 , V s2

2 , · · · , V stt and the edge xy
implies x ∈ V sii and y ∈ V sjj where i 6= j. If it’s complete, then it’s denoted
by CMTσ1,σ2,··· ,σt where σi is σ on V sii instead V which mean x 6∈ Vi induces
σi(x) = 0. Also, |V sij | = si; t-partite is complete bipartite if t = 2, and it’s
denoted by CMTσ1,σ2 ; complete bipartite is star if |V1| = 1, and it’s denoted
by STR1,σ2 ; a vertex in V is center if the vertex joins to all vertices of a cycle.
Then it’s wheel and it’s denoted by WHL1,σ2 .

Remark 2.2.7. Using notations which is mixed with literatures, are reviewed.

2.2.7.1. NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)), O(NTG), and
On(NTG);

2.2.7.2. CMTσ, PTH,CY C, STR1,σ2 , CMT σ1,σ2 , CMT σ1,σ2,··· ,σt , and
WHL1,σ2 .

Definition 2.2.8. (stable-resolving numbers).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted
by S(NTG);

(ii) for given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
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vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in S,
there’s no edge between them, then the set of neutrosophic vertices, S is
called neutrosophic stable-resolving set. The minimum neutrosophic
cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by Sn(NTG).

For convenient usages, the word neutrosophic which is used in previous
definition, won’t be used, usually.

88prp9 Proposition 2.2.9. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Assume
|S| has one member. Then

(i) a vertex resolves if and only if it stable-resolves;

(ii) S is resolving set if and only if it’s stable-resolving set;

(iii) a number is resolving number if and only if it’s stable-resolving number.

Proposition 2.2.10. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then S
is stable-resolving set corresponded to stable-resolving number if and only if for
every neutrosophic vertex s in S, there are at least neutrosophic vertices n and
n′ in V \ S such that {s′ ∈ S | d(s′, n) 6= d(s′, n′)} = {s}.

Proposition 2.2.11. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V
isn’t S.

In next part, clarifications about main definition are given. To avoid
confusion and for convenient usages, examples are usually used after every part
and names are used in the way that, abbreviation, simplicity, and summarization
are the matters of mind.

Example 2.2.12. In Figure (2.1), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is
different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(NTG) = Not Existed; and corresponded to stable-resolving sets are

Not Existed;
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Figure 2.1: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG1

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(NTG) = Not Existed; and corresponded
to stable-resolving sets are

Not Existed.

2.3 Setting of stable-resolving number

In this section, I provide some results in the setting of stable-resolving number.
Some classes of neutrosophic graphs are chosen. Complete-neutrosophic
graph, path-neutrosophic graph, cycle-neutrosophic graph, star-neutrosophic
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graph, bipartite-neutrosophic graph, t-partite-neutrosophic graph, and wheel-
neutrosophic graph, are both of cases of study and classes which the results are
about them.

Proposition 2.3.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

S(CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t stable-resolve so as resolving is different from stable-resolving.
Stable-resolving set and stable-resolving number are Not Existed. All stable-
resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(CMTσ) = Not Existed

and corresponded to stable-resolving sets are

Not Existed.

Thus
S(CMTσ) = Not Existed.

�

Proposition 2.3.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 2.3.3. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets corresponded to stable-resolving number
is Not Existed.

Proposition 2.3.4. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets is Not Existed.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.
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Example 2.3.5. In Figure (2.2), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is
different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMTσ) = Not Existed; and corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(CMTσ) = Not Existed; and corresponded
to stable-resolving sets are

Not Existed.
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Figure 2.2: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG2

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 2.3.6. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

S(PTH) = 1.

Proof. Suppose PTH : (V,E, σ, µ) is a path-neutrosophic graph. Let
n1, n2, . . . , nO(PTH) be a path-neutrosophic graph. For given two vertices,
x and y, there’s one path from x to y. In the setting of path, a vertex of
resolving set corresponded to resolving number resolves if and only if it stable-
resolves by Proposition (2.2.9) and S has one member in the setting of resolving.
All stable-resolving sets corresponded to stable-resolving number are

{n1}, {nO(PTH)}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(PTH) = 1
and corresponded to stable-resolving sets are

{n1}, {nO(PTH)}.

Thus
S(PTH) = 1.

�

Proposition 2.3.7. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
stable-resolving number is equal to resolving number.

Proposition 2.3.8. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
the number of stable-resolving sets corresponded to stable-resolving number is
two.
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Example 2.3.9. There are two sections for clarifications.

(a) In Figure (2.3), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of resolving set corresponded
to resolving number resolves if and only if it stable-resolves by
Proposition (2.2.9) and S has one member in the setting of resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(PTH) = 1; and corresponded to
stable-resolving sets are

{n1}, {n5};

(iv) there are nine stable-resolving sets

{n1}, {n1, n3}, {n1, n4},
{n1, n5}, {n1, n3, n5}, {n5},
{n5, n3}, {n5, n2}, {n5, n1},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are two stable-resolving sets

{n1}, {n5};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
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a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(PTH) = 1.2; and corresponded to stable-resolving sets are

{n5}.

(b) In Figure (2.4), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of resolving set corresponded
to resolving number resolves if and only if it stable-resolves by
Proposition (2.2.9) and S has one member in the setting of resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(PTH) = 1; and corresponded to
stable-resolving sets are

{n1}, {n6};

(iv) there are sixteen stable-resolving sets

{n1}, {n1, n3}, {n1, n4},
{n1, n5}, {n1, n6}, {n1, n3, n5},
{n1, n3, n6}, {n1, n4, n6}, {n6},
{n6, n3}, {n6, n4}, {n6, n2},
{n6, n1}, {n6, n3, n1}, {n6, n4, n2},
{n6, n4, n1},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are two stable-resolving sets

{n1}, {n6};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;
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Figure 2.3: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG3

Figure 2.4: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG4

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(PTH) = 1.9; and corresponded to stable-resolving sets are

{n6}.

Proposition 2.3.10. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(CY C) ≥ 3. Then

S(CY C) = 2.
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Proof. Suppose CY C : (V,E, σ, µ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. Let

n1, n2, · · · , nO(CY C)−1, nO(CY C), n1

be a cycle-neutrosophic graph CY C : (V,E, σ, µ). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
stable-resolve since two neighbors aren’t allowed in the setting of stable-resolving.
All stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, . . . , {n1, nO(CY C)−3}, {n1, nO(CY C)−2}, {n1, nO(CY C)−1},
{n2, n4}, {n1, n5}, . . . , {n2, nO(CY C)−2}, {n2, nO(CY C)−1}, {n2, nO(CY C)},
{n3, n5}, {n3, n6}, . . . , {n3, nO(CY C)−2}, {n3, nO(CY C)−1}, {n3, nO(CY C)},
. . .

{nO(CY C)−3, nO(CY C)−2}, {nO(CY C)−3, nO(CY C)−1}, {nO(CY C)−3, nO(CY C)},
{nO(CY C)−2, nO(CY C)−1}, {nO(CY C)−2, nO(CY C)},
{nO(CY C)−2, nO(CY C)}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(CY C) = 2;
and corresponded to stable-resolving sets are

{n1, n3}, {n1, n4}, . . . , {n1, nO(CY C)−3}, {n1, nO(CY C)−2}, {n1, nO(CY C)−1},
{n2, n4}, {n1, n5}, . . . , {n2, nO(CY C)−2}, {n2, nO(CY C)−1}, {n2, nO(CY C)},
{n3, n5}, {n3, n6}, . . . , {n3, nO(CY C)−2}, {n3, nO(CY C)−1}, {n3, nO(CY C)},
. . .

{nO(CY C)−3, nO(CY C)−2}, {nO(CY C)−3, nO(CY C)−1}, {nO(CY C)−3, nO(CY C)},
{nO(CY C)−2, nO(CY C)−1}, {nO(CY C)−2, nO(CY C)},
{nO(CY C)−2, nO(CY C)}.

Thus
S(CY C) = 2.

�

Proposition 2.3.11. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph.
Then stable-resolving number is equal to resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.
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Example 2.3.12. There are two sections for clarifications.

(a) In Figure (2.5), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CY C) = 2; and corresponded to
stable-resolving sets are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6};

(iv) there are six stable-resolving sets

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}, {n1, n3, n5}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are four stable-resolving sets

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}.
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For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CY C) = 1.3; and corresponded to stable-resolving sets are

{n1, n5}.

(b) In Figure (2.6), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CY C) = 2; and corresponded to
stable-resolving sets are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5};

(iv) there are four stable-resolving sets

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are four stable-resolving sets

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5};
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Figure 2.5: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG5

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CY C) = 2.8; and corresponded to stable-resolving sets are

{n2, n5}.

Proposition 2.3.13. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

S(STR1,σ2) = O(STR1,σ2)− 2.

Proof. Suppose STR1,σ2 : (V,E, σ, µ) is a star-neutrosophic graph. An edge
always has center, c, as one of its endpoints where nO(STR1,σ2 ) = c. All paths
have one as their lengths, forever. In the setting of star, a vertex of resolving
set corresponded to resolving number resolves if and only if it stable-resolves
so as resolving is the same with stable-resolving. All stable-resolving sets
corresponded to stable-resolving number are

{n2, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
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Figure 2.6: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG6

{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
. . .

{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−1)},
{n1, n2, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2)}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(STR1,σ2) = O(STR1,σ2)− 2;

and corresponded to stable-resolving sets are

{n2, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
. . .

{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−1)},
{n1, n2, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2)}.

Thus
S(STR1,σ2) = O(STR1,σ2)− 2.

�

Proposition 2.3.14. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph. Then
stable-resolving number is equal to resolving number.
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Proposition 2.3.15. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-resolving sets is O(STR1,σ2).

Proposition 2.3.16. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-resolving sets corresponded to stable-resolving
number is O(STR1,σ2)− 1.

The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 2.3.17. There is one section for clarifications. In Figure (2.7), a
star-neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one path,
precisely one edge between them and there’s no path despite them;

(ii) in the setting of star, a vertex of resolving set corresponded to resolving
number resolves if and only if it stable-resolves so as resolving is the same
with stable-resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(STR1,σ2) = 3; and corresponded to stable-resolving sets are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5};

(iv) there are five stable-resolving sets

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}, {n2, n3, n4, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-resolving number so as neutrosophic cardinality is characteristic;

(v) there are four stable-resolving sets

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
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Figure 2.7: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG7

{n3, n4, n5}

corresponded to stable-resolving number as if there’s one stable-resolving
set corresponded to neutrosophic stable-resolving number so as neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(STR1,σ2) = 3.9; and corresponded to
stable-resolving sets are

{n2, n3, n5}.

Proposition 2.3.18. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph which isn’t star-neutrosophic graph which means |V1|, |V2| ≥ 2. Then

S(CMCσ1,σ2) = Not Existed.

Proof. Suppose CMCσ1,σ2 : (V,E, σ, µ) is a complete-bipartite-neutrosophic
graph. Every vertex in a part and another vertex in opposite part stable-
resolves any given vertex. Assume same parity for same partition of vertex set
which means V1 has odd indexes and V2 has even indexes. In the setting of
complete-bipartite, a vertex of resolving set corresponded to resolving number
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resolves as if it doesn’t stable-resolve so as resolving is different from stable-
resolving. Stable-resolving set and stable-resolving number are Not Existed.
All stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(CMCσ1,σ2) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
S(CMCσ1,σ2) = Not Existed.

�

Proposition 2.3.19. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then stable-resolving number isn’t equal to resolving number.

Proposition 2.3.20. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.

Proposition 2.3.21. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 2.3.22. There is one section for clarifications. In Figure (2.8),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-bipartite, a vertex of resolving set corresponded
to resolving number resolves as if it doesn’t stable-resolve so as resolving
is different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;
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2.3. Setting of stable-resolving number

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMCσ1,σ2) = Not Existed; and corresponded to stable-resolving sets
are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between
all stable-resolving sets is called neutrosophic stable-resolving number
and it’s denoted by Sn(CMCσ1,σ2) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

Proposition 2.3.23. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where t ≥ 3. Then

S(CMCσ1,σ2,··· ,σt) = Not Existed.
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Figure 2.8: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG8

Proof. Suppose CMCσ1,σ2,··· ,σt : (V,E, σ, µ) is a complete-t-partite-
neutrosophic graph. Every vertex in a part is stable-resolved by another
vertex in another part. In the setting of complete-t-partite, a vertex of resolving
set corresponded to resolving number resolves as if it doesn’t stable-resolve
so as resolving is different from stable-resolving. Stable-resolving set and
stable-resolving number are Not Existed. All stable-resolving sets corresponded
to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(CMCσ1,σ2,··· ,σt) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
S(CMCσ1,σ2,··· ,σt) = Not Existed.

�

Proposition 2.3.24. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then stable-resolving number isn’t equal to resolving number.

Proposition 2.3.25. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.
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Proposition 2.3.26. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.

The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 2.3.27. There is one section for clarifications. In Figure (2.9), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-t-partite, a vertex of resolving set corresponded
to resolving number resolves as if it doesn’t stable-resolve so as resolving
is different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMCσ1,σ2,··· ,σt) = Not Existed; and corresponded to stable-resolving
sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;
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Figure 2.9: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG9

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between all
stable-resolving sets is called neutrosophic stable-resolving number and
it’s denoted by Sn(CMCσ1,σ2,··· ,σt) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

Proposition 2.3.28. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then

S(WHL1,σ2) = Not Existed.

Proof. Suppose WHL1,σ2 : (V,E, σ, µ) is a wheel-neutrosophic graph. The
argument is elementary. All vertices of a cycle

n1, n2, n3, · · · , nO(WHL1,σ2 )−3, nO(WHL1,σ2 )−2, nO(WHL1,σ2 )−1, n1

join to one vertex, c = nO(WHL1,σ2 ). For every vertices, the minimum number
of edges amid them is either one or two because of center and the notion of
neighbors. In the setting of wheel, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is different
from stable-resolving. Stable-resolving set and stable-resolving number are
Not Existed. All stable-resolving sets corresponded to stable-resolving number
are

Not Existed.
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For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving number
and it’s denoted by

S(WHL1,σ2) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
S(WHL1,σ2) = Not Existed.

�

Proposition 2.3.29. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 2.3.30. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.

Proposition 2.3.31. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.3.32. There is one section for clarifications. In Figure (2.10), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one edge
between them;

(ii) in the setting of wheel, a vertex of resolving set corresponded to resolving
number resolves as if it doesn’t stable-resolve so as resolving is different
from stable-resolving. Stable-resolving set and stable-resolving number
are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
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vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(WHL1,σ2) = Not Existed; and corresponded to stable-resolving sets
are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between
all stable-resolving sets is called neutrosophic stable-resolving number
and it’s denoted by Sn(WHL1,σ2) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

2.4 Setting of neutrosophic stable-resolving number

In this section, I provide some results in the setting of neutrosophic stable-
resolving number. Some classes of neutrosophic graphs are chosen. Complete-
neutrosophic graph, path-neutrosophic graph, cycle-neutrosophic graph, star-
neutrosophic graph, bipartite-neutrosophic graph, t-partite-neutrosophic graph,
and wheel-neutrosophic graph, are both of cases of study and classes which the
results are about them.
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Figure 2.10: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG10

Proposition 2.4.1. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then

Sn(CMTσ) = Not Existed.

Proof. Suppose CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph. By
CMTσ : (V,E, σ, µ) is a complete-neutrosophic graph, all vertices are connected
to each other. So there’s one edge between two vertices. In the setting of
complete, a vertex of resolving set corresponded to resolving number resolves
as if it doesn’t stable-resolve so as resolving is different from stable-resolving.
Stable-resolving set and stable-resolving number are Not Existed. All stable-
resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(CMTσ) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
Sn(CMTσ) = Not Existed.

�
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Proposition 2.4.2. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 2.4.3. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets corresponded to stable-resolving number
is Not Existed.

Proposition 2.4.4. Let NTG : (V,E, σ, µ) be a complete-neutrosophic graph.
Then the number of stable-resolving sets is Not Existed.

The clarifications about results are in progress as follows. A complete-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A complete-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.4.5. In Figure (2.11), a complete-neutrosophic graph is illustrated.
Some points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;

(ii) in the setting of complete, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is
different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMTσ) = Not Existed; and corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;
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Figure 2.11: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG11

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(CMTσ) = Not Existed; and corresponded
to stable-resolving sets are

Not Existed.

Another class of neutrosophic graphs is addressed to path-neutrosophic
graph.

Proposition 2.4.6. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then

Sn(PTH) = min{
3∑
i=1

σi(n1),
3∑
i=1

σi(nO(PTH))}n1 and nO(PTH) are leaves .

Proof. Suppose PTH : (V,E, σ, µ) is a path-neutrosophic graph. Let
n1, n2, . . . , nO(PTH) be a path-neutrosophic graph. For given two vertices,
x and y, there’s one path from x to y. In the setting of path, a vertex of
resolving set corresponded to resolving number resolves if and only if it stable-
resolves by Proposition (2.2.9) and S has one member in the setting of resolving.
All stable-resolving sets corresponded to stable-resolving number are

{n1}, {nO(PTH)}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
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V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(PTH) = min{
3∑
i=1

σi(n1),
3∑
i=1

σi(nO(PTH))}n1 and nO(PTH) are leaves ;

and corresponded to stable-resolving sets are

{n1}, {nO(PTH)}.

Thus

Sn(PTH) = min{
3∑
i=1

σi(n1),
3∑
i=1

σi(nO(PTH))}n1 and nO(PTH) are leaves .

�

Proposition 2.4.7. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
stable-resolving number is equal to resolving number.

Proposition 2.4.8. Let NTG : (V,E, σ, µ) be a path-neutrosophic graph. Then
the number of stable-resolving sets corresponded to stable-resolving number is
two.

Example 2.4.9. There are two sections for clarifications.

(a) In Figure (2.12), an odd-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of resolving set corresponded
to resolving number resolves if and only if it stable-resolves by
Proposition (2.2.9) and S has one member in the setting of resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(PTH) = 1; and corresponded to
stable-resolving sets are

{n1}, {n5};
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(iv) there are nine stable-resolving sets

{n1}, {n1, n3}, {n1, n4},
{n1, n5}, {n1, n3, n5}, {n5},
{n5, n3}, {n5, n2}, {n5, n1},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are two stable-resolving sets

{n1}, {n5};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(PTH) = 1.2; and corresponded to stable-resolving sets are

{n5}.

(b) In Figure (2.13), an even-path-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there’s only one path with other
vertices;

(ii) in the setting of path, a vertex of resolving set corresponded
to resolving number resolves if and only if it stable-resolves by
Proposition (2.2.9) and S has one member in the setting of resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
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two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(PTH) = 1; and corresponded to
stable-resolving sets are

{n1}, {n6};

(iv) there are sixteen stable-resolving sets

{n1}, {n1, n3}, {n1, n4},
{n1, n5}, {n1, n6}, {n1, n3, n5},
{n1, n3, n6}, {n1, n4, n6}, {n6},
{n6, n3}, {n6, n4}, {n6, n2},
{n6, n1}, {n6, n3, n1}, {n6, n4, n2},
{n6, n4, n1},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are two stable-resolving sets

{n1}, {n6};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1}, {n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(PTH) = 1.9; and corresponded to stable-resolving sets are

{n6}.

Proposition 2.4.10. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph where
O(CY C) ≥ 3. Then

Sn(CY C) = min{
3∑
i=1

σi(ni)+
3∑
i=1

σi(nj)}ni and nj are neither antipodal nor neighbor .
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Figure 2.12: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG12

Figure 2.13: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG13

Proof. Suppose CY C : (V,E, σ, µ) is a cycle-neutrosophic graph. For given two
vertices, x and y, there are only two paths with distinct edges from x to y. Let

n1, n2, · · · , nO(CY C)−1, nO(CY C), n1

be a cycle-neutrosophic graph CY C : (V,E, σ, µ). In the setting of cycle, a
vertex of resolving set corresponded to resolving number resolves as if it doesn’t
stable-resolve since two neighbors aren’t allowed in the setting of stable-resolving.
All stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, . . . , {n1, nO(CY C)−3}, {n1, nO(CY C)−2}, {n1, nO(CY C)−1},
{n2, n4}, {n1, n5}, . . . , {n2, nO(CY C)−2}, {n2, nO(CY C)−1}, {n2, nO(CY C)},
{n3, n5}, {n3, n6}, . . . , {n3, nO(CY C)−2}, {n3, nO(CY C)−1}, {n3, nO(CY C)},
. . .

{nO(CY C)−3, nO(CY C)−2}, {nO(CY C)−3, nO(CY C)−1}, {nO(CY C)−3, nO(CY C)},
{nO(CY C)−2, nO(CY C)−1}, {nO(CY C)−2, nO(CY C)},
{nO(CY C)−2, nO(CY C)}.
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For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(CY C) = min{
3∑
i=1

σi(ni)+
3∑
i=1

σi(nj)}ni and nj are neither antipodal nor neighbor ;

and corresponded to stable-resolving sets are

{n1, n3}, {n1, n4}, . . . , {n1, nO(CY C)−3}, {n1, nO(CY C)−2}, {n1, nO(CY C)−1},
{n2, n4}, {n1, n5}, . . . , {n2, nO(CY C)−2}, {n2, nO(CY C)−1}, {n2, nO(CY C)},
{n3, n5}, {n3, n6}, . . . , {n3, nO(CY C)−2}, {n3, nO(CY C)−1}, {n3, nO(CY C)},
. . .

{nO(CY C)−3, nO(CY C)−2}, {nO(CY C)−3, nO(CY C)−1}, {nO(CY C)−3, nO(CY C)},
{nO(CY C)−2, nO(CY C)−1}, {nO(CY C)−2, nO(CY C)},
{nO(CY C)−2, nO(CY C)}.

Thus

Sn(CY C) = min{
3∑
i=1

σi(ni)+
3∑
i=1

σi(nj)}ni and nj are neither antipodal nor neighbor .

�

Proposition 2.4.11. Let NTG : (V,E, σ, µ) be a cycle-neutrosophic graph.
Then stable-resolving number is equal to resolving number.

The clarifications about results are in progress as follows. An odd-cycle-
neutrosophic graph is related to previous result and it’s studied to apply the
definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. An even-cycle-neutrosophic graph is related to previous
result and it’s studied to apply the definitions on it, too.

Example 2.4.12. There are two sections for clarifications.

(a) In Figure (2.14), an even-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;
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(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CY C) = 2; and corresponded to
stable-resolving sets are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6};

(iv) there are six stable-resolving sets

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}, {n1, n3, n5}, {n2, n4, n6},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are four stable-resolving sets

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n5}, {n2, n4},
{n2, n6}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CY C) = 1.3; and corresponded to stable-resolving sets are

{n1, n5}.
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(b) In Figure (2.15), an odd-cycle-neutrosophic graph is illustrated. Some
points are represented in follow-up items as follows.

(i) For given neutrosophic vertex, s, there are only two paths with other
vertices;

(ii) in the setting of cycle, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve since two
neighbors aren’t allowed in the setting of stable-resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CY C) = 2; and corresponded to
stable-resolving sets are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5};

(iv) there are four stable-resolving sets

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5},

as if it’s possible to have one of them as a set corresponded to
neutrosophic stable-resolving number so as neutrosophic cardinality
is characteristic;

(v) there are four stable-resolving sets

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5};

corresponded to stable-resolving number as if there’s one stable-
resolving set corresponded to neutrosophic stable-resolving number
so as neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n1, n3}, {n1, n4}, {n2, n4},
{n2, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
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Figure 2.14: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG14

Figure 2.15: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG15

alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CY C) = 2.8; and corresponded to stable-resolving sets are

{n2, n5}.

Proposition 2.4.13. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then

Sn(STR1,σ2) = On(STR1,σ2)− max
c 6=nj∈V

{
3∑
i=1

σi(c) +
3∑
i=1

σi(nj)}.

Proof. Suppose STR1,σ2 : (V,E, σ, µ) is a star-neutrosophic graph. An edge
always has center, c, as one of its endpoints where nO(STR1,σ2 ) = c. All paths

101



2. Modified Notions

have one as their lengths, forever. In the setting of star, a vertex of resolving
set corresponded to resolving number resolves if and only if it stable-resolves
so as resolving is the same with stable-resolving. All stable-resolving sets
corresponded to stable-resolving number are

{n2, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
. . .

{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−1)},
{n1, n2, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2)}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(STR1,σ2) = On(STR1,σ2)− max
c6=nj∈V

{
3∑
i=1

σi(c) +
3∑
i=1

σi(nj)};

and corresponded to stable-resolving sets are

{n2, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n3, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2), nO(STR1,σ2−1)},
. . .

{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−2), nO(STR1,σ2−1)},
{n1, n2, n3, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−1)},
{n1, n2, n4, . . . , nO(STR1,σ2−4), nO(STR1,σ2−3), nO(STR1,σ2−2)}.

Thus

Sn(STR1,σ2) = On(STR1,σ2)− max
c6=nj∈V

{
3∑
i=1

σi(c) +
3∑
i=1

σi(nj)}.

�

Proposition 2.4.14. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph. Then
stable-resolving number is equal to resolving number.

Proposition 2.4.15. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-resolving sets is O(STR1,σ2).

Proposition 2.4.16. Let NTG : (V,E, σ, µ) be a star-neutrosophic graph with
center c. Then the number of stable-resolving sets corresponded to stable-resolving
number is O(STR1,σ2)− 1.
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The clarifications about results are in progress as follows. A star-neutrosophic
graph is related to previous result and it’s studied to apply the definitions on it.
To make it more clear, next part gives one special case to apply definitions and
results on it. Some items are devised to make more sense about new notions. A
star-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it, too.

Example 2.4.17. There is one section for clarifications. In Figure (2.16), a
star-neutrosophic graph is illustrated. Some points are represented in follow-up
items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one path,
precisely one edge between them and there’s no path despite them;

(ii) in the setting of star, a vertex of resolving set corresponded to resolving
number resolves if and only if it stable-resolves so as resolving is the same
with stable-resolving;

(iii) all stable-resolving sets corresponded to stable-resolving number are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(STR1,σ2) = 3; and corresponded to stable-resolving sets are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5};

(iv) there are five stable-resolving sets

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}, {n2, n3, n4, n5},

as if it’s possible to have one of them as a set corresponded to neutrosophic
stable-resolving number so as neutrosophic cardinality is characteristic;

(v) there are four stable-resolving sets

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}

corresponded to stable-resolving number as if there’s one stable-resolving
set corresponded to neutrosophic stable-resolving number so as neutro-
sophic cardinality is the determiner;
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Figure 2.16: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG16

(vi) all stable-resolving sets corresponded to stable-resolving number are

{n2, n3, n4}, {n2, n3, n5}, {n2, n4, n5},
{n3, n4, n5}.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum neutrosophic cardinality
between all stable-resolving sets is called neutrosophic stable-resolving
number and it’s denoted by Sn(STR1,σ2) = 3.9; and corresponded to
stable-resolving sets are

{n2, n3, n5}.

Proposition 2.4.18. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph which isn’t star-neutrosophic graph which means |V1|, |V2| ≥ 2. Then

Sn(CMCσ1,σ2) = Not Existed.

Proof. Suppose CMCσ1,σ2 : (V,E, σ, µ) is a complete-bipartite-neutrosophic
graph. Every vertex in a part and another vertex in opposite part stable-
resolves any given vertex. Assume same parity for same partition of vertex set
which means V1 has odd indexes and V2 has even indexes. In the setting of
complete-bipartite, a vertex of resolving set corresponded to resolving number
resolves as if it doesn’t stable-resolve so as resolving is different from stable-
resolving. Stable-resolving set and stable-resolving number are Not Existed.
All stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
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is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(CMCσ1,σ2) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
Sn(CMCσ1,σ2) = Not Existed.

�

Proposition 2.4.19. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then stable-resolving number isn’t equal to resolving number.

Proposition 2.4.20. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.

Proposition 2.4.21. Let NTG : (V,E, σ, µ) be a complete-bipartite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.

The clarifications about results are in progress as follows. A complete-
bipartite-neutrosophic graph is related to previous result and it’s studied to
apply the definitions on it. To make it more clear, next part gives one special
case to apply definitions and results on it. Some items are devised to make
more senses about new notions. A complete-bipartite-neutrosophic graph is
related to previous result and it’s studied to apply the definitions on it, too.

Example 2.4.22. There is one section for clarifications. In Figure (2.17),
a complete-bipartite-neutrosophic graph is illustrated. Some points are
represented in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-bipartite, a vertex of resolving set corresponded
to resolving number resolves as if it doesn’t stable-resolve so as resolving
is different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
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such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMCσ1,σ2) = Not Existed; and corresponded to stable-resolving sets
are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between
all stable-resolving sets is called neutrosophic stable-resolving number
and it’s denoted by Sn(CMCσ1,σ2) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

Proposition 2.4.23. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph where t ≥ 3. Then

Sn(CMCσ1,σ2,··· ,σt) = Not Existed.

Proof. Suppose CMCσ1,σ2,··· ,σt : (V,E, σ, µ) is a complete-t-partite-
neutrosophic graph. Every vertex in a part is stable-resolved by another
vertex in another part. In the setting of complete-t-partite, a vertex of resolving
set corresponded to resolving number resolves as if it doesn’t stable-resolve
so as resolving is different from stable-resolving. Stable-resolving set and
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Figure 2.17: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG17

stable-resolving number are Not Existed. All stable-resolving sets corresponded
to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values
is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(CMCσ1,σ2,··· ,σt) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
Sn(CMCσ1,σ2,··· ,σt) = Not Existed.

�

Proposition 2.4.24. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then stable-resolving number isn’t equal to resolving number.

Proposition 2.4.25. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.

Proposition 2.4.26. Let NTG : (V,E, σ, µ) be a complete-t-partite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.
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The clarifications about results are in progress as follows. A complete-t-
partite-neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case
to apply definitions and results on it. Some items are devised to make more
sense about new notions. A complete-t-partite-neutrosophic graph is related to
previous result and it’s studied to apply the definitions on it, too.

Example 2.4.27. There is one section for clarifications. In Figure (2.18), a
complete-t-partite-neutrosophic graph is illustrated. Some points are represented
in follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one path
with length one or one path with length two between them;

(ii) in the setting of complete-t-partite, a vertex of resolving set corresponded
to resolving number resolves as if it doesn’t stable-resolve so as resolving
is different from stable-resolving. Stable-resolving set and stable-resolving
number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(CMCσ1,σ2,··· ,σt) = Not Existed; and corresponded to stable-resolving
sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.
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Figure 2.18: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG18

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between all
stable-resolving sets is called neutrosophic stable-resolving number and
it’s denoted by Sn(CMCσ1,σ2,··· ,σt) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

Proposition 2.4.28. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then

Sn(WHL1,σ2) = Not Existed.

Proof. Suppose WHL1,σ2 : (V,E, σ, µ) is a wheel-neutrosophic graph. The
argument is elementary. All vertices of a cycle

n1, n2, n3, · · · , nO(WHL1,σ2 )−3, nO(WHL1,σ2 )−2, nO(WHL1,σ2 )−1, n1

join to one vertex, c = nO(WHL1,σ2 ). For every vertices, the minimum number
of edges amid them is either one or two because of center and the notion of
neighbors. In the setting of wheel, a vertex of resolving set corresponded to
resolving number resolves as if it doesn’t stable-resolve so as resolving is different
from stable-resolving. Stable-resolving set and stable-resolving number are
Not Existed. All stable-resolving sets corresponded to stable-resolving number
are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n and n′.
Let S be a set of neutrosophic vertices [a vertex alongside triple pair of its values

109



2. Modified Notions

is called neutrosophic vertex.]. If for every neutrosophic vertices n and n′, in
V \ S, there’s at least a neutrosophic vertex s in S such that s stable-resolves n
and n′ where for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The minimum
neutrosophic cardinality between all stable-resolving sets is called neutrosophic
stable-resolving number and it’s denoted by

Sn(WHL1,σ2) = Not Existed;

and corresponded to stable-resolving sets are

Not Existed.

Thus
Sn(WHL1,σ2) = Not Existed.

�

Proposition 2.4.29. Let NTG : (V,E, σ, µ) be a wheel-neutrosophic graph.
Then stable-resolving number isn’t equal to resolving number.

Proposition 2.4.30. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-resolving sets is Not Existed.

Proposition 2.4.31. Let NTG : (V,E, σ, µ) be a wheel-partite-neutrosophic
graph. Then the number of stable-resolving sets corresponded to stable-resolving
number is Not Existed.

The clarifications about results are in progress as follows. A wheel-
neutrosophic graph is related to previous result and it’s studied to apply
the definitions on it. To make it more clear, next part gives one special case to
apply definitions and results on it. Some items are devised to make more sense
about new notions. A wheel-neutrosophic graph is related to previous result
and it’s studied to apply the definitions on it, too.

Example 2.4.32. There is one section for clarifications. In Figure (2.19), a
wheel-neutrosophic graph is illustrated. Some points are represented in follow-
up items as follows.

(i) For given two neutrosophic vertices, s and n1, there’s only one edge
between them;

(ii) in the setting of wheel, a vertex of resolving set corresponded to resolving
number resolves as if it doesn’t stable-resolve so as resolving is different
from stable-resolving. Stable-resolving set and stable-resolving number
are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \ S, there’s at least a neutrosophic vertex s in S
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such that s stable-resolves n and n′ where for all given two vertices in
S, there’s no edge between them, then the set of neutrosophic vertices,
S is called stable-resolving set. The minimum cardinality between all
stable-resolving sets is called stable-resolving number and it’s denoted by
S(WHL1,σ2) = Not Existed; and corresponded to stable-resolving sets
are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to neutrosophic
stable-resolving number as if neutrosophic cardinality is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-resolving
set corresponded to neutrosophic stable-resolving number as if neutro-
sophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves n
and n′. Let S be a set of neutrosophic vertices [a vertex alongside triple
pair of its values is called neutrosophic vertex.]. If for every neutrosophic
vertices n and n′, in V \S, there’s at least a neutrosophic vertex s in S such
that s stable-resolves n and n′ where for all given two vertices in S, there’s
no edge between them, then the set of neutrosophic vertices, S is called
stable-resolving set. The minimum neutrosophic cardinality between
all stable-resolving sets is called neutrosophic stable-resolving number
and it’s denoted by Sn(WHL1,σ2) = Not Existed; and corresponded to
stable-resolving sets are

Not Existed.

2.5 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided where
the models are either complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set or quasi-complete models which mean quasi-complete connections
are formed as individual and family of quasi-complete models with common
neutrosophic vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importance to avoid mixing up.
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Figure 2.19: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number. 88NTG19

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive sections. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid sections, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relations amid them. Table (2.1), clarifies about the
assigned numbers to these situations.

Table 2.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph in a Model. 88tbl1

Sections of NTG n1 n2· · · n5
Values (0.7, 0.9, 0.3) (0.4, 0.2, 0.8)· · · (0.4, 0.2, 0.8)

Connections of NTG E1 E2· · · E6
Values (0.4, 0.2, 0.3) (0.5, 0.2, 0.3)· · · (0.3, 0.2, 0.3)

Case 1: Complete-t-partite Model alongside its
stable-resolving number and its neutrosophic
stable-resolving number

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with some subjects.
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Figure 2.20: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number 88NTG20

Thus the connection is applied as possible and the model demonstrates
quasi-full connections as quasi-possible. Using the notion of strong on
the connection amid subjects, causes the importance of subject goes in
the highest level such that the value amid two consecutive subjects, is
determined by those subjects. If the configuration is star, the number
is different. Also, it holds for other types such that complete, wheel,
path, and cycle. The collection of situations is another application of
its stable-resolving number and its neutrosophic stable-resolving number
when the notion of family is applied in the way that all members of family
are from same classes of neutrosophic graphs. As follows, there are five
subjects which are represented as Figure (2.20). This model is strong
and even more it’s quasi-complete. And the study proposes using specific
number which is called its stable-resolving number and its neutrosophic
stable-resolving number. There are also some analyses on other numbers
in the way that, the clarification is gained about being special number or
not. Also, in the last part, there is one neutrosophic number to assign
to this model and situation to compare them with same situations to get
more precise. Consider Figure (2.20). In Figure (2.20), an complete-t-
partite-neutrosophic graph is illustrated. Some points are represented in
follow-up items as follows.

(i) For given two neutrosophic vertices, n and n′, there is either one
path with length one or one path with length two between them;

(ii) in the setting of complete-t-partite, a vertex of resolving set
corresponded to resolving number resolves as if it doesn’t stable-
resolve so as resolving is different from stable-resolving. Stable-
resolving set and stable-resolving number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-resolves
n and n′. Let S be a set of neutrosophic vertices [a vertex alongside
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triple pair of its values is called neutrosophic vertex.]. If for every
neutrosophic vertices n and n′, in V \S, there’s at least a neutrosophic
vertex s in S such that s stable-resolves n and n′ where for all given
two vertices in S, there’s no edge between them, then the set of
neutrosophic vertices, S is called stable-resolving set. The minimum
cardinality between all stable-resolving sets is called stable-resolving
number and it’s denoted by S(CMCσ1,σ2,··· ,σt) = Not Existed; and
corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to
neutrosophic stable-resolving number as if neutrosophic cardinality
is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-
resolving set corresponded to neutrosophic stable-resolving number
as if neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CMCσ1,σ2,··· ,σt) = Not Existed; and corresponded to stable-
resolving sets are

Not Existed.

Case 2: Complete Model alongside its Neutrosophic Graph
in the Viewpoint of its stable-resolving number and its
neutrosophic stable-resolving number

Step 4. (Solution) The neutrosophic graph alongside its stable-resolving
number and its neutrosophic stable-resolving number as model, propose
to use specific number. Every subject has connection with every given
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Figure 2.21: A Neutrosophic Graph in the Viewpoint of its stable-resolving
number and its neutrosophic stable-resolving number 88NTG21

subject in deemed way. Thus the connection applied as possible and
the model demonstrates full connections as possible between parts but
with different view where symmetry amid vertices and edges are the
matters. Using the notion of strong on the connection amid subjects,
causes the importance of subject goes in the highest level such that the
value amid two consecutive subjects, is determined by those subjects. If
the configuration is complete multipartite, the number is different. Also, it
holds for other types such that star, wheel, path, and cycle. The collection
of situations is another application of its stable-resolving number and its
neutrosophic stable-resolving number when the notion of family is applied
in the way that all members of family are from same classes of neutrosophic
graphs. As follows, there are four subjects which are represented in the
formation of one model as Figure (2.21). This model is neutrosophic
strong as individual and even more it’s complete. And the study proposes
using specific number which is called its stable-resolving number and its
neutrosophic stable-resolving number for this model. There are also some
analyses on other numbers in the way that, the clarification is gained
about being special number or not. Also, in the last part, there is one
neutrosophic number to assign to these models as individual. A model
as a collection of situations to compare them with another model as a
collection of situations to get more precise. Consider Figure (2.21). There
is one section for clarifications.

(i) For given neutrosophic vertex, s, there’s an edge with other vertices;
(ii) in the setting of complete, a vertex of resolving set corresponded

to resolving number resolves as if it doesn’t stable-resolve so as
resolving is different from stable-resolving. Stable-resolving set and
stable-resolving number are Not Existed;

(iii) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least a
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neutrosophic vertex s in S such that s stable-resolves n and n′ where
for all given two vertices in S, there’s no edge between them, then
the set of neutrosophic vertices, S is called stable-resolving set. The
minimum cardinality between all stable-resolving sets is called stable-
resolving number and it’s denoted by S(CMTσ) = Not Existed; and
corresponded to stable-resolving sets are

Not Existed;

(iv) there’s no stable-resolving set

Not Existed,

so as it’s possible to have nothing as a set corresponded to
neutrosophic stable-resolving number as if neutrosophic cardinality
is characteristic;

(v) there’s no stable-resolving set

Not Existed,

corresponded to stable-resolving number so as there’s no stable-
resolving set corresponded to neutrosophic stable-resolving number
as if neutrosophic cardinality is the determiner;

(vi) all stable-resolving sets corresponded to stable-resolving number are

Not Existed.

For given vertices n and n′, if d(s, n) 6= d(s, n′), then s stable-
resolves n and n′. Let S be a set of neutrosophic vertices [a vertex
alongside triple pair of its values is called neutrosophic vertex.]. If
for every neutrosophic vertices n and n′, in V \ S, there’s at least
a neutrosophic vertex s in S such that s stable-resolves n and n′

where for all given two vertices in S, there’s no edge between them,
then the set of neutrosophic vertices, S is called stable-resolving set.
The minimum neutrosophic cardinality between all stable-resolving
sets is called neutrosophic stable-resolving number and it’s denoted
by Sn(CMTσ) = Not Existed; and corresponded to stable-resolving
sets are

Not Existed.

2.6 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning its stable-resolving number and its neutrosophic stable-
resolving number are defined in neutrosophic graphs. Thus,

Question 2.6.1. Is it possible to use other types of its stable-resolving number
and its neutrosophic stable-resolving number?
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Question 2.6.2. Are existed some connections amid different types of its stable-
resolving number and its neutrosophic stable-resolving number in neutrosophic
graphs?

Question 2.6.3. Is it possible to construct some classes of neutrosophic graphs
which have “nice” behavior?

Question 2.6.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 2.6.5. Which parameters are related to this parameter?

Problem 2.6.6. Which approaches do work to construct applications to create
independent study?

Problem 2.6.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

2.7 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses two definitions concerning stable-resolving number and
neutrosophic stable-resolving number arising from stable-resolved vertices in
neutrosophic graphs assigned to neutrosophic graphs. Minimum number of
stable-resolved vertices, is a number which is representative based on those
vertices. Minimum neutrosophic number of stable-resolved vertices corresponded
to stable-resolving set is called neutrosophic stable-resolving number. The
connections of vertices which aren’t clarified by minimum number of edges
amid them differ them from each other and put them in different categories to

Table 2.2: A Brief Overview about Advantages and Limitations of this Study 88tbl

Advantages Limitations
1. Stable-Resolving Number of Model 1. Connections amid Classes

2. Neutrosophic Stable-Resolving Number of Model

3. Minimal Stable-Resolving Sets 2. Study on Families

4. Stable-Resolved Vertices amid all Vertices

5. Acting on All Vertices 3. Same Models in Family

represent a number which is called stable-resolving number and neutrosophic
stable-resolving number arising from stable-resolved vertices in neutrosophic
graphs assigned to neutrosophic graphs. Further studies could be about changes
in the settings to compare these notions amid different settings of neutrosophic
graphs theory. One way is finding some relations amid all definitions of notions
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to make sensible definitions. In Table (2.2), some limitations and advantages of
this study are pointed out.
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