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12.1 Introduction  

This chapter aims to show how the convergence of High Performance Computing (HPC), 

BigData and Artificial Intelligence (AI) (and Deep Learning in particular) can support 

improvements in the Health domain, by providing an overview of few use cases from the 

DeepHealth project. The next sections are organised as follows: Section 12.2 presents the 

latest technical progresses in the health field. Section 12.3 briefly describes the DeepHealth 

concept and introduces the DeepHealth toolkit. Section 12.4 presents general info (typical 

workflow, KPIs) about the DeepHealth use cases and Section 12.5 provides more details of 

five DeepHealth use cases. Section 12.6 highlights the value proposition offered by 

DeepHealth Toolkit to HealthCare providers.   Section 12.7 concludes emphasizing the 

impact of the DeepHealth project. 
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12.2 Artificial Intelligence and HPC in Health Domain in 2020 

The European Commission (EC) focuses on innovation in health and on technical areas 

addressing current health issues in relation to people’s well-being, as well as on increasing 

the sustainability of health systems, as presented in the EU eHealth Action Plan (2014-2020).    

In April 2018, the European Union (EU) signed a Declaration on Cooperation on Artificial 

Intelligence (AI) that emphasized the commitment of European Union states towards 

boosting Europe's technology and industrial capacity in AI. Linking AI technology 

developments with Health was an inherent step to be done, as shown by the innovation calls 

launched by H2020 https://cordis.europa.eu/programme/id/H2020_ICT-11-2018-2019: HPC 

and Big Data enabled Large-scale Test-beds and Applications. 

In 2020, the Next Generation EU recovery instrument and the Annual Sustainable Growth 

Strategy 2021 were launched by the European Commission to fight the effects of the COVID-

19 pandemic, providing €750 billion funding. The EU4Health 2021-2027 programme, EU’s 

response to COVID-19, is one the main pillars of this strategy and has a budget of €9.4 

billion, which amongst other objectives, will strengthen health systems so that they can face 

epidemics as well as long-term challenges by stimulating their digital transformation. In this 

context, Big Data, Artificial Intelligence (AI) and supercomputers, with their analytical 

power, are major assets in detecting patterns in the spread of the virus or potential treatments. 

The European Commission will continue investing in the use of Artificial Intelligence to 

speed up the diagnosis of COVID-19 and improve future treatment of patients. 

Not only public health authorities or institutions, but also private health care providers are 

incorporating AI technologies in their activities, as a way to gain competitiveness,  optimize 

diagnostic processes, and improve  treatment monitoring and lately, to join efforts to fight 

https://cordis.europa.eu/programme/id/H2020_ICT-11-2018-2019
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against COVID-19 pandemics. 

12.3 DeepHealth concept 

Two of the most known areas of healthcare that can benefit from the advances in Artificial 

Intelligence are medical imaging and electronic Health Record, as it is highlighted in “AI in 

Healthcare Whitepaper” (BDVA Task Force7- Sub-group Healthcare- November 2020). The 

main goal of the DeepHealth project is to put HPC computing power at the service of 

biomedical applications, to apply Deep Learning and Computer Vision techniques on large 

and complex biomedical datasets to support a new and more efficient way of diagnosis and to 

generate insights into complex diseases in a scalable and efficient way. 

The DeepHealth concept is based on the scenario, depicted in Figure 1, where processing big 

quantities of images is needed for diagnosis.  

 

Figure 1 DeepHealth concept 

Health Professionals (Doctors and medical staff) are End Users – they are experts in medical 

areas and diseases.  

ICT Experts involved in project will provide medical users with the software applications 

necessary for obtaining results according to their needs and requirements. 
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The training environment represents the context where ICT experts work with datasets of 

images for training predictive models.  

In the production environment the medical personnel insert images coming from scanning 

sessions into a software platform or biomedical application that uses predictive models to get 

clues that can help them to make decisions during diagnosis. Doctors have the knowledge to 

label and annotate images, define objectives and provide related metadata. ICT staff is in 

charge of processing the labelled and annotated images, organizing the datasets, performing 

image transformations when required, training the predictive models and loading such models 

into software platforms once tested & validated.  

To perform all these operations, ICT staff will use the DeepHealth Toolkit and the 

DeepHealth HPC & Cloud Infrastructure, as it can be seen in Figure 1. 

As it was described also in Chapter 11, the DeepHealth toolkit is a general-purpose deep 

learning framework, including image processing and computer vision functionalities, enabled 

to exploit HPC and cloud infrastructures for running parallel/distributed training and 

inference processes. 

The core of the toolkit consists of two libraries, namely the European Distributed Deep 

Learning Library (EDDL) and the European Computer Vision Library (ECVL) that are ready 

to be integrated in any software application. Additionally, the DeepHealth toolkit also has 

two complementary software components, the back end and the front end. The back end 

exposes a RESTful API to allow the use of all the functionalities provided by the two 

libraries. The front end makes accessible the functionalities of the two libraries via a web-

based Graphical User Interface. 

The DeepHealth toolkit incorporates the most advanced parallel programming models to 

exploit the parallel performance capabilities of HPC and cloud infrastructures, featuring 

different acceleration technologies such as symmetric multi-processors (SMPs), graphics 
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processing units (GPUs) and field-programmable gate arrays (FPGAs), as shown in Chapter 

11. 

Moreover, the toolkit provides functionalities to be used for both training and inference, 

addressing the complexity of the different available computational resources and target 

architectures at both the training and inference stages.  

This process is transparent to doctors; they just provide images to the system and get 

predictions such as indicators, biomarkers or the semantic segmentation of an image for 

identifying tissues, bones, nerves, blood vessels, etc. 

To demonstrate and validate the concept of the project, the DeepHealth open-source toolkit 

and the HPC & Cloud infrastructure are tested and validated in real environments thanks to 

the fifteen pilot use cases (test beds) and on seven biomedical commercial or research 

platforms, raising the innovation potential of European companies. 

 

 

12.4 DeepHealth Use Cases 

 

This section will summarize the main aspects that are common to all DeepHealth uses cases, 

i.e. the testing and validation workflow and KPIs.  

A typical Use case in the DeepHealth project is based on a medical imaging data set, which is 

trained and tested on DeepHealth Toolkit and one or more commercial health platforms, 

taking advantage of Hybrid and Heterogeneous HPC + Big Data clusters. First, data scientists 

and members of the team pre-process (labelling, annotation, anonymization) and prepare the 

dataset by splitting it into three subsets, namely, training, validation and testing subsets. Next 

the development team designs several artificial neural networks and launches the training 

processes on HPC and cloud architectures by means of the runtime of the toolkit adapted to 

HPC frameworks like the ones described in Chapter 11. The team evaluates the models using 

the validation subset, and redesigns some models if necessary. Sometimes, the team should 
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come back to consider the dataset itself with the knowledge learned in previous iterations. 

The model that gets the best accuracy using the testing subset is selected; then computer 

scientists, members of the same team, configure an instance of the application with the best 

model and deploy the solution in a production environment. 

The most important Key Performances Indicators that will be validated and tested in 

DeepHealth pilots are the time-to-model-in-production (ttmip), time-of-pre-processing-

images (toppi) and time-of-training-models (totm). 

• Time of pre-processing images (toppi). This KPI is the sum of T1 and T2, where T1 

is the time a data scientist (or ICT expert) needs to design the pipeline of 

transformations to be applied to the images and the time he/she needs to implement 

that pipeline of transformations using the ECVL.  T2 is the time to run the pipeline 

over all the images in the dataset. 

• Time of training models (totm). This KPI is calculated by measuring the execution 

time of the training procedure. 

• Time to model in production (ttmip). This KPI is the sum of various variables, the 

definitive model used in production will commonly be the result of choosing one 

among several tested models, so the time of designing and testing each model must be 

taken into account (totm is part of the total time necessary for testing each single 

model). Additionally, if each model needs a particular pipeline of image operations, 

the value of toppi for each defined image-pre-processing procedure must be included 

as part of the ttmip.  

Other KPIs that will measure the performance of the algorithms for training DNNs on 

distributed architectures are speedup and efficiency of parallelism.  

Each use case also has specific KPIs to assess that the obtained predictive models provide 

accuracies equivalent to those obtained with the same DNN topologies when the used models 
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are trained using other toolkits. These KPIs are accuracy, precision, recall and F1-score for 

classification tasks and intersection over union (IoU) in semantic segmentation tasks. IoU can 

be computed in average for all the classes to be detected, and individually for each one in 

order to know in more detail which tissue types or skin spots or tumour types are more 

difficult to be detected by the DNN-based models. 

The fifteen use cases validate the DeepHealth Toolkit performances in the following medical 

fields (1) neurological diseases, (2) tumour detection and early cancer prediction, and (3) 

digital analysis of brain pathologies and automated image annotation, exemplifying how the 

Toolkit can create specific biomedical applications. At the end of year 2020 a new use case 

was added with a COVID-19+1 related dataset released by the partner FISABIO. 

12.5 Use of HPC& Cloud in medical pilots 

As commented in previous chapters, medical datasets are in a constant growth and they are 

needed as large datasets as possible to train robust and accurate enough models based on 

CNNs. However, due to the fact that the process of training neural networks requires to 

iterate over all the samples of the training subset, and the number of iterations / epochs ranges 

from 100 to 1000 or more, depending on the use case and the architecture, the use of HPC 

and cloud computing infrastructures are becoming indispensable to distribute the workload 

by splitting the training subset. In this way each worker node in the computing infrastructure 

is in charge of performing the back propagation algorithm on a data partition. Chapter 11 

provides details on how to distribute the workload on different computing architectures 

supported by the DeepHealth toolkit. As Figure 1 illustrates, leveraging all the computer 

power offered by hybrid HPC + Cloud infrastructures equipped with hardware accelerators 

and many-core CPUs is completely transparent to medical personnel, and ICT experts do not 

 
1 https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/ 

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
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need to have a deep knowledge of programming on distributed environments. Thanks to the 

DeepHealth toolkit, ICT experts can run the training processes on hybrid HPC + Cloud 

infrastructures, test & validate the trained models, and, finally, update the models in 

production with the new ones trained with updated datasets after including recently acquired 

medical images. 

Five out of the fifteen use cases of the DeepHealth project are described in this chapter to 

show the jointly use of ECVL and EDDL. These five uses cases are: 

- UC2 UNITOPatho, based on whole-slide colorectal images obtained from 

colonoscopies;  

- UC3 UNITOBrain, based on CT scans of the brain;  

- UC4 Chest, based on CT scans of lungs;  

- UC5 UNITO Deep Image Annotation, based on Xray chest images;  

- UC12 Skin Cancer Melanoma Detection, based on dermoscopic images.  

12.5.1. UC2 - UNITOPatho 

The expansion of cancer screening programs and the demand of colonoscopy surveillance 

routines are leading the gastrointestinal histopathology to grow. 

Predictive signals of possible gastrointestinal cancer development are colorectal polyps, 

which are pre-cancerous lesions located in the lining of the colon.2 

Colorectal tissue samples are collected by biopsies and colonoscopies. Gastrointestinal 

pathologists examine them to find signs that predict tissue neoplastic process and invasive 

carcinomas. 

 
2 Roisin Bevan and Matthew D Rutter,“Colorectal cancer screening—who, how, and when?,”Clinical endoscopy, vol.51, no. 

1, pp. 37, 2018 
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Figure 2 An example of Whole-Slide Image containing Tubulo-villous adenoma tissue 

In this use case, we focus our effort to develop a neural network-based pipeline to 

automatically diagnose colorectal cancers from Whole-Slide Images (WSI). 

WSI are super high-resolution images retrieved by scanning biopsies material, more 

specifically Hematoxylin and Eosin-stained slices of tissue, from patients undergoing cancer 

screening. These images can reach more than 100.000 × 100.000 pixels in their size. The 

WSI corresponds to the whole specimen collected from the patient: it is provided with a label 

(the diagnosis) and the annotation on the subset of tissue taken into consideration by the 

pathologist to elaborate the diagnosis (the so-called diagnostic tissue).   

Given the nature of the problem, learning from huge images is a hard task which requires 

HPC infrastructure in order to successfully perform training and, most importantly, inference 

at diagnosis time. The DeepHealth toolkit is also designed to efficiently handle large-scale 

images and to train deep-learning models efficiently. 

The experts collected six different types (or classes) of tissue: Normal tissue, Hyperplastic 

polyp, Tubular adenoma with high and low-grade dysplasia, Tubulo-villous adenoma with 

high and low-grade dysplasia.  

A first version of this collection is the open-access dataset UNITOPATHO.3 It consists of 

 
3 Luca Bertero, Carlo Alberto Barbano, Daniele Perlo, Enzo Tartaglione, Paola Cassoni, Marco Grangetto, Attilio Fiandrotti, 

Alessandro Gambella, Luca Cavallo. (2021). UNITOPATHO. IEEE Dataport. https://dx.doi.org/10.21227/9fsv-tm25  
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9536 hematoxylin and eosin-stained patches 

extracted from 292 whole-slide images. 

 
Figure 3 UniToPatho logo, followed by a collection of type-representative tissue samples 

 

 

In order to solve the classification task, we propose the use of a residual neural network 

model (ResNet). The neural network model predicts the class for each tissue patch from the 

WSI and, finally, a label for the WSI itself45. This UC relies on the University of Torino's 

OpenDeepHealth (ODH) platform, which implements a hybrid HPC/cloud infrastructure to 

effectively support the training and inference of AI models. As detailed in chapter 11, ODH 

integrates the DeepHealth toolkit via Docker containers, both on bare metal and in the 

multitenant Kubernetes cluster and it has been specifically designed to support AI application 

on critical data, such as biomedical images. 

 

12.5.2 UC3 - UNITOBrain  

The occlusion of a cerebral vessel causes a sudden decrease of the blood perfusion of the 

corresponding vascular territory. Identifying such an occlusion in a fast and reliable way is 

 
4 Perlo, Daniele, et al. "Dysplasia grading of colorectal polyps through CNN analysis of WSI." arXiv preprint 

arXiv:2102.05498 (2021). 
5 Barbano, Carlo Alberto, et al. "UniToPatho, a labeled histopathological dataset for colorectal polyps classification and 

adenoma dysplasia grading." arXiv preprint arXiv:2101.09991 (2021). 
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critical under emergency scenarios.6 The so-called CT perfusion, with a sample time of 

roughly1 Hz, measures the passage of a contrast media bolus into the brain, on a pixel-by-

pixel basis. Serial low-dose scans are acquired; time-density curves, corresponding to the 

contrast media passage in brain tissue, are calculated; parametric maps are calculated. The 

most relevant parameters used in clinical practice are Cerebral Blood Volume and Cerebral 

Blood Flow, (CBF and CBV).7  

Given the nature of the task, generating the aforementioned parametric masks in the least 

time possible is crucial. Towards this end, HPC infrastructure offers parallel computation 

capabilities which can be successfully exploited through the use of the DeepHealth toolkit in 

order to train and to infer from an AI-based model. Data from 115 patients has been 

collected: a subset of 100 patients has been used to train the deep model, while the remaining 

15 were held to validate the results.  

In order to generate ground-truth (GT) maps, we relied on a state-of-the-art deconvolution-

based algorithm.8 The validation step has been carried out evaluating concordance between 

more expert medical evaluators among the segmented lesions using the GT maps and those 

produced by the artificial neural network model. 

As an artificial neural network, we have taken inspiration from the state-of-the-art U-Net 

architecture.9 Since the model has been originally thought to segment medical images, and in 

our case we aim at generating parametric images, we introduce some changes to the standard 

model, like reducing the granularity of the convolutional operations and using average pool 

 
6 Donahue J, Wintermark M. Perfusion CT and acute stroke imaging: Foundations, applications, and literature review. 

Journal of Neuroradiology 2015. https://doi.org/10.1016/j.neurad.2014.11.003 
7 Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 

hours with selection by perfusion imaging. New England Journal of Medicine 2018. 

https://doi.org/10.1056/NEJMoa1713973. 
8 Bennink E, Oosterbroek J, Kudo K, Viergever MA, Velthuis BK, de Jong HWAM. Fast nonlinear regression method for 

CT brain perfusion analysis. Journal of Medical Imaging 2016. https://doi.org/10.1117/1.jmi.3.2.026003 
9 Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell counting, detection, 

and morphometry. Nature Methods 2019. https://doi.org/10.1038/s41592-018-0261-2. 
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layers instead of maxpool. 

 

 
Figure 4 Artificial neural network model deployed for UC3 

Contrarily to the other state-of-the-art approaches, no extra information (like the arterial input 

function) has been provided to the U-Net model, favouring its use in an emergency scenario 

where the time to obtain these maps is critical.  

Overall, on the generated maps, we achieve an average Dice score on the lesions above 0.70, 

resulting in a generation of good quality perfusion maps from the U-Net model. Inter-rater 

concordance has been measured, finding a very strong correlation between lesion volumes of 

CNN maps and GT maps, achieving above 0.98 Pearson correlation.10 This UC leverage on 

the HPC features of ODH platform, previously described. 

 

12.5.3 UC4 - Chest 

Lung nodules are small focal lesions in the lung parenchyma can be solitary or multiple and 

in many cases are accidentally found in CT scans. Their identification is time consuming in 

the current clinical activity for the radiologist and, since these small lesions are difficult to 

spot, patients often need to perform follow-up CT scans in order to assess their 

 
10 Gava, Umberto A., et al. "Neural Network-derived perfusion maps: a Model-free approach to computed tomography 

perfusion in patients with acute ischemic stroke." arXiv preprint arXiv:2101.05992 (2021). 
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benignity/malignancy, resulting in increased radiation exposure and anxiety for the patient 

and increased work amount for doctors. Lung nodules are quite common incidental findings 

in CT scans and can be defined as small focal lesions (ranging from 5 to 30 mm) that can be 

solitary or multiple. Deep learning models outperform traditional computer vision techniques 

in various tasks. Typically, features of the input data are hand-crafted, but deep-learning 

features are learned in an end-to-end fashion. Convolutional Neural Networks (CNNs) are 

one of the most popular models that are also employed in medical imaging.11 More 

specifically, the U-Net model is used to identify lung nodules in CT scans. The dataset used 

to train and evaluate the network is provided by Citta’ della Salute e della Scienza di Torino. 

 Patients Images 

Train 247 13589 

Validation 61 1699 

Test 109 1708 

 

In order to get preliminary results, splits have been created with only images with a ground 

truth mask, such that the training set contains 80% of images, validation 10% and test 10% 

CT scans are in DICOM format.  

CT-scans are very large images: every exam may contain more than 200 acquisitions which 

need to be properly processed.  This use case exploits HPC by means of the ODH platform to 

reduce the computation time. Handling these image format and training the deep-learning 

model to perform the segmentation task efficiently is crucial for the success of this task: the 

DeepHealth toolkit offers efficient the capability of training segmentation models on medical 

images in an efficient way and is therefore crucial towards the success of this use-case.   

 
11 G. Nam et al., “Development and validation of deep learning–based automatic detection algorithm for malignant 

pulmonary nodules on chest radiographs, ”Radiology, vol. 290,no. 1, pp. 218–228, 2019. 
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The model currently reaches an Intersection Over Union of 0.62 with only rotations as data 

augmentation.  

 
Figure 5Segmentations from the U-Net model in green, ground-truth in yellow 

 

12.5.4 UC5- UNITO Deep Image Annotation  

 

Statistics prepared by the European Union clearly show that the number of imaging devices 

and, consequently, the number of daily scans is steeply increasing all over Europe12. The 

large amount of digital images collected daily by the national health systems or even by 

single hospitals poses new challenges and a huge burden on the clinical community. Indeed, 

radiologists need to inspect every single image and write detailed reports; often taking into 

account also information stored in Electronic Health Records (EHR). Such a heavy workload 

may easily lead the operators to make mistakes not so much in providing the correct 

diagnosis but rather in the repetitive and tedious data entry and reporting procedures. 

Information Technology (IT) and, specifically, the innovative solutions based on Artificial 

Intelligence (AI) implemented in several use cases of the DeepHealth project might help also 

in reducing the mistakes caused by habituation and fatigue.  

  

 
12 EU Healthcare resource statistics, http://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Healthcare_resource_statistics_-

_technical_resources_and_medical_technology&oldid=280129 
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Figure 6Two examinations composed of two views of the chest. Upper row: normal examination and related report with the 

sections used in UC5. Lower row: anomalous examination and fragment of the related report with the diagnosis and the 

MeSH/MTI terms (labelled as “automatic”) 

  

 UC5 “Deep Image Annotation” sets its main goal to the automatic reporting of medical 

images, i.e.,  given one or more input images, UC5 aims at generating automatically a 

description of the image content using natural language.  

The multimodal processing in UC5 is based on a combination of two different artificial 

neural networks (ANN) set in a processing pipeline13. In the first stage, a convolutional 

neural network (CNN) classifies and encodes the input images; in the second stage, a 

recurrent neural network (RNN) generates sentences starting from the encoding coming from 

the CNN.  UC5 uses the public and anonymized dataset named “Indiana University chest X-

ray Collection”14 containing 7470 X-ray images and 3955 semi-structured reports (see Fig. 

6). Each report, in XML format, is paired with two views of the chest and contains multiple 

textual annotations, including sections with the “indication”, the “findings” and the 

“impression”, that correspond to the actual report written by the radiologists. The reports 

 
13 B. Jing, P. Xie, E. P. Xing. “On the Automatic Generation of Medical Imaging Reports”, Proc. of 

the 56th Annual Meeting of the Association for Computational Linguistics, pages 2577–2586 

Melbourne, Australia, July 15 - 20, 2018. 
14 D. Demner-Fushman et al. "Preparing a collection of radiology examinations for distribution and retrieval." 

Journal of the American Medical Informatics Association 23.2, pages 304-310, 2016. 
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contain also MeSH and MTI (respectively, Medical Subject Headings and Medical Text 

Indexer, both by the National Library of Medicine, USA) terms (or tags).  

 

 
Figure 7Neural network architectures used in UC5. The images are processed by a CNN, and then their classification and 

embeddings are passed to a MLP (Co-attention), that feeds its output to the cascaded LSTM, the first generating topics of 

the sentences, the second generating words according to the topic 

 

  
The two networks are trained independently. First, the CNN is trained to assign one or more tags, 

extracted from the reports, to the input images. We use a VGG-1915 in the CNN module, trained 

in a multi-label fashion: its training set is composed of images with an encoding of tags as 

target values. The trained CNN is then used to build the training dataset for the RNN: for 

each image in the training set, we first extract the hidden representations (encoding) from the 

two final convolutional layers (located before the output layer), then we append the 

concatenation of those two layers to the representation of each word in the sections 

“findings” and “impression”. The RNN module is then trained to generate the same sequence 

of words it receives as input. It is composed of two Long-Short Term Memory networks16 

organized in a hierarchical way: the first LSTM, receiving the semantic features by the CNN 

module (actually, by an intermediate co-attention feed forward module), generates topic 

vectors for sentences (hereafter, topic or sentence LSTM) that are fed to the second LSTM, 

responsible of generating sequences of words (hereafter, word LSTM).  The sentence LSTM 

 
15 K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image 

recognition. CoRR, abs/1409.1556, 2014. 
 
16 S. Hochreiter and J. Schmidhuber. "Long short-term memory." Neural computation 9.8, pages 1735-1780, 

1997. 
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receives a co-attention vector17 that assigns different weights to parts of the semantic features 

extracted by the CNN, mimicking the visual exploration made by an expert radiologist. The 

number of topic vectors generated by the first LSTM that corresponds to the number of 

sentences in the final text is controlled by a multilayer perceptron, trained at the same time as 

the two LSTMs. We do not provide here the equations or the full details describing the 

system behaviour that can be found in the original paper18.  

 The system is evaluated automatically using the Bilingual Evaluation Understudy (BLEU) 

score. Furthermore, we plan to make a “crowd”-based evaluation by letting humans grade the 

quality of the generated texts with respect to the ground truth. However, the evaluation is an 

open issue: automatic metrics are not able to cope with the specific “jargon” (e.g., sentences 

like “no anomalies detected” and “anomalies detected” have opposite meanings but receive a 

high similarity score) and it is not easy to enrol many domain experts in a crowd-based 

evaluation.  

Based on the preliminary results, UC5 will likely not be able to produce reports as reliable as 

human radiologists do (as expected). Nevertheless, UC5 can still have a positive and 

measurable impact in the daily clinical routine, even if limited, for example, in speeding up 

the reporting activity while potentially reducing the number of errors as well (for example, 

mistakes in copying and pasting from previously written reports19). UC5 ``Deep Image 

Annotation” offers several interesting opportunities. It is computationally challenging, thus 

providing a good test bed for the two ECVL and EDDLL libraries under development in 

DeepHealth. If well engineered, it can be a valuable support tool in current commercial 

 
17 Jing et al. On the automatic, 2018. 
18 Idem. 
19 A.Y. Tsou et al. "Safe practices for copy and paste in the EHR: systematic review, recommendations, and 

novel model for health IT collaboration." Applied clinical informatics 8.1 2017. 
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systems. And, with more data becoming available, the reports, that it will be able to generate, 

will represent a precious help for experienced or junior radiologists. 

  

12.5.5. UC12 –Skin cancer melanoma detection  

Skin cancer represents a major public health issue, being the most common form of human 

cancer worldwide with an increasing trend 20. In the last decades, many efforts have been 

given to improve skin cancer treatments; however, the early detection remains a key factor in 

preventing cancer progression to advanced stages and ensuring a lower mortality rate21. 

For epithelial skin cancer, such as basal cell carcinoma and squamous cell carcinoma, 

delayed diagnosis is mainly responsible for a larger and more disfiguring surgery, which 

could also affect relevant functional structures (e.g. mouth, ears, eyelids, and nose). For 

melanoma, a delayed diagnosis may mean death due to potential tumour aggressiveness. 

Early diagnosis represents the ideal and cheap solution to fight against the skin tumour 

consequences. 

Dermoscopy is a form of in-vivo skin surface microscopy performed using high quality 

magnifying lenses and a powerful light source to mitigate the surface reflection of the skin, to 

enhance the visibility of the pigmentation of the lesion. This technique is broadly employed 

by dermatologists since it allows for a fast diagnosis, and significantly increased the 

diagnosis accuracy, sensitivity, and specificity with respect to the naked eye examination.  

However, this kind of non-invasive imaging approaches requires the eye of expert clinicians 

to successfully diagnose skin cancer. Therefore, many efforts have been given towards the 

development of automatic tools for supporting and training physicians in the analysis of 

 
20 Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 

2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A 

Cancer Journal for Clinicians, 68(6), 394-424. 
21 Rigel, D. S., Russak, J., & Friedman, R. (2010). The evolution of melanoma diagnosis: 25 years beyond the 

ABCDs. CA: A Cancer Journal for Clinicians, 60(5), 301-316. 
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dermoscopic images22. Due to its outstanding results in many research areas including image 

understanding and image classification23 24, deep learning has become the main option for 

analyzing medical images in several field, including skin lesion classification25 26 27. 

Unfortunately, these algorithms require a huge amount of annotated data to ensure the correct 

learning process. When dealing with medical imaging, collecting, and annotating data can be 

cumbersome and expensive. This is mainly related to the nature of the data and to the need 

for well-trained expert technicians. Moreover, such kind of algorithms requires a significant 

amount of (expensive) computational resources, which are often inaccessible to medical 

personnel. 

As already introduced in the previous Sections, the main goal of the DeepHealth project is 

compensating the second issue, boosting the productivity of data scientists operating in the 

medical field by providing a unified framework for the distributed training of neural 

networks, which is able to leverage hybrid HPC and cloud environments in a transparent way 

for the user, without requiring a deep understanding of DNNs and distributed high-

performance computing. 

 

 
22 Allegretti, S., Bolelli, F., Pollastri, F., Longhitano, S., Pellacani, G., & Grana, C. (2020). Supporting Skin 

Lesion Diagnosis with Content-Based Image Retrieval. In 2020 25th International Conference on Pattern 

Recognition (ICPR). 
23 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of 

the IEEE conference on computer vision and pattern recognition (pp. 770-778). 
24 Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In 

International Conference on Machine Learning (pp. 6105-6114). PMLR. 
25 Zhang, J., Xie, Y., Xia, Y., & Shen, C. (2019). Attention residual learning for skin lesion classification. IEEE 

Transactions on Medical Imaging, 38(9), 2092-2103. 
26 Pollastri, F., Parreño, M., Maroñas, J., Bolelli, F., Paredes, R., Ramos, D., & Grana, C. (2021). A Deep 

Analysis on High Resolution Dermoscopic Image Classification. IET Computer Vision. 
27 Canalini, L., Pollastri, F., Bolelli, F., Cancilla, M., Allegretti, S., & Grana, C. (2019, September). Skin lesion 

segmentation ensemble with diverse training strategies. In International Conference on Computer Analysis of 

Images and Patterns (pp. 89-101). Springer, Cham. 
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Figure 8 Samples of internal dataset. From upper left to right: Melanoma - MEL, Melanocytic Nevus - NV,  Basal Cell 

Carcinoma - BCC, Actinic Keratosis - AK, Benign Keratosis - BKL, Dermatofibroma - DF, Vascular Lesion - VASC, 

Squamous Cell Carcinoma – SCC. 

On the other hand, UC12 has the main goal of collecting dermoscopic images and design 

advanced deep learning algorithms for the segmentation and classification of skin lesion, 

providing clinicians with Computer-Aided Diagnosis (CAD) systems for the automated 

melanoma recognition. Indeed, segmentation of images and extraction of features can lead to 

a rapid and automatic identification of diagnostic clues which can facilitate image 

interpretation and diffusion of technologies among other doctors. 

In this sense, the UC12 combines and exploits existing publicly available datasets with a 

huge internal one, completed of clinical, dermoscopy and confocal microscopy images, 

annotated with conclusive diagnosis (histologic or clinically confirmed), and relevant 

patient’s data. Samples of such a kind of images are provided in Fig. 8. 

This dataset consists of 25,849 dermoscopy images, collected between 2003 and 2019 using 

several distinct acquisition tools. The dataset presents a different category distribution 

compared to the public datasets, with a higher percentage of melanoma cases. Visual artefacts 

which could be considered source of biases, such as rulers, ink markings/staining, and 

coloured patches are almost completely absent. 
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For what concerns public datasets, the International Skin Imaging Collaboration (ISIC) began 

to aggregate a large-scale collection of dermoscopic skin lesion images in 201628. The 2019 

version of the ISIC archive contains a total amount of 25,331 labelled dermoscopic images 

belonging to nine different classes, which represent eight types of skin lesion plus an 

additional category named none of the others, which contains samples of different natures 

that do not belong to any of the other eight classes. 

Differently from ISIC 2019, the 2020 dataset is focused on a binary classification problem. In 

this case images are divided in only two classes: melanoma or non-melanoma. Moreover, this 

set of dermoscopic images contains patient-level contextual information, providing for each 

image an identifier which allows lesions from the same patient to be mapped to one another. 

This additional knowledge is frequently used by clinicians to diagnose melanoma and is 

especially useful in ruling out false positives in patients with many atypical nevi. 

This new dataset is composed of 33,126 images and collected from 2,056 patients (21% of 

them with at least one melanoma, 79% with zero melanomas) gathered from 1998 to 2020, 

with an average of 16 lesions per patient.  

All three datasets provide metadata such as sex, age, site of the lesion, and number of patient 

lesions. 

Image analysis of this use-case focus on the extraction of key parameters (such as pagetoid 

spreading, atypical cells at the junction, atypical melanocytic nests, alteration of the 

architecture for melanoma, identification of tumour islands and cords for basal cell 

carcinoma, identification, and quantification of dyskeratosis for squamous cell carcinoma) 

useful to obtain an accurate description of histopathologic background from confocal images. 

This information will be correlated with parameters obtained from dermoscopic image 

 
28 Codella, N. C., Gutman, D., Celebi, M. E., Helba, B., Marchetti, M. A., Dusza, S. W., ... & Halpern, A. 

(2018, April). Skin lesion analysis toward melanoma detection: A challenge at the 2017 international 

symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In 

2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 168-172). IEEE. 
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analysis and integrated with other relevant clinical information in order to provide an 

accurate diagnosis and a decisional protocol, able to reproduce the analytical process of 

differential diagnosis of doctors with the highest expertise in the field. 

For what concerns classification, this use-case implements an ensemble of state-of-the-art 

architectures, combined with several techniques for data augmentation, such as random 

vertical/horizontal flips, random rotation, additive Poisson noise, and dropout. All of these 

techniques have been implemented by means of ECVL and EDDL libraries, developed within 

the project. 

The ensemble prediction output combines six different neural networks based on 

EfficientNet-Bx and ResNet152 state-of-the-art architectures. The single models have been 

trained with different input and batch sizes and using different augmentation strategies. 

Each network is trained for ~20 epochs on ISIC 2019 and ISIC 2020 using the Cross-Entropy 

loss and Adam29 optimizer, with a learning rate of 3e-5. Two fully connected layers process 

the dataset metadata and then the output is concatenated those of the networks to be assessed 

as well. The ensemble achieves a 0.94 AUC in the melanoma/non melanoma classification 

problem on the official test set of ISIC 2020 and 0.87 on the internal dataset. 

The second problem issued by the use-case concerns the segmentation of skin lesion images 

with the aims of producing a segmentation mask for a certain input image (Error! Unknown 

switch argument.). The quality of output segmentation results is, again, ensured by the 

ensemble of different state-of-the-art architectures, mostly based on DeepLabv3+30, 

achieving the outstanding mIoU (mean Intersection over Union) of 0.850. 

 

 
29 Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980. 
30 Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable 

convolution for semantic image segmentation. In Proceedings of the European conference on computer vision 

(ECCV) (pp. 801-818). 
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Figure 9 Example of segmented (red contour) skin lesion images from the ISIC dataset. 

 

The DeepHealth Service acts as the link between the DeepHealth libraries implementing the 

previously described models and the HPC and Cloud systems. Using the DeepHealth Service, 

data scientists do not have to write code for the DeepHealth library APIs or directly manage 

computing resources, but directly use ECVL and EDDL functionalities through a RESTful 

web service and, optionally, a web-based GUI. This interface provides clinicians useful tools 

that can assist physicians with dermatologist-grade decision support. 

Additionally, the Service provides the ability to design, train and test additional predictive 

models and to perform pre- and post- processing without writing any code. And allowing 

evolving and improving the existing use-case whenever new state-of-the-art architectures will 

be released published in literature. 

Instead, the REST interface enables managed service usage scenarios, where a potentially 

complex and powerful computing infrastructure (e.g., high-performance computing, cloud 

computing or even heterogeneous hardware) could be transparently used to run deep learning 

jobs without the users needing to directly interface with it. 

A specific instance of the Service has been deployed for the UC12 tasks and it has been 

configured for the asynchronous and distributed training (and test) of aforementioned 

classification and segmentation neural networks. With this goal, the Service spreads the jobs 

among different cloud nodes which have several GPUs each. 
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12.6 DeepHealth Value Proposition 

As it has been previously described in Section 12.3 DeepHealth concept, DeepHealth is 

addressed to two kinds of users: ICT expert users who train AI models and healthcare 

professionals who use the trained models to predict on images.  

DeepHealth provides a multi-step value proposition addressing all the potential users of these 

two categories.  Each value proposition is adapted to each of the target users and presented in 

the format: For - who needs – That- Unlike and, finally, the positioning statement: 

  

● For Research Institutions WHO NEED state-of-the-art, open-source DL&CV 

technologies to advance in their research concerning AI for imaging with a reduced 

time-to-model THAT allow them to make an optimised use of the latest hardware 

technologies in a flexible and easy way UNLIKE non-European tools, not adapted to 

European HPC and hardware accelerators, nor integrated in European platforms, 

which are less innovative or not open source. DeepHealth Toolkit is positioned as 

“The European, open-source DL&CV framework, modular and scalable, that 

streamlines development of models, thanks to an optimised use of state-of-the-art 

HPC technologies.” 

● For Independent expert users and start-ups WHO NEED technologies to offer 

highly accurate AI models for medical images in less time, with higher accuracy and 

better diagnostic functionalities, by having a technological differential in order to 

expand their business THAT allow them to generate innovative AI models thanks to 

transparent use of HPC technologies; including specific functions for biomedical 

images and being a unified easy-to-configure framework, with an easy-to-install back-

end and user-friendly front-end UNLIKE non-open source tools which imply an 
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additional cost; other OSS tools non-optimized for HPC architectures & hardware 

accelerators; other OSS tools difficult to configure, deploy and orchestrate among 

them and which do not include an integrated back end and front end; or other OSS 

tools not specifically designed for biomedical imaging, which may lack specific 

functionalities. DeepHealth Toolkit is positioned as an “An all-in-one, open-source 

DL&CV framework specialized for developing innovative medical imaging AI 

solutions, with higher accuracy and for new use cases thanks to the optimised use of 

HPC technologies.” 

● For Healthcare Technology Vendors WHO NEED new, easy to integrate open-

source tools to expand their offering in order to provide the latest technological 

innovations, with special focus on improving expert users’ productivity and 

addressing new medical imaging use cases THAT allow them to stay competitive, by 

reducing the time-to-market of their models and increasing their accuracy thanks to 

multiplatform frameworks for transparent exploitation of different high performance 

hardware UNLIKE non-multiplatform OSS tools, difficult to integrate and without 

associated professional services (consulting, support, etc.); OSS tools which do not 

accelerate time-to market; Non-innovative OSS tools, which do not include specific 

methods for distributed computing and adapted middleware or which are not 

transparent in the use of hardware. DeepHealth Toolkit is positioned as “An open-

source DL&CV framework that makes transparent the optimised use of state-of-the-

art HPC technologies with the flexibility of a multiplatform solution, increasing 

expert users’ productivity, reducing time-to-market. Specialized for healthcare and 

validated by fifteen biomedical imaging Use Cases.” 

● For Healthcare professionals WHO NEED support in diagnosis due to growing 

shortage of imaging specialists, increasing number of patients and to decrease 
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erroneous diagnosis and healthcare costs THAT allow them to leverage the vast 

amounts of datasets available and benefit from the high value provided by AI 

technologies, thanks to highly accurate algorithms validated by clinicians and 

developed in collaboration with them and with an adapted interface for clinicians’ 

needs UNLIKE non-reliable algorithms, developed with few iterations to decrease 

development time; AI solutions which cannot address specific use cases due to the 

high computing capabilities necessary; Long time-to-model AI solutions for urgent 

use cases, like COVID-19 lung predictive models; or complex software solutions 

which cannot be easily integrated in the clinical workflow. DeepHealth Solutions are 

positioned as “Reliable, highly accurate AI-for-imaging solutions, developed in 

collaboration with expert clinicians and validated by them, for high added-value use 

cases and integrated in user-friendly platforms adapted for healthcare professional 

needs.” 

12.7 Conclusions 

In conclusion, the validation of the DeepHealth concept in large scale pilots will support the 

impact and the benefits the project is expected to have. 

Using the Deephealth toolkit and taking advantage of HPC and Cloud architectures will 

increase the productivity of ICT staff working in the health sector by allowing them to 

design, train and test significantly more predictive models in the same time period.  

This will facilitate the daily work of expert users that are managing large image or other types 

of datasets; AI systems used in radiology could outperform human experts or aid them by 

reducing their workload. 

Knowledge about diseases and pathologies will be extended by applying the DeepHealth 

Toolkit.  Early diagnosis and improving treatments will be possible, finally impacting the 
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well fare of people and saving direct and indirect healthcare costs. Outcomes of the project 

will be useful to other sectors: EDDLL is a general-purpose Deep Learning Library and 

ECVL will be useful for image processing in general. 

Other industries can easily adopt the DeepHealth Toolkit, following the trend AI+HPC as a 

service for an increasing number of applications (Other DL-based applications, Graph-based 

applications: data-discovery, digital Twins and more…). The project thus contributes to 

increasing the impact of AI on European society.  

 It is anticipated that results of the project will be able to support both private companies and 

public institutions in the Healthcare domain. 
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