
Future Generation Computer Systems 128 (2022) 282–298

N
a

b

c

d
t
m
t
a
t
r
N
c
t
t
a
b
t
u

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Distributedworkflowswith Jupyter
Iacopo Colonnelli a,1,∗, Marco Aldinucci a,1, Barbara Cantalupo a,1, Luca Padovani a,
Sergio Rabellino a,1, Concetto Spampinato b,1, Roberto Morelli c, Rosario Di Carlo c,
icolò Magini c, Carlo Cavazzoni c

University of Torino, Computer Science Dept., Corso Svizzera 185, 10149, Torino, Italy
University of Catania, Electrical Engineering Dept., Viale Andrea Doria 6, 95125, Catania, Italy
Leonardo S.p.A., Piazza Monte Grappa 4, 00195, Roma, Italy

a r t i c l e i n f o

Article history:
Received 13 July 2021
Received in revised form 1 October 2021
Accepted 4 October 2021
Available online 14 October 2021

Keywords:
Distributed computing
Jupyter notebooks
Streamflow
Workflow management systems

a b s t r a c t

The designers of a new coordination interface enacting complex workflows have to tackle a dichotomy:
choosing a language-independent or language-dependent approach. Language-independent approaches
decouple workflow models from the host code’s business logic and advocate portability. Language-
dependent approaches foster flexibility and performance by adopting the same host language for
business and coordination code. Jupyter Notebooks, with their capability to describe both imperative
and declarative code in a unique format, allow taking the best of the two approaches, maintaining a
clear separation between application and coordination layers but still providing a unified interface to
both aspects. We advocate the Jupyter Notebooks’ potential to express complex distributed workflows,
identifying the general requirements for a Jupyter-based Workflow Management System (WMS) and
introducing a proof-of-concept portable implementation working on hybrid Cloud-HPC infrastructures.
As a byproduct, we extended the vanilla IPython kernel with workflow-based parallel and distributed
execution capabilities. The proposed Jupyter-workflow (Jw) system is evaluated on common scenarios
for High Performance Computing (HPC) and Cloud, showing its potential in lowering the barriers
between prototypical Notebooks and production-ready implementations.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Jupyter Notebook’s capability to unify imperative code and
eclarative metadata in a unique format puts them halfway be-
ween the two classes of tools commonly used for workflow
odeling: high-level coordination languages and low-level dis-

ributed computing libraries. Also, Jupyter Notebooks come with
feature-rich, user-friendly web interface out-of-the-box, making
hem far more accessible for domain experts than the SSH-based
emote shells commonly exposed by HPC facilities worldwide.
evertheless, bare Jupyter Notebooks are unsuitable for both
omplex workflow modeling and large-scale executions. Indeed,
he standard execution flow of Notebook cells is purely sequen-
ial, with all cells running on a single kernel instance and sharing
global program state. Furthermore, the standard transport layer,
ased on ZeroMQ, requires a bidirectional TCP connection be-
ween the frontend web server and the backend workers, an
nlikely scenario in air-gapped data centers.

∗ Corresponding author.
E-mail address: iacopo.colonnelli@unito.it (I. Colonnelli).

1 HPC Key Technologies and Tools (HPC-KTT) national laboratory, CINI, Italy
https://doi.org/10.1016/j.future.2021.10.007
0167-739X/© 2021 The Authors. Published by Elsevier B.V. This is an open access ar
This work explores the Jupyter Notebook’s potential to express
complex workflows and coordinate their distributed execution
on top of hybrid Cloud-HPC infrastructures. From the application
perspective, we envision Jupyter Notebook as the first repre-
sentative of a new class of interfaces to foster both portability
and performance, mapping the Notebook cells to workflow steps
to Cloud and HPC resources. This second passage leverages the
existing state-of-the-art tools for both Cloud (e.g., Kubernetes
and Dockers) and HPC (e.g., Slurm, PBS, and Singularity), in-
heriting their performance and portability. From the computa-
tional perspective, we extend the Jupyter Notebook kernel to
support parallel and distributed execution of the Notebook cells,
where a cell can drive the execution of a legacy parallel code,
e.g., a Fortran+MPI application. Under the pressure of AI and
data-driven applications, HPC systems will need to integrate with
Cloud services and productivity-oriented software packages typ-
ical of these application domains. The challenge is to design an
integration that supports productivity and portability without
sacrificing HPC systems’ performance.

This work improves the state of the art in two ways. First, we
advocate a general methodology to transform the sequential exe-
cution model of a standard computational notebook into a global
(parallel and distributed) one, general enough to express data and
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2021.10.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.10.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:iacopo.colonnelli@unito.it
https://doi.org/10.1016/j.future.2021.10.007
http://creativecommons.org/licenses/by/4.0/

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

s
g
R

t
i
s
w
p
l
o
T
a

task parallelism. The global execution model is formally described
in such a way to prove sequential equivalence, and therefore
not jeopardize determinism and reproducibility. Concurrency is
introduced in the Notebook by way of annotations in the cell’s
metadata.

Second, we introduce Jupyter-workflow (Jw), a novel Workflow
Management System targeting Cloud-HPC infrastructures, with
extends the Jupyter software stack to implement the proposed
methodology. We experiment Jw for both expressivity and per-
formance on four real-world pipelines from different scientific
domains and different execution platforms (HPC and Cloud).

Notice that Jw is neither about running Jupyter on a remote
platform nor using Jupyter as an interface to access a remote
machine to run a third-party workflow. It is a workflow pro-
gramming model for Notebooks, which are not as expressive as
language-dependent workflows (e.g., iteration among cells and
dynamic generation of new cells is not supported), but are the
most used tools for interactive data analysis, which is destined to
meet HPC.

This article is organized as follows. Section 2 is devoted to an-
alyzing the related work, while Section 3 introduces the proposed
methodology. After that, Section 4 describes the logical architec-
ture and the software stack’s implementation details, which is
then evaluated on four real scientific workloads in Section 5. Fi-
nally, Section 6 concludes the article and outlines future research
directions.

2. Related work

2.1. Workflow management systems

The workflow abstraction is widely used to model and im-
plement complex applications, both in scientific and industrial
domains, with a twofold advantage. Firstly, an explicit represen-
tation of true data dependencies among different steps, usually
as the directed arcs of an acyclic graph, allows for an efficient
distributed execution that reduces time-to-solution. Addition-
ally, the strong decoupling between the application layer and
the underlying computing architecture improves portability and
reproducibility.

In this context, a Workflow Management System (WMS) is
the high-level interface between the domain specialist and a
set of execution infrastructures, ranging from a single desktop
machine to an entire data center. The WMS landscape is very
variegated, and the workflow modeling paradigms exposed to
the users differ from one product to another, either focusing on
generality and ease of use or privileging flexibility at the cost of
increased complexity.

Many WMSs on the market, like Apache Taverna [1], Pega-
sus [2], Snakemake [3], Makeflow [4], and Nextflow [5], imple-
ment a strict separation of concerns between coordination and
application layers. In this setting, the workflow graph is described
with a dedicated, domain-specific coordination language. Each
tep can be specified in a host language of choice, usually a
eneral-purpose programming language such as C++, Python, or
[6].
An intrinsic separation of concerns undoubtedly enhances

he level of abstraction, with essential benefits in maintainabil-
ty. Nevertheless, it introduces an additional (usually product-
pecific) coordination formalism that users must learn. This is
hy some products such as Galaxy [7], Kepler [8], and Knime [9],
refer to hide or replace the coordination language with a higher-
evel Graphical User Interface (GUI), trading off flexibility in favor
f simplicity. Alternatively, other WMSs, e.g., CWL-Airflow [10],
oil [11], and StreamFlow [12], introduce support for product-
gnostic coordination languages, such as CWL [13] or YAWL [14],
283
to enhance portability and reproducibility and reduce the learn-
ing effort. Nevertheless, the actual effectiveness of a coordination
standard is strictly related to its market adoption.

A strict separation of concerns is beneficial when workflows
involve calls to third-party libraries or well-separated compo-
nents of a software suite developed and maintained by third-
party contributors. Conversely, it is not particularly suited for
situations requiring co-design of different portions of a program
or when the best granularity of steps is not clear in advance,
e.g., when developing an entire application from scratch. Low-
level distributed libraries, like PyCOMPSs [15], Ray [16], Dask [16],
and Parsl [17], provide additional flexibility by modeling tasks
and their dependencies directly in the host code. These sys-
tems allow users to parallelize existing sequential applications
by identifying and annotating functions that should be executed
as asynchronous parallel tasks. Asynchronicity is typically imple-
mented with the futures paradigm [18]: an annotated function
immediately returns a future object that can be passed as an
argument to another annotated function. The workflow model,
typically a layered dataflow model [19], is automatically built
just-in-time by the runtime layer of the framework. Each an-
notated function invocation is a step of the workflow, and if it
receives in input a future from another invocation, then there is
a dependency between the two. This approach allows program-
mers to express concurrency at a much finer grain, well-fitting
applications with low latency or high throughput requirements,
but its higher complexity makes it better suited to computer
scientists rather than domain experts. Moreover, libraries of this
kind usually assume the existence of a shared data space and do
not support file transfers between compute units (PyCOMPSs is
an exception).

Several tools adopt a similar idea for the automatic collection
of provenance data from scripts. For instance, yesWorkflow [20]
allows users to insert special, language-independent comments
in a script to explicitly describe the data flow. Its interpreter can
then rely on such comments to generate a dataflow represen-
tation of the script. Similarly, RDataTracker [21] allows users to
initialize and store automatic provenance collection for a portion
of an R script by explicitly calling its APIs, possibly relying on
more advanced functions to manipulate the output. The W2Share
approach [22] takes a step further, trying to (semi-)automatically
derive Taverna executable workflows from abstract representa-
tions extracted by yesWorkflow. However, the amount of human
intervention required in each phase is still significant. The main
drawback of these approaches is that provenance extraction log-
ics are interleaved with business code, reducing readability and
maintainability.

Other tools, such as noWorkflow [23], adopt a fully auto-
matic strategy by extracting the data flow from a static analysis
of the Python code’s Abstract Syntax Tree (AST). Analogously,
Baranowski et al. [24] explore the AST of Ruby scripts targeting
GridSpace execution environment [25] to extract workflow mod-
els. The CXXR project [26] extends the R interpreter to automati-
cally retrieve provenance data, while the LLVM-SPADE stack [27]
augments binaries with provenance tracking logics at compile
time. These approaches guarantee great flexibility in extracting
the data flow and the environment state at any given time. How-
ever, it is difficult to properly set the granularity of retrieved in-
formation while operating at such a low and application-agnostic
level. In addition, these solutions only target a single language
and quite often only a specific version of it.

Due to the variety of proposals, no standard metrics exist
to compare the different WMSs, and no silver-bullet solution
has emerged so far. In [28], a holistic evaluation is suggested
in terms of setup and deployment, workflow implementation
and execution, and data management. As in other comparisons,
e.g. [29], only a restricted subset of systems is considered.

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

l
d
a
t
t
b

2

c
c
m
c
w

m
d
d
b
m
e
e

G
o
b
s
a
t
t
p

p
s
i
a
a

e
m
S
S
i

b
i
a
p
a
a
t
t

d
a
W
p
s
m
i
a

As traditional WMSs, our approach decouples coordination
ogic (metadata) from application code (cells). No annotations or
irectives are required in the host code, ensuring portability and
voiding technology lock-in. In addition, metadata are also used
o provide a description of the target infrastructure(s), which is
hen stored together with host and coordination codes for the
enefit of reproducibility.

.2. Workflows with Jupyter

The terms Jupyter Notebook [30] may refer to two different
omponents: (1) a JSON document, following a versioned schema,
ontaining an ordered list of cells with code, explanatory text,
athematics, plots, and rich media (2) a web-based interactive
omputational environment for creating such documents. In this
ork, we shall default to the former meaning.
Jupyter Notebooks, with their capability to unify code and

etadata in a single document format, represent a valuable mid-
le ground between the workflow modeling approaches intro-
uced in Section 2.1. Furthermore, since Jupyter Notebooks have
ecome a de-facto standard in several research fields, many do-
ain experts are already familiar with them. Given that, some
fforts to use Jupyter Notebooks for workflow modeling already
xist in the literature.
Cloud-based scientific platforms like KBase [31,32] and

enePattern 2.0 [33] have built their primary user interface
n Jupyter. However, their main goal is offering an effective
ioinformatics programming environment, providing an exten-
ive database of pipelines, introducing user-friendly interfaces,
nd offloading computation to their own specific target infras-
ructure, e.g., the HTCondor cluster. The resulting notebooks are
ightly coupled with the underlying software stack, preventing
ortability to the broader Jupyter ecosystem.
The Netflix’s nteract2 framework adopts a self-contained ap-

roach, allowing users to augment Notebooks with input data and
chedule them for batched execution. The outputs are also saved
n Notebook format, facilitating inspection and debugging. This
pproach’s primary limitation is its coarse granularity, as it only
llows executing entire Notebooks from beginning to end.
The Script-of-Scripts (SoS) project [34] moves the unit of ex-

cution to the finer-grained level of single cells and introduces
ulti-language Notebooks, called SoS Notebooks. Each cell of a
oS Notebook can declare a different host language, with the
oS runtime automatically handling object conversions during
nter-cells communications.

Both SoS and our approach allow offloading entire Note-
ooks or single cells to a queue-based HPC center, automat-
cally handling input and output variables, path translations,
nd data-parallel patterns. However, while the latter adopts a
urely metadata-based coordination language, SoS comes with
template-based mechanism that mixes up coordination and

pplication logic inside code cells. This strategy introduces addi-
ional complexity, reducing maintainability and tightly coupling
he host code with the SoS interpreter.

The Notebooks-into-Workflows (NiW) project [35] adopts a
ifferent approach. Rather than directly using a Jupyter notebook
s a workflow description, the notebook is translated into a
INGS workflow [36], which can be independently executed,
ublished, and reproduced. Even if the extraction of the workflow
tructure is fully automatic, there are strict compatibility require-
ents for notebooks: any newly generated data must be written

nto files, and all the code using the same file must be placed in
single cell.

2 https://nteract.io/
284
Fig. 1. Sketch of the common architecture of a HPC Jupyter interface. Orange
blocks usually need to be developed or extended to integrate Jupyter in the
existing software stack.

Several attempts to extract the data stream through cell ex-
ecutions have appeared in the literature. For instance, Dataflow
Notebooks [37] modify the behavior of the IPython Out dic-
tionary, indexing each cell execution with a unique persistent
identifier and allowing users to refresh all the dependent cells
after a cell re-execution. Nodebook3 automatically tracks de-
pendencies across IPython cells through static AST analysis and
caches their outputs, enforcing a consistency based on the posi-
tion of the cells in the notebook. The nbsafety Jupyter kernel [38]
combines dataflow tracing with liveness and initialized variable
analysis to detect staleness generated by cell re-executions in
Python Notebooks. The Vizier framework [39] implements an
entirely new computational notebook stack, in which each cell
is executed on a separated program context, and communications
between cells are explicitly handled by producing and consuming
datasets, i.e., sets of named relational tables. All these approaches
mainly aim to prevent the issues caused by out-of-order exe-
cutions and repeated executions of Notebook cells, which are
considered among the principal causes of reproducibility issues
in the Jupyter ecosystem [40].

2.3. Jupyter notebooks on HPC

Finding an effective way to improve accessibility to HPC fa-
cilities is still an open problem in computer science. Indeed, if
the advent of Cloud-based *-as-a-Service approaches contributed
to a substantial lowering of the technical barriers to IT systems,
the vast majority of data centers are still anchored to queue
management systems, SSH-based remote shells, and air-gapped
worker nodes.

Given their widespread diffusion and their relatively high-
level interface, Jupyter Notebooks have already been investi-
gated as a way to bridge the gap between non-IT practitioners
and HPC infrastructures [41–44] to make interactive workflows
mainstream in HPC centers. As an example, the National Energy
Research Scientific Computing Center (NERSC) is currently inte-
grating Jupyter as an interface to the CORI supercomputer [45],
and the PANGEO platform component for HPC is based on the
integration between Jupyter and Dask [46].

One of the most common approaches in this direction is to
install a Jupyter-based service, e.g., a JupyterHub4 instance or a
custom Jupyter Notebook spawner, on the login nodes of a data

3 https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/
4 https://jupyterhub.readthedocs.io/en/stable/

https://nteract.io/
https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/
https://jupyterhub.readthedocs.io/en/stable/

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

t
f
u
w
n
t
m
c
d

c
m
t
l
t
l
t
w
t
s
C

t
w
v
t
a
o
a
a
t
c
t
i
t
r

3

a
m
d
N
a

m
s
a

3

o
s

s

e
h
m

l
a

f

⟨

center or on some publicly-exposed instances of a tightly-coupled
Cloud service. Appropriate authentication chains can then per-
colate the user identity from the web interface down to the
HPC worker nodes, ensuring secure access to the computing
resources running the Jupyter kernels. Fig. 1 sketches this kind of
architecture, highlighting in orange the blocks that usually need
customizations.

If these approaches can ease access to HPC facilities for prac-
itioners, their setup and maintenance are non-trivial tasks even
or expert system administrators. One of the biggest obstacles is
ndoubtedly the need to modify the authentication mechanism,
ith all its security implications. An even more complicated sce-
ario occurs when trying to offload Jupyter kernels from outside
he data center because the ZeroMQ5 message broker imple-
enting Jupyter’s communication layer needs bidirectional TCP
onnections between Notebooks and kernels. Such a requirement
oes not combine well with the air-gapped HPC facilities.
Aiming at freeing the end-users from system administrators’

hoices, and at the same time trying to save the latter from
odifying the security layer, the proposed approach relies on

he StreamFlow6 WMS [12] to implement its communication
ayer. StreamFlow only requires unidirectional connections to
he execution environment because the controller infrastructure
eads both data and control planes. Therefore, users can connect
o the remote execution environment using ordinary methods,
ith no additional installation required on the system adminis-
rators’ side. Moreover, since it does not need a single data space
hared among all the worker nodes, it can also deal with hybrid
loud-HPC scenarios.
As a matter of fact, scientific workflows and HPC communi-

ies are converging on the same objectives to provide effective
orkflow management in a combined HPC and distributed en-
ironment [47], and Jupyter is an ideal tool for both communi-
ies. Our approach is designed to address the main requirements
cross these domains, providing a modeling methodology based
n metadata enrichment, leveraging on Jupyter usability, and en-
bling execution on hybrid HPC and Cloud environments without
ny particular requirement on the remote execution infrastruc-
ures. Moreover, the strict separation of coordination and host
ode and the explicit definition of a high-level metadata format
o describe application dependencies prescind from any specific
mplementation, allowing different runtime libraries to co-design
he best-suited execution strategy with the peculiarities of their
eference execution environment.

. Methods

We envision Jupyter Notebooks as the first representative of
new class of interfaces to foster both portability and perfor-
ance, which traditionally map onto different classes of tools (as
iscussed in Section 2.1). This goal is achieved by mapping the
otebook cells into a workflow graph’s nodes, enabling a parallel
nd distributed execution over a broad set of infrastructures.
In this section we provide a formal account of the execution

odel of Jupyter Notebooks. The formalization allows us to de-
cribe in precise terms – and state the equivalence of – their (local
nd distributed) sequential and parallel semantics.

.1. Notebooks as workflows

A Jupyter Notebook document can be seen as an ordered list
f cells, each of which contains either code or Markdown text. For
implicity, we will only consider the former, as Markdown cells

5 https://zeromq.org/
6 https://streamflow.di.unito.it/
285
Fig. 2. Runtime architecture of a Jupyter Notebook’s distributed execution.

do not affect the Notebook’s operational semantics. A Notebook
document’s low-level format is defined with a JSON schema,7
used for validation by Jupyter tools. In such format, both the
whole Notebook and every single cell are accompanied by a meta-
data field, containing arbitrary optional JSONable information
about the related element (see the example in Listing 1).

In this work, we consider a single code cell as the atomic
execution unit of a Notebook. Its content is mapped into a work-
flow step, while its metadata field describes where and how such
tep should be executed. Let a Notebook N be composed of a
sequence of cells c1, . . . , cn, where every ci is a sequence of
commands in the Notebook host language (e.g., Python). A cell
is executed in a state, that is a partial map σ : Ide → Obj
from host language identifiers to host language first-class objects
(e.g., values, expressions, functions). For any cell ci, its metadata
includes two (possibly empty) sets of identifiers In(ci) and Out(ci),
respectively representing its inputs, namely the identifiers whose
value is necessary for its execution, and its outputs, namely the
identifiers whose value is affected by its execution.

If we represent a cell waiting to be evaluated as a configuration
⟨c, σ ⟩ such that In(c) ⊆ dom(σ), the execution relation

⟨c, σ ⟩ → σ ′

expresses the fact that the execution of c in the state σ produces
a new state σ ′ such that Out(c) ⊆ dom(σ ′).

We are not interested in formalizing the execution relation of
very single cell of a Jupyter Notebook, which depends on the
ost language. We just point out that the execution is partial (it
ight diverge).
Hereafter we specify the sequential, distributed and paral-

el semantics of Jupyter Notebooks, considering each cell as an
tomic command whose semantics is left unspecified.
The local execution of a sequence c1; . . . ; cn of cells can be

ormalized as follows

c1; . . . ; cn, σ1⟩ → σn+1 (1)
if ⟨ci, σi⟩ → σi+1 for every 1 ≤ i ≤ n

so that each cell in the sequence is executed in the state produced
by the previous one. The execution order specified by the opera-
tor ‘;’ is driven by the user and might differ from the textual order
of the cells in the Notebook.

3.2. Distributed sequential execution

In order to model the distributed execution of a Jupyter Note-
book, we extend configurations ⟨c, σ ⟩ to global configurations
⟨[c, d], σ ⟩, where the d component indicates the location in which

7 https://nbformat.readthedocs.io/en/latest/format_description.html

https://zeromq.org/
https://streamflow.di.unito.it/
https://nbformat.readthedocs.io/en/latest/format_description.html

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

t

⟨

e

c
t
s
o

t
i
e
e
(
G
i
a
R
(
d
a
r

d

Listing 1: Jupyter Notebook document cell format (general and
code)

Generic cell metadata
{
"cell_type": "type",
"metadata": {},
"source": "single string or [list, of, strings]",

}

Code cell metadata
{
"cell_type": "code",
"execution_count": 1,# Integer or null
"metadata": {
"collapsed": True, # Whether the output of the cell is

collapsed
"scrolled": False, # Any of true, false or "auto"

},
"source": "[some multi-line code]",
"outputs": [{
List of output dicts (described below)
"output_type": "stream",
...

}],
}

the execution of c takes place. The global execution relation can
hen be specified as

[c1, d1]; . . . ; [cn, dn], σ1⟩ → σn+1 (2)
if ⟨[ci, di], σi⟩ → σi+1 for every 1 ≤ i ≤ n

Eq. (2) has the same meaning as the Eq. (1), except that it
carries the additional information that a cell ci is deployed and
xecuted on di ∈ D, where D is a set of predefined deployments.

In particular, Eq. (1) is equivalent to Eq. (2) when di = ddriver for
every 1 ≤ i ≤ n, where ddriver refers to the default Notebook’s
kernel (see Fig. 2).

The location in which a given cell is meant to be executed can
be encoded in the metadata field of cell or it can be determined
through more complex policies as we will see in Section 3.3. We
envision a deployment onto processing elements, either local or
remote, capable of executing pre-installed applications or con-
tainers (e.g., a Kubernetes running Dockers or a Slurm manager
scheduling Singularity images) and reachable from the Notebook
executor.

Just like the local execution relation, also the global execu-
tion relation is partial. However, we assume that the remote
execution of a cell is independent of the location in which the
execution takes place. That is, we assume that ⟨[c, d], σ ⟩ → σ ′

and ⟨[c, d′
], σ ⟩ → σ ′′ implies σ ′

= σ ′′. So, the execution of a
ell that succeeds locally might fail remotely, but it must produce
he same output in each deployment whenever the execution is
uccessful. This requirement guarantees deterministic semantics
f global execution, modulo errors.
The global execution relation unleashes a cell’s execution from

he local Notebook kernel, explicitly addressing a targeted worker
n a set of remote resources by making the configuration itself
xplicitly aware of the place where it should happen. Global
xecution in a global address space has been longly experimented
with little success) in the last two decades within the Partitioned
lobal Address Space (PGAS) programming model, which has been
mplemented both as new languages (e.g., X10 [48], Chapel [49])
nd libraries (e.g., UPC++ [50], DASH [51]). Many of them rely on
emote Memory Access protocols, allowing some form of sharing
e.g., GASNet [52]). Recently, dryish versions of global sharing un-
er a simple Single-Writer-Multiple-Reader model with locality
wareness have been exploited in the GAM [53], and Ray [16]
untime supports.
286
Fig. 3. Interactive remote execution of a configuration ⟨[ci, ds], σ ⟩. When ds ̸=

driver , both code ci and true data dependencies In(ci) must be transferred to ds .
After that, the return values Out(ci) can be transferred back to ddriver .

3.3. Parallel execution

A Notebook can be executed interactively or in bulk mode (Run
All command). In both cases, the execution of cells is sequential,
and each cell is executed in the state resulting from the execution
of the previous cell in temporal order, as described in Eq. (1).
The same execution sequence can be extended to a distributed
sequential execution as described in Eq. (2), where cells can be
executed in different places following the same sequential order.

In the interactive mode, the execution of a cell is triggered by
the user, which directly operates on the web interface and the
host language interpreter running the cells one by one on ddriver ∈

D (see Fig. 3). In this case, consistency is trivially guaranteed.
The bulk execution mode enables a concurrent distributed

execution of the cells by defining a sequentially equivalent par-
allel semantics. Since the cells c1, . . . , cn are totally ordered by
their position in the Notebook, the control-flow graph is the
linear chain of cells. Given that, we can statically compute the
execution graph with the highest degree of parallelism by way
of Bernstein’s conditions [54], initially designed for paralleliz-
ing compilers. They describe the three cases that induce data
dependencies among commands (cells in our case).

The presence of a data dependency between two cells prevents
their parallel execution. When i < j, we say that cj depends on ci
if at least one of the following conditions holds:

• Out(ci) ∩ In(cj) ̸= ∅. In this case we have a true data
dependency, whereby ci modifies an identifier read by cj;

• Out(ci) ∩ Out(cj) ̸= ∅. In this case we have an output
dependency, whereby ci and cj modify the same identifier;

• In(ci) ∩ Out(cj) ̸= ∅. This is a so-called anti-dependency,
whereby cj modifies an identifier read by ci.

In all other cases, namely when

Out(ci) ∩ In(cj) = Out(ci) ∩ Out(cj) = In(ci) ∩ Out(cj) = ∅

the cells ci and cj do not interfere with each other and can be
executed in any order, hence also in parallel. As we shall see, we
relax Bernstein’s conditions by proposing a strategy to reconcile
clashes due to output dependencies. Notice the importance of
avoiding output dependencies in designing concurrent semantics
for Notebooks: the execution of all cells produce an output on
the initial state of the Notebook, where surely the identifier rep-
resenting the standard outputs conflict. In reality, the interactive
execution of the Notebook makes it possible to preserve the
output of all cells. The proposed relaxation aims to preserve the
output of all cells, which in the sequential execution happens in
the same state (the Notebook’s output) in different moments.

In preparation for their parallel execution, all cells are ar-
ranged in a direct acyclic graph (DAG) from the control-flow
chain, thereby defining a workflow in which nodes are con-
figurations and edges are data dependencies. Let us call DAG

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

d
a
c

c

o

J
p
f
m
b
t

D
M
n
a
H

f
w
t

⟨

i

w

w
t

t
m
o
S
f

⟨

L
s

P
r

T
i
p
t
d
o
i
c

⟨

i

w
s
i
T

(

w

evaluation the order derived applying anti-dependency and true
ata dependencies. We can describe a DAG evaluation sequence
s a term built using atomic cells c composed using ‘;’ (sequential
omposition) and ‘|’ (parallel composition). For example,

1; (c2|(c3; c4))

describes the execution of c1 followed by the parallel execution
f c2 and the sequential execution of c3 and c4.
In this setting, the DAG evaluation order is defined by Eq. (2).

upyter-workflow supports the two main parallelism exploitation
aradigms: (1) explicit data parallelism on a single cell starting
rom lists of data elements in both interactive and bulk execution
odes; (2) automatic task parallelism on independent cells in the
ulk execution mode. We now describe the semantics of these
wo forms of parallelism more in detail.

ata parallelism. Jw implements data parallelism – that is the
ap/ApplyToAll functions – by way of an explicit metadata an-
otation on a cell c receiving as input one or more lists L1, . . . , Lk
nd a list operator such as the dot product or the cartesian product.
ereafter we denote such cells with Map(c).
The semantics of a Map cell depends on two (here unspecified)

unctions: Scatter , which splits states to lists of states, and Gather ,
hich recombines lists of states into states. We can then describe
he execution semantics of Map cells as follows

[Map(c), d], σ ⟩ → Gather(σ ′

1, . . . , σ
′

n)
f ⟨[c1, di], σi⟩ → σ ′

i for every 1 ≤ i ≤ n

here Scatter(σ) = [σ1, . . . , σn] (3)

here the di’s are selected from the set of unallocated locations
hat satisfy user-specified requirements.

In case two cells Map(c1) and Map(c2) are executed sequen-
ially in bulk mode and Out(c1) = In(c2), we leverage on the
ap fusion transformation [55] to reduce the communication
verhead, rewriting a Scatter-Gather-Scatter-Gather sequence as
catter-LocalCopy-Gather . We can express this optimization as the
ollowing equivalence between configurations:

Map(c1);Map(c2), σ ⟩ = ⟨Map(c1; c2), σ ⟩ (4)

emma. The Map function preserves sequential equivalence of
uccessfully terminating global parallel executions.

roof. By construction, Map generates a list of independent
eplicas of a cell that satisfy Bernstein’s conditions. □

ask parallelism. Jw also supports the automatic parallelization of
ndependent cells in the bulk execution mode. We define inde-
endent cells according to a relaxation of Bernstein’s conditions
hat allows output conflicts (thus removing the output depen-
ency case), assuming the existence of a user-defined associative
perator ⊎ that reconciles all conflicting identifiers while avoid-
ng output dependencies. Formally, given c1, . . . , cn independent
ells, their parallel execution is described as

[c1, d1]| · · · |[cn, dn], σ ⟩ →
⨄

1≤i≤n σ ′

i (5)
f ⟨[ci, di], σi⟩ → σ ′

i for every 1 ≤ i ≤ n

here each σi is the restriction of σ to In(ci) and the reconciled
tate

⨄
1≤i≤n σ ′

i is the union of the states for non-conflicting
dentifiers or the reduction of objects for conflicting identifiers.
hat is,

σ ⊎ σ ′)(x) =

{
σ (x) if x ∈ dom(σ) \ dom(σ ′)
σ ′(x) if x ∈ dom(σ ′) \ dom(σ)
σ (x) ⊎ σ ′(x) if x ∈ dom(σ) ∩ dom(σ ′)

(6)

here the ⊎ operator on objects is provided by the user.
287
Even though the ⊎ operator resembles a Reduce operator,
its pragmatics is not the parallelization accumulation behavior.
In the sequential evaluation, accumulation generally induces a
true data dependency, which cannot be easily removed without
changing the cell business code. The ⊎ operator aims at carrying
the merging of the cell’s outputs in a single, adequately typed
identifier. This behavior is inspired by merging stdout of remotely
executing processes aiming to preserve single-cell output rather
than overwriting them. The Jupyter Notebook preserves a private
copy of the sequentially evaluated cells’ output.

Theorem. Given an associative operator ⊎ that correctly recon-
ciles conflicting identifiers of states σ1, . . . , σn, the DAG evaluation
preserves sequential equivalence of successfully terminating global
parallel executions.

Proof. Two cells with either anti-dependency or true data de-
pendency cannot be executed in parallel. The parallel execution
of two cells generates a reconciled state σ1 ⊎ σ2 that includes
all the non conflicting identifiers of σ1 and σ2 with the same
value of the sequential evaluation (see Eq. (6)) and all the con-
flicting identifiers of σ1 and σ2 computed by the user-defined
associative operator ⊎. The existence and the correctness of the
(user-defined) ⊎ operator is an assumption, which is satisfied by
common operators such as list and string concatenation and value
reduction. The merged state subsumes that the result of the exe-
cution of the two cells is executed in any sequential order. Being
⊎ an associative operator, the same argument scales to the transi-
tive closure of the merged state of a sequence of cells executed in
parallel, which includes all their output identifiers. All the iden-
tifiers available in the last state of the sequential execution are
also available in the merged state of the parallel evaluation, with
identical or equivalent values for conflicting identifiers. For this,
we consider the parallel execution sequentially equivalent. □

4. Design and implementation

In compliance with the methodology discussed in Section 3,
we realized an extension of the Jupyter software stack, named
Jupyter-workflow (Jw)8. Its logical architecture, depicted in Fig. 4,
consists of five main components:

• A coordination metadata format to express cell configura-
tions;

• A frontend extension to send such metadata to the backend
kernel;

• An extended kernel capable of managing remote cell execu-
tions;

• An executor script to remotely execute a cell and serialize its
return values;

• A dependency resolver component to help users identifying
the input dependencies of each cell.

Moreover, we rely on the dill library [56] to perform data se-
rialization and deserialization (SerDes) and on the StreamFlow
WMS to coordinate workflows. The rest of the current section is
devoted to a detailed analysis of each component, discussing the
most significant design and implementation choices.

4.1. Coordination metadata format

We added a workflow section to the Jupyter code cell meta-
data format to configure all the aspects introduced in Section 3,

8 https://jupyter-workflow.di.unito.it

https://jupyter-workflow.di.unito.it

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

r
s
c
l

d

d
m
(
o
a
f
f
s

4

k
t

Fig. 4. Jupyter-workflow logical stack. White blocks refer to existing technolo-
gies (except for StreamFlow and its connectors, which are colored in blue), while
yellow-ocher ones are directly part of the Jupyter-workflow codebase.

Listing 2: Jupyter-workflow metadata format
Workflow metadata
{
"step": {
"in": [{ # List the members of In(ci)
"type": "name" | "env" | "file" | "control",
"name": "variable name",
"serializer": {
"predump": "code executed before serializing",
"postload": "code executed after serializing"

},
"value": "value to assign to the name",
"valueFrom": "can take value from a different variable"

}],
"autoin": True | False, # Resolve In(ci) automatically
"out": [# List the members of Out(ci)
...

],
"scatter": {
"items": ["variable name" | "scatter subscheme"],
"method": "dotproduct" | "cartesian" | ...

}
},
"target": {# Part of the StreamFlow format
"model": {# Description of the execution environment
...

},
"service": "target service inside the model",
"resources": "number of workers to reserve"

},
"version": "v1.0"

}

i.e.: (1) The set In(ci) of input dependencies, potentially aug-
mented with data-parallel descriptors; (2) The set Out(ci) of cell
eturn values, potentially augmented with custom reduction de-
criptors; (3) A deployment ds where to schedule the cell exe-
ution. A high-level schema, with some details omitted due to
imited space, is reported in Listing 2.

A step subsection contains two lists, called in and out,
escribing input dependencies and return values, respectively.
288
Currently, Jw supports four different families of dependencies in
the type field:

• names, which are transferred to the destination program’s
state;

• environment variables, which are added to the target shell’s
environment;

• files, for which Jw automatically manages both data transfers
and path remappings on the target executor;

• controls, which are only used to force additional dependency
relations between workflow steps, without carrying any
data value.

The deployment that will host the cell execution is described
in a target subsection, which is an exact transposition of
StreamFlow’s target directive. StreamFlow relies on three dif-
ferent levels of granularity to represent remote execution envi-
ronments:

• A model is an entire multi-agent infrastructure, e.g., a Helm
release on Kubernetes or a Slurm-managed data center;

• A service is a specific agent in a model, e.g., a head
node in a Ray cluster or a Kafka server in a microservices
architecture;

• A resource is a single instance of a replicated service,
e.g., an MPI node in a cluster or a single Pod managed by
a ReplicaSet on Kubernetes.

A model is usually described in an external format, e.g., a
Docker Compose file, a Helm chart, or a Slurm sbatch script, and
constitutes the unit of deployment in StreamFlow. Conversely, the
unit of scheduling is usually a single resource. However, a step
can explicitly reserve multiple resources of the same service for
execution, specifying a value greater than one in the resources
field. Moreover, multiple instances of the same step can spawn
concurrently on multiple resources when using data-parallel di-
rectives.

The Jw metadata format allows iterable cell inputs, e.g., a
Python list or dictionary, to be scattered across multiple replicas
of ds for parallel execution. Scattering schemes can be speci-
fied through a dedicated scatter section in the step meta-
ata (Listing 2). In particular, an items list contains the ele-
ents to scatter, while the method entry specifies which operator

e.g. dotptoduct or cartesian) should be used when scattering
ver multiple items. The items list can container either vari-
ble names, file paths or, nested scatter schemes, giving great
lexibility to the developer. For example, a configuration like the
ollowing is perfectly fine whenever ‘‘c’’ and ‘‘d’’ are of the
ame length.
"scatter": {

"items": ["a", "b", {"items": ["c", "d"],
"method": "dotproduct"}],

"method": "cartesian"
}

.2. Jupyter stack extension

Custom metadata are generally not propagated to the backend
ernel by the Jupyter web interface. Therefore, an extension for
he frontend stack is required to include the workflow metadata
section when sending messages to the kernel. The technology
used by such component depends on the adopted frontend. For
the classical Jupyter interface, a kernel.js file in a kernel pack-
age allows kernel-specific frontend extensions. Conversely, the
newer JupyterLab technology needs a kernel-agnostic frontend
plugin, and it is currently under development.

After implementing a sending mechanism for coordination
metadata, we need a kernel backend capable of correctly pro-
cessing them during both interactive and bulk execution flows.

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

o
t
e
e

c
c

We started extending the IPython kernel, both because it is by
far the most widely used backend in the Jupyter ecosystem and
because, since StreamFlow is also implemented in Python, the
integration with the underlying WMS layer was much more man-
ageable. Nevertheless, support for other Jupyter kernels is un-
doubtedly in our plans. Indeed, the strict separation between host
code and coordination metadata makes it possible to reuse the
same metadata format independently of the host language, while
the message-oriented nature of the Jupyter stack significantly
simplifies language interoperability.

When executing a Notebook in bulk mode, the first step is to
btain a dataflow representation of its code cells, which takes
he form of a Directed Acyclic Graph (DAG). Since the original
xecution flow is sequential, cells must be processed in order,
xtracting workflow metadata and input dependencies for each

of them. The result of this operation is an ordered list of cells
[c1, . . . , cn] with the related In(ci) and Out(ci) sets. Such cells
onstitute the nodes of a dataflow graph, where a directed arc
onnects ci to cj (with i < j) whenever ∃ v ∈ In(cj) s.t. v ∈

Out(ci) and v /∈ Out(ck) for each k in the open interval (i, j).
The resulting DAG can then be orchestrated by the StreamFlow
runtime support.

The interactive execution flow is much more straightforward.
Cells are sequentially processed one by one so that there is no
need to construct dataflow-based intermediate representations,
and the consistency of the program state is trivially preserved.
However, since in an interactive scenario the cell execution order
cannot be determined a priori, all the components of Out(ci)
are always transferred to the local kernel and merged into the
program state before proceeding with computation.

4.3. Executing cells remotely

When a cell enters the fireable state, all its input dependen-
cies are transferred from the related predecessor in a serialized
form so that the program state can be reconstructed from them.
StreamFlow manages all the computation movement aspects,
i.e., data transfer, path remapping, resource deployment, and
task scheduling. In particular, an executor script, automatically
transferred to each remote resource, is in charge of recreating
the program state, executing the code, and serializing the return
values.

Unlike most alternatives on the market, StreamFlow drops
the requirement for a single data space shared among the en-
tire set of workers. This feature allows it to support distributed
workflow executions over hybrid architectures, e.g., with some
steps scheduled on an HPC facility and the others offloaded to a
Cloud computing infrastructure. Besides, StreamFlow can manage
the automatic deployment and deletion of complex execution
environments (e.g., an entire Spark cluster over Kubernetes), in-
cluding their description directly in its workflow specification
format. Moreover, if a scatter step input is a list of files, each of
its elements will be transferred in parallel to the assigned remote
resource by the underlying StreamFlow runtime.

StreamFlow also supports a pluggable checkpointing mech-
anism to store such dependencies on a persistent location for
fault tolerance purposes. Indeed, if a remote resource fails to
perform a step, it can be rescheduled for execution only if all its
input dependencies are still available. Otherwise, it is necessary
to travel back in the workflow DAG until a reschedulable step
is met and replay the entire chain of steps up to the failed one
before retrying it, introducing significant overhead.

The main obstacle for Jupyter Notebooks fault-tolerance is
that a Python kernel cannot be fully serialized, stored on disk,
and deserialized (see Section 4.5). This constraint prevents live
migrations and high-availability of kernels. Storing all outputs of
289
remote cells on a persistent location eases the re-execution of
notebooks. When the node hosting Jw restarts after a crash during
a bulk Notebook execution, only local cells must run to populate
the local program context. At the same time, StreamFlow can au-
tomatically load output dependencies of completed remote cells
from their checkpoint location. In principle, similar functionality
could be extended to interactive notebooks by keeping the history
of cell executions, but Jw does not yet provide such a feature.

4.4. The DependencyResolver component

In many cases, input dependencies can be automatically in-
ferred with an inspection of the cell code. Therefore, we devel-
oped a DependencyResolver component to save practitioners
the burden of manually listing every input name for every cell
execution.

In Python, the ast module allows exploring the Abstract Syn-
tax Tree (AST) of a code fragment. Therefore, since the Python
language is lexically scoped, it is possible to obtain the set of input
dependencies of a cell by seeking all the names: (1) that reside
in its global scope; (2) whose first operation is a Load, i.e., a read
from σ ; (3) do not come from Python builtins or IPython standard
namespace.

The fact that the serialization library can autonomously deal
with transitive dependencies dramatically simplifies this task, as
it is unnecessary to explore names’ definitions external to ci itself.
Nevertheless, it is worth noting that the proposed strategy cannot
entirely cover all possible scenarios, as both false positives and
false negatives can occur.

In general, each name that does not appear in a node of
the AST representation returned by the ast module cannot be
recognized by the DependencyResolver. This set contains, for ex-
ample, variables dynamically loaded in eval constructs, variables
accessed directly from the locals and globals dictionaries and
modules dynamically imported by the importlib package.

Conversely, since the code can be statically evaluated without
knowing a priori the exact value of each name, some names
can be marked as true dependencies even when they are never
accessed. This case includes variables loaded in untaken paths
of conditional branches, except branches of exception handling
patterns or locations of a container (e.g. a list or a dictionary) that
are never accessed.

Given that, we let users combine automatic dependency in-
duction with explicit metadata to correct potentially wrong be-
haviors, print the list of automatically identified dependencies, or
even to completely disable the DependencyResolver for a step
by setting the autoin field to False.

4.5. Serialization

When dealing with computation movement, serialization is
undoubtedly one of the most critical aspects to take into account.
Indeed, considering a subprogram ci with a set In(ci) of input
dependencies and a set Out(ci) of return values, the presence of
even a single unserializable element in In(ci)∪Out(ci) is sufficient
to prevent ci from being executed remotely.

On the other hand, pretending to reason about a perfect se-
rializer capable of producing a suitable byte stream for every
object and every pair of resources is quite unrealistic. Indeed, it
is challenging, if not impossible, to produce a reversible external
representation for some objects, e.g., when their content includes
handlers to kernel objects, system libraries, or hardware-specific,
low-level optimizations. Things worsen when the source and
destination workers exhibit significant differences in operating
systems or hardware architectures.

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

s
f
f
t
t
b
i

a
i
h
d
c
o
f
l
d
2
p

t
5
t
p
t
m
i
s

a
s
s
t
w
e
T
b
(

o
g
d
g
v
c
c
b
d
K
d

5

e
l
a

b
i
e

w
p
v
6
c

A possible approach to mitigate this kind of problem is to
erialize some entities by reference, i.e., to recreate them remotely
ollowing the standard procedure instead of reconstructing them
rom a marshaled internal state. The dill library [56] relies on
his strategy for Python modules, which are regularly imported in
he destination program’s state. Nevertheless, this strategy cannot
e applied to stateful objects, which need information about the
nternal state to be coherently reconstructed.

A more flexible technique allows developers to register, for
particular object type, a pair of marshaling and unmarshal-

ng routines, augmenting a baseline of standard cases directly
andled by the library. This approach has been adopted in the
istributed version of the FastFlow framework [57], and also dill
omes with a @register decorator to extend the standard set
f serializable types. We choose to stick with this last strategy
or our implementation, adopting dill as the base serialization
ibrary and adding a dedicated serializer subsection in the
escription of input and output dependencies, as shown in Listing
. Each entry in this subsection lets users specify predump and
ostload routines to transform unsuitable values before mar-

shaling and reobtaining the original object after unmarshaling,
respectively.

4.6. Centralized and distributed control plane architecture

The current Jw implementation adopts a master–worker pat-
ern for the control plane, where the driver acts as the master [58,
9]. Despite some potential performance and robustness issues of
he centralized control, the master–worker is a widely adopted
attern for the runtime support of parallel and distributed sys-
ems. A centralized architecture makes it possible to effectively
aintain a coherent global knowledge of the system, simplify-

ng the implementation of algorithms for task graphs unfolding,
cheduling, load-balancing, and fault-tolerance [60,61].
The master–worker pattern is largely adopted by many WMSs

nd task-based parallel libraries, such as Makeflow [4], Pega-
us [2], COMPSs [62], HyperLoom [63], and other well-known
ystems, such as Kubernetes, and Spark [64]. In reality, most of
he weaknesses of the master–worker schema can be mitigated
ith little effort, such as excluding the master from large data
xchanges by allowing direct data movements among workers.
his can be done either directly by the WMS (as in COMPSs) or
y delegating data transfers to external software, e.g. HTCondor
as in Pegasus and Makeflow).

This solution is also adopted in Jw, where the driver is kept
utside the data path. It can be used as a relay toward air-
apped or firewalled workers, but data will be moved from one
eployment to the next without passing through the driver in the
eneral case. This pushes scalability issues to corner cases such as
ery fine-grained cells and large-scale parallel executions, which
an be approached by coalescing the execution of independent
ells in a single macro-cell. Also, the master–worker pattern can
e made robust by replicating the master using a third-party
istributed coherent database, as it happens with etcd in the
ubernetes control plane. Both these features are currently under
evelopment.

. Evaluation

In this section, we demonstrate how the Jw approach can be
ffectively applied to common scenarios in the fields of deep
earning, scientific simulation, and bioinformatics, enabling inter-
ctive analysis pipelines at scale.
In particular, the first example showcases how Notebooks can

e used for interactive hyperparameter tuning for DNN train-
ng, executing configurable grid search tasks in parallel on GPU-
quipped HPC facilities. The second example implements a hybrid
290
Fig. 5. Graphical representation of the Jw execution plan for the CLAIRE-
COVID19 Notebook.

Cloud-HPC workflow to perform a training+serving pipeline of
a DNN, relying on the HPC computing power for the training
step and on the Cloud *-as-a-Service paradigm for inference. A
Quantum ESPRESSO9 [65] simulation workflow is used as repre-
sentative of a broad class of traditional HPC Molecular Dynamics
Simulation (MDS) tools in order to investigate how Jw can enable
interactive simulations at scale. Finally, a Bioinformatics pipeline
based on the 1000 Genomes project [66] is used to analyze
performances in the Cloud.

Both the examples and the entire framework’s codebase are
publicly available.10

5.1. Hyperparameter search for DNN assisted COVID-19 diagnosis

To demonstrate how the proposed approach effectively com-
bines usability and scalability, we provide a Jw implementation
of the most computationally intensive portion of the COVID-19
universal pipeline, developed by the Confederation of Laboratories
for Artificial Intelligence Research in Europe (CLAIRE) task force
on AI & COVID-19 [67].

The pipeline is composed of a preparatory data processing
section and a core training workflow. The goal is to perform a
metrics assessment on 11 variants of DNN models, each with
its hyper-parameters. In the context of this work, we perform
a hyperparameter search for 4 different DenseNet models [68]:
DenseNet-121, DenseNet-161, DenseNet-169, and DenseNet-201.
To improve classification performances, we adopt a transfer learn-
ing approach: weights pre-trained on the ImageNet dataset [69]
are fine-tuned on a pre-processed subset of the BIMCV-COVID19
dataset [70] using a standardly configured Adam optimizer [71]
(β1 = 0.9, β2 = 0.999, ϵ = 10−8). Such transfer learning process
is configured to run for at most 50 epochs, with early stopping
after 10 epochs without improvements in the validation loss.

For each model, we explore 12 different configurations by
varying 3 hyperparameters: learning rate (10−3, 10−4, 10−5),
eight decay (5e−4, 5e−5), and LR decay step (10, 15). Plus, we
erform 5-fold cross-validation on each configuration to reduce
ariability in the obtained classification metrics, with a total of
0 variants of each model’s training process. With Jw, the code
ould be easily split into three main sections (as shown in Fig. 5):

• An initial configuration section, containing the module im-
ports and the hyperparameters’ grid;

• A training section, i.e., a single Notebook cell containing the
main training loop;

9 http://www.quantum-espresso.org
10 https://github.com/alpha-unito/jupyter-workflow

http://www.quantum-espresso.org
https://github.com/alpha-unito/jupyter-workflow

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

o

Fig. 6. Execution times for the 240 DenseNet training experiments running in
parallel on 240 GPU-equipped nodes of the CINECA MARCONI 100 facility.

• A visualization section, where the metrics of each training
experiment can be efficiently analyzed through the mat-
plotlib interactive backend.

By marking each multi-valued hyperparameter and the set
f cross-validation folds as scatter input parameters of the

training cell, Jw automatically generates the cartesian product of
input configurations and schedules them for concurrent execu-
tion. Nevertheless, the effective amount of concurrency strongly
depends on the chosen execution environment.

In order to fully take advantage of their embarrassingly paral-
lel nature, we offload the 240 training steps to 240 GPU nodes of
the CINECA MARCONI 100 facility, equipped with 2 IBM POWER9
AC922 sockets (16 cores, 3.1 GHz each), 256 GB of RAM, and 4
NVIDIA V100 GPUs (16 GB of memory each). Moreover, we only
request a single GPU for each job, trading off training speed for a
shorter waiting time in the Slurm queue.

Conversely, the other cells are executed directly in the local
context of the Jw kernel, running on a desktop machine equipped
with an Intel i7-7700K CPU (4 cores, 8 threads, 4.20 GHz). It is
worth noting that the DependencyResolver component correctly
identified all the implicit input dependencies, containing aliases
of Python modules (i.e., modules imported using the import as
directive), and remote dataset paths. Moreover, also the serializa-
tion and deserialization of the program context worked properly
even between two different hardware architectures (an x86_64
Intel CPU on the local workstation and a ppc64le POWER9 on
the MARCONI 100 nodes), without the need to implement any
custom predump and postload logic.

Fig. 6 shows the execution time reported by the Slurm sacct
command for each of the training jobs, including both the time
spent in the waiting queue (Pending state) and the effective DNN
training time (Running state). Overhead related to data transfers
to and from the remote facility was negligible and has not been
reported. The vast majority of configurations benefited from the
early stopping criterion shortly after 10 epochs, lasting between
50 and 70 min. Nevertheless, the global execution (scatter) of a
cell can complete only after the tail of the longest jobs, which
took more than 3 h to terminate.

Despite this, the obtained speedup is substantial. Considering
only the time spent in the Running state, a single V100 GPU
would require about ∼288 h to complete the training. Conversely,
Jw allows a ×92 faster execution without sacrificing the Jupyter
high-level interactive visualization tools.
291
Fig. 7. Graphical representation of the Jw execution plan for the TensorFlow
training+serving Notebook.

Listing 3: Data handling strategies in Jw
/***
Small dataset --> name dependency

[1] dataset_path = "/home/myuser/dataset/path"
dataset = Preprocess(Load(dataset))

Workflow metadata for cell [2]: */
{
"step": {
"in": [{
"name": "dataset",
"type": "name"

}],
...

},
"target": {...}

}
/* [2] model_spec = ...

model = Model(model_spec).fit(dataset)

**
Huge dataset -> remote path injection

[1] dataset_path = "/home/myuser/dataset/path"

Workflow metadata for cell [2]: */
{
"step": {
"in": [{
"name": "dataset_path",
"type": "name",
"value": "/remote/dataset/path"

}],
...

},
"target": {...}

}
/* [2] dataset = Preprocess(Load(dataset_path))

model = Model(model_spec).fit(dataset) */

5.2. Training and serving DNNs

In the deep learning field, training+serving pipelines can highly
benefit from a hybrid Cloud-HPC execution. Indeed, if HPC facil-
ities with heterogeneous computing nodes are ideal for model
training, their queue-based workload management and limited
Internet access are not suitable for the serving phase, as inference
usually comes with strict real-time requirements and needs pub-
licly exposed REST APIs. In this section, we describe how Jw can
efficiently orchestrate pre-processing, training, and serving tasks
for a Deep Neural Network (DNN) using TensorFlow [72] (Fig. 7).
Since, in this case, we are interested in evaluating design-related
aspects rather than performances, we set up a playground with

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

c
e
e
o
r
i
t
l
I
p
s
p
t
t
i
t
a
m

v
w
s
i
r
S
m

t
P
P
t
a
e
e
p
r
i

i
p
n
s
c

5
J

u
b
E
C
m
p
t
c
a
s

f
s
t
d

a very small Convolutional Neural Network (CNN) trained on the
Fashion-MNIST dataset [73].

After a local data pre-processing phase, the training step
omputation is offloaded to a node of the HPC4AI facility [74]
quipped with 2 Intel Xeon Gold 6230 sockets (20 cores, 2.10 GHz
ach), 496 GB of RAM, and 4 NVIDIA V100-SXM2 GPUs (32 GB
f memory each). Moving data from the local kernel to the
emote HPC infrastructure is straightforward, as Fashion-MNIST
s relatively small (less than 30 MB). Therefore, we can simply
reat the already pre-processed dataset as a name dependency,
etting StreamFlow manage serialization and transfer operations.
t could be more efficient for massive datasets to move both pre-
rocessing and training steps close to data, keeping only a small
ubset on the local environment for prototyping or debugging
urposes. This scenario can be handled by explicitly modifying
he dataset path through a value directive in the metadata. These
wo data management strategies are sketched in Listing 3. Even
f the host code has been simplified for clarity, it is worth noting
hat switching between the two different scenarios only requires
regrouping of program instructions in the code cells, without
odifying the business logic.
Concerning serialization, some internal data structures pre-

ent the dill library from successfully parsing TensorFlow net-
orks. Nevertheless, Jw allows to easily solve this issue by putting
ome custom logic in the related serializer section to explic-
tly save the model to a file using Keras utilities, transfer it to the
emote executor and load it again in the target program’s state.
uch logic can also be extended to upload the model on one or
ore GPU devices if available.
The resulting model is stored in a Docker container when

he training completes, which is then published as a Kubernetes
od hosting the TensorFlow Serving framework. In this case, the
od is automatically deployed on the HPC4AI Cloud infrastruc-
ure by the StreamFlow Helm connector, but cell executions can
lso be bound to externally managed models (i.e., marked as
xternal in the coordination metadata). Therefore, the current
xample can be configured to send trained models directly to a
roduction server for Continuous Integration purposes, strongly
educing the gap between prototyping and deployment phases
n the development lifecycle.

It is worth noting that the DependencyResolver can correctly
dentify all the input dependencies (both Python modules and
re-processed datasets). Nevertheless, the trained model file
eeds to be explicitly listed in the input dependencies of the Ten-
orFlow Serving initialization step, since the DependencyResolver
annot discriminate between strings and file paths.

.3. Interactive simulation at scale: running quantum ESPRESSO on
upyter

In order to assess the Jw capabilities to enable interactive sim-
lations of realistic, large-scale systems, we implement a Note-
ook describing a multi-step simulation workflow in Quantum
SPRESSO. In particular, the analyzed workflow implements a
ar-Parrinello simulation of a mixture of H2O, NH3 and CH4
olecules to represent the basic ingredients of life (the so-called
rimordial soup). The simulation aims to explore the phase space
o find where C–H, O–H and N–H bonds break up, forming more
omplex organic molecules. Several Car-Parrinello simulations
t different pressure–temperature points (P, T) are needed to
imulate the phase diagram.
As depicted in Fig. 8, the workflow proceeds as follows. The

irst four cells, common to all simulations, prepare a starting
tate at room temperature and pressure from a random distribu-
ion of the three molecules. Then the pipeline forks to simulate
ifferent temperatures through Nosé–Hoover thermostats (cell
292
Fig. 8. Graphical representation of the Jw execution plan for the Quantum
ESPRESSO Notebook.

Table 1
Weak scalability for the Quantum ESPRESSO Notebook when executed manually
on PBS and in both Jw execution modes.
Step Nodes PBS (s) Jw Interactive (s) Jw Bulk (s)

Cell 5
2 408 461 413
4 407 490 415
8 407 553 418

Cell 6
2 459 536 465
8 459 706 469
32 461 1861 474

5). Finally, for each temperature, the simulation forks again to
simulate each temperature at several values of pressure using the
Parrinello-Rahman constant pressure Lagrangian (cell 6).

In the following discussion, we focus on the last two steps, as
the others are trivial. Using the Jw metadata format, cell 5 can be
parallelized by scattering on T , while cell 6 can use a cartesian
product operator to scatter over all (P, T) combinations. In the
interactive mode, where concurrency is confined inside single
cells, cell 6 can start only when all cell 5 tasks terminate and
all their outputs have been copied back to the driver node. This
mode allows users to inspect cell outputs immediately, but it can
introduce significant overhead. Conversely, in the bulk evaluation
mode, data are moved only if necessary, and redundant Gather-
Scatter combinations are removed to increase concurrency, as
explained in Section 3.3.

We offload the execution of each step to two CPU nodes of
davinci-1, the Leonardo S.p.A. HPC system. Each node is equipped
with 2 Intel Xeon Platinum 8260 sockets (24 cores, 2.40 GHz
each) and 1 TB of RAM. We analyze the weak scalability of the
application by running it on 1, 4 and 16 (P, T) points, comparing
for each setting the time to complete steps 5 and 6 with bare PBS,
interactive notebooks and bulk evaluation. Results are reported in
Table 1. It is worth noting how the overhead introduced by the
interactive execution mode becomes predominant with 16 (P, T)
points, while it remains totally negligible in the bulk evaluation
mode.

This is a basic setup to test the effectiveness of the proposed
approach. One can easily improve it, as the Notebook is general
enough to be easily adapted to any simulation of P-T phase
diagram of any material, scaling a single (p, T) point simulation
up to several thousands of nodes.

Quantum ESPRESSO has been shown to scale well to petas-
cale systems, and it is currently addressing the exascale chal-
lenges [75]. Therefore, peak performances are not an issue. Nev-
ertheless, much of the Quantum ESPRESSO performance derives
from the linked matrix multiplication libraries, which are tightly

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

w

c
t
r
t
o
s
t
a
a
p

5

t
a
b
f
t
t
a
d
a

e
d
P
g
s
n
p
t
e

T
o

Fig. 9. Graphical representation of the Jw execution plan for the 1000-genome
orkflow.

oupled with the underlying hardware technology at compile
ime. Tweaking performances of this kind of libraries is out of
each of a large portion of domain experts, but linking Quan-
um ESPRESSO with low-performing or badly-compiled versions
f BLAS and LAPACK can have a huge impact on the time-to-
olution. With its capability to seamlessly offload computation
o optimized execution environments on HPC facilities, Jw en-
bles domain experts to run simulations interactively, exploring
nd validating the outputs of the first (lightweight) steps before
roceeding with the heaviest portions of the pipeline.

.4. Running the 1000-genome workflow on Kubernetes

To investigate Jw strong scalability on a distributed infrastruc-
ure, we execute an instance of the 1000-genome workflow on
Kubernetes cluster running on top of the HPC4AI OpenStack-
ased Cloud. A detailed description of the 1000-genome work-
low, originally implemented in Pegasus, is available in litera-
ure [76]. Fig. 9 shows the Jupyter Notebook representation of
he workflow (as a list of 6 cells) and the corresponding DAG
utomatically extracted by the Jw runtime. Notice that, when
ealing with complex workflows, the amount of concurrency
llowed by the DAG evaluation strategy becomes significant.
We selected 1000-genome workflow for three main reasons:

• Pegasus is a state-of-the-art representative of WMSs for
High Throughput Computing (HTC), supporting execution
environments without shared data spaces (via HTCondor);

• The host code of each step is written in either Bash or
Python, both supported by the IPython kernel;

• The critical portion of the workflow is a highly-parallel step,
composed of 2000 independent short tasks (∼120s each)
which are critical for batch workload managers, but that
can be executed at scale on on-demand Cloud resources
(e.g., Kubernetes).

Porting the host code to Jw merely requires creating a cell for
ach step by copy-pasting the original code. Concerning the coor-
ination layer, the two WMSs adopt a strictly diverse approach.
egasus requires the user to manually compile a static workflow
raph, specifying all the input and output dependencies of each
tep. This technique is extremely powerful in terms of expressive-
ess, as expressible graphs are not limited to the composition of a
redefined set of patterns. Conversely, Jw is somewhat limited by
he original sequential nature of Jupyter Notebooks, even if DAG
valuation strongly mitigates the constraints.
For its part, Jw can seamlessly deal with dynamic outputs.

his is a fundamental requirement for a prototyping technol-
gy, where the exact structure of output dependencies is often
293
Fig. 10. Speedup obtained executing the 1000-genome workflow on the HPC4AI
Cloud. The blue curve refers to a real execution. The orange curve shows a
DryRun of the same workflow aimed at assessing Jw overhead (the business
code is substituted with sleeps matching execution time).

not known a priori. Moreover, dynamically generated DAGs also
increase reusability since the same notebook can be used to per-
form entire families of similar experiments by simply changing
the input values (as analyzed in Section 5.3). Conversely, encoding
dynamic data dependencies in a Pegasus workflow requires users
to explicitly embed complex just-in-time compilation steps in the
workflow graph.

For performance evaluation, we focus on the individuals
step, which constitutes the bottleneck of the workflow. We mea-
sure the strong scaling of an 8-chromosomes instance of the
1000-genome workflow on 500 concurrent Kubernetes Pods. The
underlying Kubernetes cluster is composed of 3 control plane
VMs (4 cores, 8GB of RAM each) and 16 large worker VMs (40
cores, 120GB of RAM each), interconnected with a 10Gbps Ether-
net. Each Pod requests 1 core and 2GB of RAM, and mounts a 1GB
tmpfs. In the Pegasus workflow a chromosome input file is made
available to all involved workers in its entirety, and each of them
selects a different partition. Conversely, Jw scatters the dataset,
transferring to each worker only the strictly required data.

To assess Jw performance on a Cloud, where all the resources
(CPUs, memory, network, disks) are typically overprovisioned and
subject to load generated by other users, we developed a DryRun
version of the code serving as the baseline. The DryRun simulates
the workflow behavior without actually using CPU cores and
network bandwidth: the business code is substituted with sleeps
of the expected average timespan of the task sampled from a
normal distribution and communications are replaced with a
small message. The Fig. 10 shows the strong scalability of real
execution and DryRun. The real execution scales reasonably well
up to 250 containers. Then it starts suffering from the Kubernetes
master bottleneck for data distribution.

The DryRun shows that the intrinsic overhead introduced by
the Jw runtime synchronizations (orange curve) keeps a reason-
ably linear gap against ideal speedup (at least up to 500 Pods).
In the Cloud/Kubernetes setting (as theoretically expected) the
crucial aspect for performance is the tuning of communication/-
computation ratio at the Kubernetes master, which does not
leave much room for optimization in I/O-bound problems (as the
1000-genome workflow).

In these cases, viable optimization paths concern the distri-
bution or elimination of data movements. The former can be
realized by implementing direct communication channels be-
tween worker nodes, leaving the Kubernetes master out of the
critical path, while the latter is enabled by rewriting rules such
as Map fusion (see Section 3.3). As described in Section 6 below,

we are actively working on designing other cases.

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

s
w
a
t
t
s
r
c
C
p

s
i
a
p
o
a
H
A
i
s
m
d
e

m
p
t
K
(
v
f
l
i
a
r
o
r
l

d
a
o
a
i
f
o
c
c
a
m
f
t
t
i
b
l
p
w
r

r
S

6. Conclusion and future work

The widespread diffusion of Jupyter Notebooks (and similar
oftware, such as Zeppelin11) in both academic and industrial
orkloads made them a de-facto standard for rapid prototyping
nd interactive data analysis. The reason for their success is
heir capability to support step-by-step execution and interac-
ive tuning of software pipelines, boosting the productivity of
cientists. A second reason is their portability, which is a pre-
equisite for reproducibility. However, the lack of support for
omplex workflows and the challenging integration with hybrid
loud-HPC architectures undoubtedly hampered their adoption in
roduction workloads.
After many years of evolution and application co-design, HPC

ystems, even at the extreme scale, are facing new challenges,
nter-alia, the support for AI applications, and frameworks that
re eager to compute power and natively run on GPUs. The ex-
loitation of a growing industrial market is boosted by the ability
f HPC solutions to process large volumes of data with speed
nd accuracy. Cloud providers have also started to offer turn-key
PC solution environments tailored to specific enterprise needs.
hybrid Cloud-HPC solution results in better efficiencies, but

t requires a new generation of deployment tools to effectively
upport rapid prototyping, interactive tuning, and portability of
odern HPC applications. Indeed, they are no longer a single co-
esigned kernel but complex pipelines (such as digital twins)
mbracing different applications and software stacks.
In this work, we introduced Jupyter-workflow (Jw), a novel

ethodology and a tool that unleash Jupyter Notebook’s superior
roductivity and portability features in the HPC area, explicitly
argeting Cloud resources and their workload managers (such as
ubernetes), HPC platforms together with their system software
such as SLURM), and their coupled exploitation usage. We ad-
ocate Jw as the first representative of a new class of interfaces
or modern HPC applications. We formalized concurrent (paral-
el and distributed) semantics for Jupyter Notebooks supporting
nteractive and batch executions. We tested Jw on four different
pplication pipelines and four different settings, with the driver
unning on a desktop and the computationally demanding cells
ffloaded to either HPC facilities or container-based Cloud envi-
onments. The Jw codebase is publicly available under the LGPLv3
icense.

The theoretical speedup reachable executing a Jw Notebook
epends on the makespan, i.e., the longest path of cells exhibiting
chain of data dependencies (see Sec. 3.3). The actual speedup
f any specific execution also depends on the number of avail-
ble processing elements, the scheduling strategy adopted for
ndependent steps, and in the case of heterogeneous ones, also
rom the mapping of steps onto different executors. The problem
f deriving an optimal scheduling/mapping for a Jw workflow
an be reduced to a task graph execution problem, that is NP-
omplete in the most general case, but also extensively studied,
nd efficiently approximable [77]. StreamFlow does not imple-
ent predictive models to infer the duration of each task and,

or this, adopts a version of first-come-first-served scheduling
hat considers the deployment declared in the cells. Notice that
he Jw Scatter/Gather operators (and the related rewriting rules)
ntroduce independent steps in the workflow, enhancing the ratio
etween the total number of steps and the number of steps in the
ongest path that eventually models the speedup. As common in
arallel computing, the strong scalability (i.e., the speedup) and
eak scalability are bound by the Amhdal’s and Gustafson’s laws,
espectively [78].

11 https://zeppelin.apache.org
294
In large-scale executions and when the available processing
elements exceed the need, the Jw driver (that acts as a master)
could become a bottleneck. However, DAG-evaluation coupled
with rewriting rules can significantly reduce the overhead in-
duced by the Jw driver (see Section 5.3). Conversely, a good
scheduling policy becomes more important than a low overhead
when there is more parallelism than available processing ele-
ments. The default mapping strategy of steps into processing
elements adopted by StreamFlow privileges data-locality, in order
to minimize data transfers [12]. However, the modular nature of
StreamFlow makes it easy for users to implement a more sophis-
ticated strategy. Still, with the default approach Jw can effectively
deal with 2000 fine-grained concurrent tasks distributed among
up to 500 homogeneous processing elements, with data move-
ments constituting by far the bottleneck for strong scalability (see
Section 5.4).

Future works. In the short term, we aim to apply the proposed
methodology to other kernels, such as Julia and R. Also, we aim
to extend the DependencyResolver to help the programmer in
detecting critical data movements and to provide the users with
explicit collective communications alternatives (such as Scat-
ter/Gather and Reduce), which can be separately optimized. On
the same ground, we will develop optimized dispatch/scheduling
policies aiming to minimize the data movements. Plus, we are
already testing a novel Cloud service (called Jupyter-as-a-Service)
based on the Jw and JupyterHub as a modern frontend of an
HPC-accelerated Cloud system for AI applications.

In the longer term, we aim at contributing to the ecosystems
of tools addressing the vision of modular extreme-scale systems,
where HPC and Cloud might play the role of modules in a broader
computing continuum: an HPC cluster can play the role of an
accelerator for an interactive data analysis pipeline running on
the Cloud. This modular vision fosters co-design and early access
to novel high-performance architectures, which are expected to
be specialized and exotic (e.g., Quantum and Neuromorphic).
Jupyter-workflow’s clear separation of data flow and deploy-
ments makes it possible to support testing and integration of new
modules into existing pipelines. This approach allows confining
co-design effort within specific workflow steps, enabling sep-
arated optimization and testing of alternative implementations
of the same step. As an example, we are currently designing a
‘‘quantum proxy’’ for Jw targeting different quantum machines
available via Cloud services (D-wave and Pasqal).

CRediT authorship contribution statement

Iacopo Colonnelli: Conceptualization, Methodology, Software,
Validation, Investigation, Writing – original draft, Visualization.
Marco Aldinucci: Methodology, Formal analysis, Writing – orig-
inal draft, Resources, Supervision, Funding acquisition. Barbara
Cantalupo: Investigation, Writing – original draft, Project admin-
istration. Luca Padovani: Methodology, Formal analysis, Writing
– review & editing. Sergio Rabellino: Investigation, Writing –
eview & editing. Concetto Spampinato: Investigation, Resources,
upervision. Roberto Morelli: Investigation. Rosario Di Carlo:

Investigation. Nicolò Magini: Investigation. Carlo Cavazzoni: In-
vestigation, Resources, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

https://zeppelin.apache.org

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

D
A
E
g
p

H
a
p
R

R

Acknowledgments

This article describes work undertaken in the context of the
eepHealth project,12 ‘‘Deep-Learning and HPC to Boost Biomedical
pplications for Health’’ which has received funding from the
uropean Union’s Horizon 2020 research and innovation pro-
ramme under grant agreement No. 825111 [79], and the ACROSS
roject,13 ‘‘HPC Big Data Artificial Intelligence Cross Stack Platform

Towards Exascale’’ which has received funding from the European
igh-Performance Computing Joint Undertaking (JU) under grant
greement No. 955648 [80]. This work has been partially sup-
orted by the HPC4AI project14 which has been funded by the
egion Piedmont POR-FESR 2014-20 (INFRA-P) [74].

eferences

[1] T.M. Oinn, R.M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. Glover,
C.A. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P.W. Lord, M.R. Pocock,
M. Senger, R. Stevens, A. Wipat, C. Wroe, Taverna: lessons in creating a
workflow environment for the life sciences, Concurr. Comput.: Pract. Exper.
18 (10) (2006) 1067–1100, http://dx.doi.org/10.1002/cpe.993.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling, R.
Mayani, W. Chen, R.F. da Silva, M. Livny, R.K. Wenger, Pegasus, a workflow
management system for science automation, Future Gener. Comput. Syst.
46 (2015) 17–35, http://dx.doi.org/10.1016/j.future.2014.10.008.

[3] J. Köster, S. Rahmann, Snakemake - a scalable bioinformatics workflow
engine, Bioinformatics 28 (19) (2012) 2520–2522, http://dx.doi.org/10.
1093/bioinformatics/bts480.

[4] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: A portable abstraction
for data intensive computing on clusters, clouds, and grids, in: Proceedings
of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution
Engines and Technologies, SWEET@SIGMOD 2012, Scottsdale, AZ, USA, May
20, 2012, 2012, p. 1, http://dx.doi.org/10.1145/2443416.2443417.

[5] P. Di Tommaso, M. Chatzou, E.W. Floden, et al., Nextflow enables re-
producible computational workflows, Nature Biotechnol. 35 (4) (2017)
316–319, http://dx.doi.org/10.1038/nbt.3820.

[6] E. Lee, T. Parks, Dataflow process networks, Proc. IEEE 83 (5) (1995)
773–801.

[7] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Cech,
J. Chilton, D. Clements, N. Coraor, B.A. Grüning, A. Guerler, J. Hillman-
Jackson, S.D. Hiltemann, V. Jalili, H. Rasche, N. Soranzo, J. Goecks, J.
Taylor, A. Nekrutenko, D.J. Blankenberg, The galaxy platform for accessible,
reproducible and collaborative biomedical analyses: 2018 update, Nucleic
Acids Res. 46 (Webserver-Issue) (2018) W537–W544, http://dx.doi.org/10.
1093/nar/gky379.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.B. Jones,
E.A. Lee, J. Tao, Y. Zhao, Scientific workflow management and the Kepler
system, Concurr. Comput.: Pract. Exper. 18 (10) (2006) 1039–1065, http:
//dx.doi.org/10.1002/cpe.994.

[9] M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl,
C. Sieb, K. Thiel, B. Wiswedel, KNIME: the Konstanz information miner,
in: Data Analysis, Machine Learning and Applications - Proceedings of
the 31st Annual Conference of the Gesellschaft für Klassifikation e.V.,
Albert-Ludwigs-Universität Freiburg, March 7–9, 2007, in: Studies in Clas-
sification, Data Analysis, and Knowledge Organization, Springer, 2007, pp.
319–326, http://dx.doi.org/10.1007/978-3-540-78246-9_38.

[10] M. Kotliar, A.V. Kartashov, A. Barski, CWL-airflow: A lightweight pipeline
manager supporting common workflow language, GigaScience 8 (7) (2019)
http://dx.doi.org/10.1093/gigascience/giz084.

[11] J. Vivian, A.A. Rao, F.A. Nothaft, et al., Toil enables reproducible, open
source, big biomedical data analyses, Nature Biotechnol. 35 (4) (2017)
314–316, http://dx.doi.org/10.1038/nbt.3772.

[12] I. Colonnelli, B. Cantalupo, I. Merelli, M. Aldinucci, StreamFlow: cross-
breeding cloud with HPC, IEEE Trans. Emerg. Top. Comput. (2020) http:
//dx.doi.org/10.1109/TETC.2020.3019202.

[13] P. Amstutz, M.R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, J. Kern, D. Leehr, H. Ménager, M. Nedeljkovich, M. Scales,
S. Soiland-Reyes, L. Stojanovic, Common workflow language, v1.0, 2016,
http://dx.doi.org/10.6084/m9.figshare.3115156.v2.

[14] W.M.P. van der Aalst, A.H.M. ter Hofstede, YAWL: Yet another workflow
language, Inf. Syst. 30 (4) (2005) 245–275, http://dx.doi.org/10.1016/j.is.
2004.02.002.

12 https://deephealth-project.eu/
13 https://www.acrossproject.eu/
14 https://hpc4ai.it/
295
[15] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R.M. Badia, J. Torres, T.
Cortes, J. Labarta, PyCOMPSs: Parallel computational workflows in python,
J. Supercomput. Appl. High Perform. Comput. 31 (1) (2017) 66–82, http:
//dx.doi.org/10.1177/1094342015594678.

[16] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M.I. Jordan, I. Stoica, Ray: A distributed framework
for emerging AI applications, in: 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Carlsbad, CA, USA, October
8–10, 2018, pp. 561–577.

[17] Y. Babuji, A. Woodard, Z. Li, D.S. Katz, B. Clifford, R. Kumar, L. Lacinski,
R. Chard, J.M. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Pervasive
parallel programming in Python, in: Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC ’19, ACM, New York, NY, USA, 2019, pp. 25–36, http://dx.doi.org/
10.1145/3307681.3325400.

[18] H.G. Baker, C. Hewitt, The incremental garbage collection of processes,
in: Proceedings of the 1977 Symposium on Artificial Intelligence and
Programming Languages, USA, August 15–17, 1977, ACM, 1977, pp. 55–59,
http://dx.doi.org/10.1145/800228.806932.

[19] C. Misale, M. Drocco, M. Aldinucci, G. Tremblay, A comparison of big data
frameworks on a layered dataflow model, Parallel Process. Lett. 27 (01)
(2017) 1–20, http://dx.doi.org/10.1142/S0129626417400035.

[20] T.M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K.
Bocinsky, Y. Cao, F. Chirigati, S.C. Dey, J. Freire, D.N. Huntzinger, C. Jones, D.
Koop, P. Missier, M. Schildhauer, C.R. Schwalm, Y. Wei, J. Cheney, M. Bieda,
B. Ludäscher, Yesworkflow: A user-oriented, language-independent tool for
recovering workflow information from scripts, 2015, CoRR abs/1502.02403,
arXiv:1502.02403.

[21] B. Lerner, E.R. Boose, Rdatatracker: Collecting provenance in an interactive
scripting environment, in: A. Chapman, B. Ludäscher, A. Schreiber (Eds.),
6th Workshop on the Theory and Practice of Provenance, TaPP’14, Cologne,
Germany, June 12–13, 2014, USENIX Association, 2014.

[22] L.A.M.C Carvalho, K. Belhajjame, C.B. Medeiros, Converting scripts into
reproducible workflow research objects, in: IEEE International Conference
on e-Science, e-Science 2016, Baltimore, MD, USA, October 23–27, 2016,
2016, pp. 71–80, http://dx.doi.org/10.1109/eScience.2016.7870887.

[23] J.F. Pimentel, L. Murta, V. Braganholo, J. Freire, noworkflow: a tool for
collecting, analyzing, and managing provenance from python scripts,
Proc. VLDB Endow. 10 (12) (2017) 1841–1844, http://dx.doi.org/10.14778/
3137765.3137789.

[24] M. Baranowski, A. Belloum, M. Bubak, M. Malawski, Constructing work-
flows from script applications, Sci. Program. 20 (4) (2012) 359–377, http:
//dx.doi.org/10.3233/SPR-120358.

[25] M. Malawski, T. Gubala, M. Kasztelnik, T. Bartynski, M. Bubak, F. Baude, L.
Henrio, High-level scripting approach for building component-based appli-
cations on the grid, in: Making Grids Work: Proceedings of the CoreGRID
Workshop on Programming Models Grid and P2P System Architecture
Grid Systems, Tools and Environments, 12–13 June 2007, Heraklion, Crete,
Greece, 2007, pp. 309–321, http://dx.doi.org/10.1007/978-0-387-78448-
9_25.

[26] A.R. Runnalls, C.A. Silles, Provenance tracking in R, in: P. Groth, J. Frew
(Eds.), Provenance and Annotation of Data and Processes - 4th International
Provenance and Annotation Workshop, IPAW 2012, Santa Barbara, CA, USA,
June 19–21, 2012, Revised Selected Papers, in: Lecture Notes in Computer
Science, vol. 7525, Springer, 2012, pp. 237–239, http://dx.doi.org/10.1007/
978-3-642-34222-6_25.

[27] D. Tariq, M. Ali, A. Gehani, Towards automated collection of application-
level data provenance, in: U.A. Acar, T.J. Green (Eds.), 4th Workshop on the
Theory and Practice of Provenance, TaPP’12, Boston, MA, USA, June 14–15,
2012, USENIX Association, 2012.

[28] R. Mitchell, L. Pottier, S. Jacobs, R.F. da Silva, M. Rynge, K. Vahi, E. Deelman,
Exploration of workflow management systems emerging features from
users perspectives, in: 2019 IEEE International Conference on Big Data
(Big Data), Los Angeles, CA, USA, December 9-12, 2019, IEEE, 2019, pp.
4537–4544, http://dx.doi.org/10.1109/BigData47090.2019.9005494.

[29] E. Larsonneur, J. Mercier, N. Wiart, E.L. Floch, O. Delhomme, V. Meyer,
Evaluating workflow management systems: A bioinformatics use case, in:
IEEE International Conference on Bioinformatics and Biomedicine, BIBM
2018, Madrid, Spain, December 3–6, 2018, IEEE Computer Society, 2018,
pp. 2773–2775, http://dx.doi.org/10.1109/BIBM.2018.8621141.

[30] T. Kluyver, B. Ragan-Kelley, F. Pérez, B.E. Granger, M. Bussonnier, J.
Frederic, K. Kelley, J.B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, C. Willing, et al., Jupyter notebooks - a publishing format
for reproducible computational workflows, in: Positioning and Power in
Academic Publishing: Players, Agents and Agendas, 20th International
Conference on Electronic Publishing, Göttingen, Germany, June 7–9, 2016,
2016, pp. 87–90, http://dx.doi.org/10.3233/978-1-61499-649-1-87.

http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1145/2443416.2443417
http://dx.doi.org/10.1038/nbt.3820
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb6
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb6
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb6
http://dx.doi.org/10.1093/nar/gky379
http://dx.doi.org/10.1093/nar/gky379
http://dx.doi.org/10.1093/nar/gky379
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1007/978-3-540-78246-9_38
http://dx.doi.org/10.1093/gigascience/giz084
http://dx.doi.org/10.1038/nbt.3772
http://dx.doi.org/10.1109/TETC.2020.3019202
http://dx.doi.org/10.1109/TETC.2020.3019202
http://dx.doi.org/10.1109/TETC.2020.3019202
http://dx.doi.org/10.6084/m9.figshare.3115156.v2
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
https://deephealth-project.eu/
https://www.acrossproject.eu/
https://hpc4ai.it/
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1145/3307681.3325400
http://dx.doi.org/10.1145/3307681.3325400
http://dx.doi.org/10.1145/3307681.3325400
http://dx.doi.org/10.1145/800228.806932
http://dx.doi.org/10.1142/S0129626417400035
http://arxiv.org/abs/1502.02403
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb21
http://dx.doi.org/10.1109/eScience.2016.7870887
http://dx.doi.org/10.14778/3137765.3137789
http://dx.doi.org/10.14778/3137765.3137789
http://dx.doi.org/10.14778/3137765.3137789
http://dx.doi.org/10.3233/SPR-120358
http://dx.doi.org/10.3233/SPR-120358
http://dx.doi.org/10.3233/SPR-120358
http://dx.doi.org/10.1007/978-0-387-78448-9_25
http://dx.doi.org/10.1007/978-0-387-78448-9_25
http://dx.doi.org/10.1007/978-0-387-78448-9_25
http://dx.doi.org/10.1007/978-3-642-34222-6_25
http://dx.doi.org/10.1007/978-3-642-34222-6_25
http://dx.doi.org/10.1007/978-3-642-34222-6_25
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb27
http://dx.doi.org/10.1109/BigData47090.2019.9005494
http://dx.doi.org/10.1109/BIBM.2018.8621141
http://dx.doi.org/10.3233/978-1-61499-649-1-87

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298
[31] R.W. Cottingham, The DOE systems biology knowledgebase (kbase):
progress towards a system for collaborative and reproducible inference and
modeling of biological function, in: Proceedings of the 6th ACM Conference
on Bioinformatics, Computational Biology and Health Informatics, BCB
2015, Atlanta, GA, USA, September 9–12, 2015, ACM, 2015, p. 510, http:
//dx.doi.org/10.1145/2808719.2811433.

[32] A.P.e. a. Arkin, Kbase: The united states department of energy systems
biology knowledgebase, Nature Biotechnol. 36 (7) (2018) 566–569, http:
//dx.doi.org/10.1038/nbt.4163.

[33] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J.P. Mesirov, Genepat-
tern 2.0, Nature Genet. 38 (5) (2006) 500–501, http://dx.doi.org/10.1038/
ng0506-500.

[34] G. Wang, B. Peng, Script of scripts: A pragmatic workflow system for daily
computational research, PLoS Comput. Biol. 15 (2) (2019) http://dx.doi.org/
10.1371/journal.pcbi.1006843.

[35] L.A.M.C Carvalho, R. Wang, Y. Gil, D. Garijo, Niw: Converting notebooks
into workflows to capture dataflow and provenance, in: I. Tiddi, G.
Rizzo, Ó. Corcho (Eds.), Proceedings of Workshops and Tutorials of the
9th International Conference on Knowledge Capture, K-CAP2017, Austin,
Texas, USA, December 4th, in: CEUR Workshop Proceedings, vol. 2065,
CEUR-WS.org, 2017, pp. 12–16.

[36] Y. Gil, V. Ratnakar, J. Kim, P.A. González-Calero, P. Groth, J. Moody,
E. Deelman, Wings: Intelligent workflow-based design of computational
experiments, IEEE Intell. Syst. 26 (1) (2011) 62–72, http://dx.doi.org/10.
1109/MIS.2010.9.

[37] D. Koop, J. Patel, Dataflow notebooks: Encoding and tracking dependen-
cies of cells, in: 9th USENIX Workshop on the Theory and Practice of
Provenance, TaPP 2017, Seattle, WA, USA, June 23, 2017, 2017.

[38] S. Macke, A.G. Parameswaran, H. Gong, D.J.L. Lee, D. Xin, A. Head, Fine-
grained lineage for safer notebook interactions, Proc. VLDB Endow. 14 (6)
(2021) 1093–1101.

[39] M. Brachmann, W. Spoth, O. Kennedy, B. Glavic, H. Mueller, S. Castelo,
C. Bautista, J. Freire, Your notebook is not crumby enough, replace it,
in: 10th Conference on Innovative Data Systems Research, CIDR 2020,
Amsterdam, The Netherlands, January 12–15, 2020, www.cidrdb.org, 2020,
Online Proceedings.

[40] J.F. Pimentel, L. Murta, V. Braganholo, J. Freire, A large-scale study about
quality and reproducibility of jupyter notebooks, in: M.D. Storey, B. Adams,
S. Haiduc (Eds.), Proceedings of the 16th International Conference on
Mining Software Repositories, MSR 2019, 26–27 May 2019, Montreal,
Canada, IEEE/ACM, 2019, pp. 507–517, http://dx.doi.org/10.1109/MSR.2019.
00077.

[41] D. Yin, Y. Liu, A. Padmanabhan, J. Terstriep, J. Rush, S. Wang, CyberGIS-
jupyter framework for geospatial analytics at scale, in: D.L. Hart, M. Dahan
(Eds.), Proceedings of the Practice and Experience in Advanced Research
Computing 2017: Sustainability, Success and Impact, PEARC 2017, New
Orleans, LA, USA, July 9–13, 2017, ACM, 2017, pp. 18:1–18:8, http://dx.
doi.org/10.1145/3093338.3093378.

[42] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M.
Hubbell, M. Houle, M. Jones, P. Michaleas, L. Milechin, J. Mullen, A. Rosa, S.
Samsi, A. Reuther, J. Kepner, MIT SuperCloud portal workspace: Enabling
HPC web application deployment, in: 2017 IEEE High Performance Extreme
Computing Conference, HPEC 2017, Waltham, MA, USA, September 12–14,
2017, IEEE, 2017, pp. 1–6, http://dx.doi.org/10.1109/HPEC.2017.8091097.

[43] M. Milligan, Interactive HPC gateways with Jupyter and Jupyterhub, in:
D.L. Hart, M. Dahan (Eds.), Proceedings of the Practice and Experience in
Advanced Research Computing 2017: Sustainability, Success and Impact,
PEARC 2017, New Orleans, LA, USA, July 9–13, 2017, ACM, 2017, pp.
63:1–63:4, http://dx.doi.org/10.1145/3093338.3104159.

[44] B. Glick, J. Mache, Jupyter notebooks and user-friendly HPC access, in:
2018 IEEE/ACM Workshop on Education for High-Performance Computing,
EduHPC@SC, EduHPC@SC, Dallas, TX, USA, November 12, 2018, IEEE, 2018,
pp. 11–20, http://dx.doi.org/10.1109/EduHPC.2018.00005.

[45] R.C. Thomas, S. Cholia, K. Mohror, J.M. Shalf, Interactive supercomputing
with Jupyter, Comput. Sci. Eng. 23 (2) (2021) 93–98, http://dx.doi.org/10.
1109/MCSE.2021.3059037.

[46] T.E. Odaka, A. Banihirwe, G. Eynard-Bontemps, A. Ponte, G. Maze, K. Paul, J.
Baker, R. Abernathey, The pangeo ecosystem: Interactive computing tools
for the geosciences: Benchmarking on HPC, in: Tools and Techniques for
High Performance Computing - Selected Workshops, HUST, SE-HER and
WIHPC, Held in Conjunction with SC 2019, Denver, CO, USA, November
17-18, 2019, Revised Selected Papers, in: Communications in Computer
and Information Science, vol. 1190, Springer, 2019, pp. 190–204, http:
//dx.doi.org/10.1007/978-3-030-44728-1_12.

[47] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. van Dam, K.
Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, J.S. Vetter, The future
of scientific workflows, Int. J. High Perform. Comput. Appl. 32 (1) (2018)
159–175, http://dx.doi.org/10.1177/1094342017704893.
296
[48] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C.
von Praun, V. Sarkar, X10: An object-oriented approach to non-uniform
cluster computing, in: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’05, Association for Computing Machinery, New York,
NY, USA, 2005, pp. 519–538, http://dx.doi.org/10.1145/1094811.1094852.

[49] B. Chamberlain, D. Callahan, H. Zima, Parallel programmability and the
chapel language, Int. J. Supercomput. Appl. High Perform. Comput. 21 (3)
(2007) 291–312, http://dx.doi.org/10.1177/1094342007078442.

[50] Y. Zheng, A. Kamil, M.B. Driscoll, H. Shan, K. Yelick, Upc++: a pgas extension
for c++, in: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, 2014, pp. 1105–1114, http://dx.doi.org/10.1109/IPDPS.2014.
115.

[51] K. Fürlinger, C. Glass, J. Gracia, A. Knüpfer, J. Tao, D. Hünich, K. Idrees,
M. Maiterth, Y. Mhedheb, H. Zhou, Dash: Data structures and algorithms
with support for hierarchical locality, in: Euro-Par 2014: Parallel Processing
Workshops, Springer International Publishing, Cham, 2014, pp. 542–552.

[52] C. Bell, D. Bonachea, A new DMA registration strategy for pinning-based
high performance networks, in: 17th International Parallel and Distributed
Processing Symposium, IPDPS 2003, 22–26 April 2003, Nice, France, in:
CD-ROM/Abstracts Proceedings, IEEE Computer Society, 2003, p. 198, http:
//dx.doi.org/10.1109/IPDPS.2003.1213363.

[53] M. Drocco, Parallel Programming with Global Asynchronous Memory:
Models, C++ APIS and Implementations (Ph.D. thesis), Computer Science
Department, University of Torino, 2017, http://dx.doi.org/10.5281/zenodo.
1037585.

[54] A.J. Bernstein, Analysis of programs for parallel processing, IEEE Trans.
Electron. Comput. EC-15 (5) (1966) 757–763, http://dx.doi.org/10.1109/
PGEC.1966.264565.

[55] J. Darlington, Y. Guo, H.W. To, J. Yang, Functional skeletons for parallel
coordination, in: Euro-Par ’95 Parallel Processing, First International Euro-
Par Conference, Proceedings, Stockholm, Sweden, August 29–31, 1995, in:
Lecture Notes in Computer Science, vol. 966, Springer, 1995, pp. 55–66,
http://dx.doi.org/10.1007/BFb0020455.

[56] M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis, Building a
framework for predictive science, 2012, CoRR abs/1202.1056.

[57] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, M. Torquati, Targeting
distributed systems in FastFlow, in: Euro-Par 2012 Workshops, Proc. of
the CoreGrid Workshop on Grids, Clouds and P2P Computing, in: LNCS,
vol. 7640, Springer, 2013, pp. 47–56, http://dx.doi.org/10.1007/978-3-642-
36949-0_7.

[58] M. Cole, Algorithmic skeletons: Structured management of parallel compu-
tations, in: Research Monographs in Par. and Distrib. Computing, Pitman,
1989.

[59] M. Danelutto, R.D. Meglio, S. Orlando, S. Pelagatti, M. Vanneschi, A
methodology for the development and the support of massively parallel
programs, Future Gener. Comput. Syst. 8 (1–3) (1992) 205–220, http:
//dx.doi.org/10.1016/0167-739X(92)90040-I.

[60] H. González-Vélez, M. Leyton, A survey of algorithmic skeleton frame-
works: high-level structured parallel programming enablers, Softw. - Pract.
Exp. 40 (12) (2010) 1135–1160, http://dx.doi.org/10.1002/spe.1026.

[61] V. Amaral, B. Norberto, M. Goulão, M. Aldinucci, S. Benkner, A. Bracciali, P.
Carreira, E. Celms, L. Correia, C. Grelck, H. Karatza, C. Kessler, P. Kilpatrick,
H. Martiniano, I. Mavridis, S. Pllana, A. Respício, J. Simão, L. Veiga, A. Visa,
Programming languages for data-intensive hpc applications: A systematic
mapping study, in: Parallel Computing, 2020, 102584, http://dx.doi.org/10.
1016/j.parco.2019.102584.

[62] F. Marozzo, F. Lordan, R. Rafanell, D. Lezzi, D. Talia, R.M. Badia, Enabling
cloud interoperability with compss, in: Euro-Par 2012 Parallel Processing,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 16–27.

[63] V. Cima, S. Böhm, J. Martinovic, J. Dvorský, K. Janurová, T.V. Aa, T.J.
Ashby, V.I. Chupakhin, Hyperloom: A platform for defining and execut-
ing scientific pipelines in distributed environments, in: Proceedings of
the 9th Workshop on Parallel Programming and RunTime Management
Techniques for Manycore Architectures and 7th Workshop on Design Tools
and Architectures for Multicore Embedded Computing Platforms, PARMA-
DITAM@HiPEAC 2018, Manchester, United Kingdom, January 23–23, 2018,
2018, pp. 1–6, http://dx.doi.org/10.1145/3183767.3183768.

[64] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.
Rosen, S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
I. Stoica, Apache spark: a unified engine for big data processing, Commun.
ACM 59 (11) (2016) 56–65, http://dx.doi.org/10.1145/2934664.

[65] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D.
Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Giron-
coli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A.
Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello,
S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero,

http://dx.doi.org/10.1145/2808719.2811433
http://dx.doi.org/10.1145/2808719.2811433
http://dx.doi.org/10.1145/2808719.2811433
http://dx.doi.org/10.1038/nbt.4163
http://dx.doi.org/10.1038/nbt.4163
http://dx.doi.org/10.1038/nbt.4163
http://dx.doi.org/10.1038/ng0506-500
http://dx.doi.org/10.1038/ng0506-500
http://dx.doi.org/10.1038/ng0506-500
http://dx.doi.org/10.1371/journal.pcbi.1006843
http://dx.doi.org/10.1371/journal.pcbi.1006843
http://dx.doi.org/10.1371/journal.pcbi.1006843
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb35
http://dx.doi.org/10.1109/MIS.2010.9
http://dx.doi.org/10.1109/MIS.2010.9
http://dx.doi.org/10.1109/MIS.2010.9
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb38
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb38
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb38
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb38
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb38
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb39
http://dx.doi.org/10.1109/MSR.2019.00077
http://dx.doi.org/10.1109/MSR.2019.00077
http://dx.doi.org/10.1109/MSR.2019.00077
http://dx.doi.org/10.1145/3093338.3093378
http://dx.doi.org/10.1145/3093338.3093378
http://dx.doi.org/10.1145/3093338.3093378
http://dx.doi.org/10.1109/HPEC.2017.8091097
http://dx.doi.org/10.1145/3093338.3104159
http://dx.doi.org/10.1109/EduHPC.2018.00005
http://dx.doi.org/10.1109/MCSE.2021.3059037
http://dx.doi.org/10.1109/MCSE.2021.3059037
http://dx.doi.org/10.1109/MCSE.2021.3059037
http://dx.doi.org/10.1007/978-3-030-44728-1_12
http://dx.doi.org/10.1007/978-3-030-44728-1_12
http://dx.doi.org/10.1007/978-3-030-44728-1_12
http://dx.doi.org/10.1177/1094342017704893
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1177/1094342007078442
http://dx.doi.org/10.1109/IPDPS.2014.115
http://dx.doi.org/10.1109/IPDPS.2014.115
http://dx.doi.org/10.1109/IPDPS.2014.115
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb51
http://dx.doi.org/10.1109/IPDPS.2003.1213363
http://dx.doi.org/10.1109/IPDPS.2003.1213363
http://dx.doi.org/10.1109/IPDPS.2003.1213363
http://dx.doi.org/10.5281/zenodo.1037585
http://dx.doi.org/10.5281/zenodo.1037585
http://dx.doi.org/10.5281/zenodo.1037585
http://dx.doi.org/10.1109/PGEC.1966.264565
http://dx.doi.org/10.1109/PGEC.1966.264565
http://dx.doi.org/10.1109/PGEC.1966.264565
http://dx.doi.org/10.1007/BFb0020455
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb56
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb56
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb56
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://dx.doi.org/10.1007/978-3-642-36949-0_7
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb58
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb58
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb58
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb58
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb58
http://dx.doi.org/10.1016/0167-739X(92)90040-I
http://dx.doi.org/10.1016/0167-739X(92)90040-I
http://dx.doi.org/10.1016/0167-739X(92)90040-I
http://dx.doi.org/10.1002/spe.1026
http://dx.doi.org/10.1016/j.parco.2019.102584
http://dx.doi.org/10.1016/j.parco.2019.102584
http://dx.doi.org/10.1016/j.parco.2019.102584
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb62
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb62
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb62
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb62
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb62
http://dx.doi.org/10.1145/3183767.3183768
http://dx.doi.org/10.1145/2934664

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

B

A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM
ESPRESSO: a modular and open-source software project for quantum
simulations of materials, J. Phys.: Condens. Matter 21 (39) (2009) 395502,
http://dx.doi.org/10.1088/0953-8984/21/39/395502.

[66] Auton, et al., A global reference for human genetic variation, Nature 526
(7571) (2015) 68–74, http://dx.doi.org/10.1038/nature15393.

[67] I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, M.
Aldinucci, HPC application cloudification: The StreamFlow toolkit, in: 12th
Workshop on Parallel Programming and Run-Time Management Tech-
niques for Many-Core Architectures and 10th Workshop on Design Tools
and Architectures for Multicore Embedded Computing Platforms, PARMA-
DITAM 2021, in: Open Access Series in Informatics (OASIcs), vol. 88, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021, pp.
5:1–5:13, http://dx.doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5.

[68] G. Huang, Z. Liu, L. van der Maaten, K.Q. Weinberger, Densely connected
convolutional networks, in: 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, IEEE
Computer Society, 2017, pp. 2261–2269, http://dx.doi.org/10.1109/CVPR.
2017.243.

[69] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet Large scale
visual recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252,
http://dx.doi.org/10.1007/s11263-015-0816-y.

[70] M. de la Iglesia-Vayá, J.M. Saborit, J.A. Montell, A. Pertusa, A. Bustos, M. Ca-
zorla, J. Galant, X. Barber, D. Orozco-Beltrán, F. García-García, M. Caparrós,
G. González, J.M. Salinas, BIMCV COVID-19+: a large annotated dataset of
RX and CT images from COVID-19 patients, 2020, CoRR abs/2006.01174.

[71] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y.
Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, in: Conference
Track Proceedings, 2015.

[72] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D.G. Murray, B. Steiner, P.A. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, X. Zheng, TensorFlow: A system for large-scale machine
learning, in: 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2–4, 2016,
2016, pp. 265–283.

[73] H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: a novel image dataset for
benchmarking machine learning algorithms, 2017, CoRR abs/1708.07747.

[74] M. Aldinucci, S. Rabellino, M. Pironti, F. Spiga, P. Viviani, M. Drocco,
M. Guerzoni, G. Boella, M. Mellia, P. Margara, I. Drago, R. Marturano,
G. Marchetto, E. Piccolo, S. Bagnasco, S. Lusso, S. Vallero, G. Attardi,
A. Barchiesi, A. Colla, F. Galeazzi, HPC4AI, an AI-on-demand federated
platform endeavour, in: ACM Computing Frontiers, Ischia, Italy, 2018,
http://dx.doi.org/10.1145/3203217.3205340.

[75] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C.
Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N.
Marzari, I. Timrov, A. Urru, S. Baroni, Quantum espresso toward the
exascale, J. Chem. Phys. 152 (15) (2020) 154105, http://dx.doi.org/10.1063/
5.0005082.

[76] R.F. da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I.M. Overton, M.P.
Atkinson, Using simple pid-inspired controllers for online resilient resource
management of distributed scientific workflows, Future Gener. Comput.
Syst. 95 (2019) 615–628, http://dx.doi.org/10.1016/j.future.2019.01.015.

[77] M. Gallet, L. Marchal, F. Vivien, Efficient scheduling of task graph collec-
tions on heterogeneous resources, in: 2009 IEEE International Symposium
on Parallel Distributed Processing, 2009, pp. 1–11, http://dx.doi.org/10.
1109/IPDPS.2009.5161045.

[78] M. Aldinucci, V. Cesare, I. Colonnelli, A.R. Martinelli, G. Mittone, B.
Cantalupo, C. Cavazzoni, M. Drocco, Practical parallelization of scientific
applications with OpenMP, OpenACC and MPI, J. Parallel Distrib. Comput.
157 (2021) 13–29, http://dx.doi.org/10.1016/j.jpdc.2021.05.017.

[79] M. Caballero, J. Gomez, A. Bantouna, Deep-learning and hpc to boost
biomedical applications for health (deephealth), in: 2019 IEEE 32nd In-
ternational Symposium on Computer-Based Medical Systems, CBMS, IEEE
Computer Society, Los Alamitos, CA, USA, 2019, pp. 150–155.

[80] M. Aldinucci, G. Agosta, A. Andreini, C.A. Ardagna, A. Bartolini, A. Cilardo,
B. Cosenza, M. Danelutto, R. Esposito, W. Fornaciari, R. Giorgi, D. Lengani,
R. Montella, M. Olivieri, S. Saponara, D. Simoni, M. Torquati, The italian
research on HPC key technologies across EuroHPC, in: CF ’21: Computing
Frontiers Conference, Virtual Event, Italy, May 11–13, 2021, 2021, pp.
178–184, http://dx.doi.org/10.1145/3457388.3458508.
297
Iacopo Colonnelli is a Ph.D. student in Modeling
and Data Science at Università degli Studi di Torino.
He received his master’s degree in Computer En-
gineering from Politecnico di Torino with a thesis
on a high-performance parallel tracking algorithm
for the ALICE experiment at CERN. His research fo-
cuses on both statistical and computational aspects of
data analysis at large scale and on workflow mod-
eling and management in heterogeneous distributed
architectures.

Marco Aldinucci is a full professor and the P.I. of the
Parallel Computing research group at the University
of Torino. He is the author of 120+ scientific articles
and the recipient of the several research awards. He
participated in over 15 EU-funded research projects
on parallel and Cloud Computing (over 6Me). In 2018,
he incepted the HPC4AI Turin’s competency center on
HPC-AI convergence. From 2021, he is the founding
director of the CINI ‘‘HPC Key Technologies and Tools’’
national laboratory, gathering researchers from 35 Ital-
ian Universities. He is a member of the Governing

oard of the EuroHPC Joint Undertaking.

Barbara Cantalupo is a Research Engineer at the Com-
puter Science Department of the University of Torino.
She received her master’s degree in Computer Science
from the University of Pisa (1994), and she has been a
researcher in the parallel computing field at University
and at the Italian National Research Council (CNR).
Afterwards, she has worked for 15 years in several pri-
vate companies in the area of supercomputing, mobile
networks and space, acquiring knowledge on different
application fields.

Luca Padovani received his Ph.D in Computer Science
in 2003 from the University of Bologna. From 2005
to 2009 he was Assistant Professor at the Univer-
sity of Urbino and then he moved to the University
of Torino. Since 2015 he is Associate Professor at
the University of Torino, where he coordinates the
research group on Formal Methods for Software De-
velopment. His research interests include concurrency
theory, type systems for enforcing safety and liveness
properties of distributed and concurrent programs and
programming language semantics.

Sergio Rabellino, degree cum laude in Computer Sci-
ence, is the head of the ICT research technical staff
at the Department of Computer Science, University of
Turin. He co-operates with the research groups in Secu-
rity, Eidomatics, High Performance Computing, Artificial
Intelligence and E-learning. He is a Moodle Developer
and hardware/software architect of HPC, Cloud and
e-learning platforms. Technical head and architect of
the HPC4AI project, Moodle based projects Start@Unito,
Orient@mente and many other IT services of the Turin
University.

Dr. Concetto Spampinato is an Assistant Professor at
the University of Catania. In 2014, he founded, and
currently leads, the PeRCeiVe Lab at same university
that hosts several Ph.D. students, RA assistants and
assistant professors. Since April 2018 he is also affili-
ated as a ‘‘Courtesy Faculty Member’’ with the CRCV
at the University of Central Florida (USA). His re-
search interests lie mainly in learning-based computer
vision and pattern recognition by publication in top-
tier journals (IEEE TPAMI, IJCV, CVIU) and conferences
(CVPR, ICCV, IROS). He has published over 160 papers

on international journals or conferences (Google Scholar: 4373 citations, h-index
38).

http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb70
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb71
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb73
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb73
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb73
http://dx.doi.org/10.1145/3203217.3205340
http://dx.doi.org/10.1063/5.0005082
http://dx.doi.org/10.1063/5.0005082
http://dx.doi.org/10.1063/5.0005082
http://dx.doi.org/10.1016/j.future.2019.01.015
http://dx.doi.org/10.1109/IPDPS.2009.5161045
http://dx.doi.org/10.1109/IPDPS.2009.5161045
http://dx.doi.org/10.1109/IPDPS.2009.5161045
http://dx.doi.org/10.1016/j.jpdc.2021.05.017
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://refhub.elsevier.com/S0167-739X(21)00397-6/sb79
http://dx.doi.org/10.1145/3457388.3458508

I. Colonnelli, M. Aldinucci, B. Cantalupo et al. Future Generation Computer Systems 128 (2022) 282–298

a

e

Roberto Morelli is a researcher in the Artificial In-
telligence team at Leonardo S.p.A., with on-going
collaboration with INFN (Bologna) to pursue his Ph.D.
in Data Science & Computation, with focus on AI unsu-
pervised methods for beyond standard model searches.
Other research interests regard Deep Learning and
Computer Vision techniques applied to biomedical im-
ages to support Bologna’s Physiology department. He
graduated in Physics at the University of Bologna in
2017 with a thesis on electromagnetic finite-element
analysis. He attended a Master in financial mathematics

nd worked in the Big Data and Analytics team at C.R.I.F. S.p.A.

Rosario Di Carlo is currently a research fellow in
Leonardo Labs. Before joining Leonardo S.p.A. in January
2021, he was Research Fellow at the University of
Modena and Reggio Emilia within the ‘‘AImageLab’’.
He received his Bachelor’s degree in Computer En-
gineering from the University of Palermo, and his
Master’s degree from the University of Modena and
Reggio Emilia with a thesis on deep learning models
for Visual Reasoning. During his activity at AimageLab,
he has participated in several projects of Computer
Vision and Machine Learning applied in the industrial

nvironment, working with several companies including Tetra Pak and IMA.
298
Dr. Nicolò Magini received his Ph.D. in Physics in 2005
from the University of Florence. In 2007, he joined the
CERN physics laboratory in Geneva to work on the
worldwide computing grid infrastructure used by CERN
experiments. At CERN, he worked on services for data
management, workload management and monitoring.
Recently, one of his main interests was the expansion
of CERN computing to Cloud and HPC resources. In
2021, Dr. Magini joined Leonardo as Research Fellow in
the HPC/Cloud Labs, where he is working on the man-
agement of the davinci-1 HPC, and on the deployment

of a private Cloud infrastructure.

Carlo Cavazzoni is presently head of Cloud Computing
in Leonardo S.p.A., and director of the Leonardo HPC
Lab. Before joining Leonardo in May 2020, he spent
more than 20 years in Cineca (Italian Supercomputing
Centre), where he became head of HPC R&D, with
responsibility for the evolution and exploitation of
the National and European HPC infrastructure. He is
a member of the EuroHPC Research and Innovation
Advisory Board, steering board member of the ETP4HPC
association, and Leonardo representative in GAIA-X. He
is (co-)author of more than 100 peer review articles,

including Science, Physical Review Letters, Nature Materials, and many others.

	Distributed workflows with Jupyter
	Introduction
	Related work
	Workflow management systems
	Workflows with Jupyter
	Jupyter notebooks on HPC

	Methods
	Notebooks as workflows
	Distributed sequential execution
	Parallel execution

	Design and implementation
	Coordination metadata format
	Jupyter stack extension
	Executing cells remotely
	The DependencyResolver component
	Serialization
	Centralized and distributed control plane architecture

	Evaluation
	Hyperparameter search for DNN assisted COVID-19 diagnosis
	Training and serving DNNs
	Interactive simulation at scale: running quantum ESPRESSO on Jupyter
	Running the 1000-genome workflow on Kubernetes

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

