
Chapter 11 - Leveraging heterogenous HPC and cloud computing infrastructures  

for IA-based Medical solutions 

 

  

Chapter 11 

The DeepHealth HPC Infrastructure:  

Leveraging heterogenous HPC and cloud computing infrastructures for 

IA-based Medical solutions 

Add ORCiD here (won’t appear in final printed book) 

 

Chapter Abstract 

150 words—will not be printed in the final book, but used in the metadata for online discoverability. 

Authors: 

BSC: Eduardo Quiñones, Jesus Perales, Asaf Badouh, Santiago Marco 

CEA: Fabrice Auzanneau, François Galea 

TREE Technology: David González, José Ramón Hervás, Tatiana Silva 

UNITO: Iacopo Colonnelli, Barbara Cantalupo, Marco Aldinucci, Enzo Tartaglione 

UPV: Rafael Tornero, Jose Maria Martínez, David Rodriguez, Izan Catalán, Jorge García, Carles 

Hernández, José Flich, Roberto Paredes 

1. Introduction  

Deep learning (DL) is increasingly being considered to effectively support medical diagnosis of 

complex diseases. DL includes two main operations: (1) training, which refers to the process of 

generating a predictive model, in the form of a Deep Neural Network (DNN), based on large data-sets 

composed of biomedical information (e.g., medical images); and (2) inference, which refers to the 

process of predicting a diagnosis based on a reduced data-set. 

Deep learning training is the most computationally intensive operation, requiring very large memory 

and computing power. The training operation is an iterative process, requiring to iterate many times 

over all the data-set samples to properly adjust the model, i.e., the weights of the DNN. In general, 

larger datasets allows to obtain predictive models with higher accuracy, which in turn, increases the 

running time needed for the training procedure.  

This makes unfeasible to run training operations on general purpose computing systems, such as those 

available in hospitals, for large enough medical datasets, even when such computers are equipped with 

powerful processors featuring many-cores or GPU acceleration devices.  

The exploitation of the parallel capabilities of HPC infrastructures, composed of dozens or hundreds 

of computing nodes, allows split the training operation into smaller datasets upon which parallel training 

operations can be applied. These methods are mandatory when the samples do not fit into a single 

computing node. As an example, the data-set provided by the FISABIO Foundation (a partner of the 

DeepHealth project) composed of Covid-19 images is 141 GB which does not fit into the memory of a 

single computing node (e.g., the Marenostrum 4 Supercomputer, features 96 GB of memory per node). 

Moreover, training operations include data augmentation processes to transform original images to 
mitigate the problem of overfitting, that are applied on-the-fly, because each unique image from the 

dataset may require to be transformed in a different way at every iteration, i.e., epoch. Applying a 

sequence of image transformations on-the-fly is also computationally expensive. It is important to 

remark that medical imaging datasets are typically composed of extremely large images, further 

increasing the computing requirements. 

DeepHealth has developed an HPC toolkit capable of efficiently exploit the computing capabilities 

of HPC infrastructures to execute DL training operations, in a fully transparent way. To do so, the 

data/computer scientists only need to describe in a file (CSV or JSON or XML or similar) the set of 

computing nodes to be used during the training process and launch it.  

HPC facilities are not well suited for every kind of application. Queue-based workload managers that 



Chapter 11 - Leveraging heterogenous HPC and cloud computing infrastructures  

for IA-based Medical solutions 

 

  

commonly orchestrate HPC centers cannot satisfy the strict time-to-solution requirements of the 

inference phase, and air-gapped worker nodes are not able to expose user-friendly web interfaces for 

data visualisation. To address these issues, the DeepHealth HPC toolkit also supports cloud 

environments, with innovative hybrid solutions to support private and public clouds and a new 

Workflow Management System (WMS) capable of scheduling and coordinating different steps of a DL 

pipeline on hybrid HPC/Cloud architectures. 

Overall, the DeepHealth HPC toolkit offers to the computer vision and deep learning functionalities 

included into the European Computer Vision Library (ECVL) and the European Distributed Deep 

Learning Library (EDDL)1, the HPC capabilities needed to efficiently exploit the computing capabilities 

of HPC and Cloud infrastructures. The two libraries are developed within the context of the DeepHealth 

project as well. 

2. The Parallel Execution of EDDL Operations 

EDDL is a general-purpose deep learning library initially developed to cover deep learning needs in 

healthcare use cases within the DeepHealth project. EDDL provides hardware-agnostic tensor 

operations to facilitate the development of hardware-accelerated deep learning functionalities and the 

implementation of the necessary tensor operators, activation functions, regularization functions, 

optimization methods, as well as all layer types (dense, convolutional and recurrent) to implement state-

of-the-art neural network topologies.  

In order to be compatible with existing developments and other deep learning toolkits, the EDDL uses 

ONNX2 , the standard format for neural network interchange, to import and export neural networks 

including both weights and topology. As part of it design to run on distributed environments, the EDDL 

includes specific functions to simplify the distribution of batches when training and inference processes 

are run on distributed computing infrastructures. The EDDL serializes networks using ONNX to 

transfer weights and gradients between the master node and worker nodes. The serialization includes 

the network topology, the weights and the bias. To facilitate distributed learning, the serialization 

functions implemented in the EDDL allow to select whether to include weights or gradients. 

Next sections present the parallel strategies implemented to execute the EDDL operations and so 

leverage HPC and cloud architectures. 

2.1. COMPSs 

COMPSs is a portable programming environment based on a task model, whose main objective is to 

facilitate the parallelization of sequential source code written in Java or Python programming languages, 

in a distributed and heterogeneous computing environment. In COMPSs, the programmer is responsible 

of identifying the units of parallelism (named COMPSs tasks) and the synchronization data 

dependencies existing among them by annotating the sequential source code (using annotations in case 

of Java or standard decorators in case of Python). 

 
1 https://github.com/deephealthproject 
2 “Open Neural Network Exchange. The open standard for machine learning interoperability,” [Online]. Available: 

https://onnx.ai/. [Accessed 31 October 2020]. 
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Figure 1 shows a snipped (simplified for 

readability purposes) of the parallelisation of 

the EDDLL training operation with 

COMPSs. COMPSs tasks are identified with 

a standard Python decorator @task (lines 1 

and 5). The IN, OUT and INOUT arguments 

define the data directionality of function 

parameters. By default, parameters are IN, 

and so there is no need to explicitly specify 

IN parameters. Moreover, when a task is 

marked with is_replicated=True, the 

COMPSs task is executed in all the available 

computing nodes for initialization purposes; 

otherwise, it executes on the available 

computing resources.  

The train iterates over num_epochs epochs 

(line 13). At every epoch, num_batches 

batches are executed (line 14), each 

instantiating a new COMPSs task (line 15) 

with an EDDLL train batch operation. All COMPSs tasks are synchronize at line 17 with 

compss_wait_on, and the partial weights are collected. The gradients of the model are then updated 

with the partial weights at line 19. 

The task-based programming model of COMPSs is then supported by its runtime system, which 

manages several aspects of the application execution and keeps the underlying infrastructure transparent 

to the programmer. The COMPSs runtime is organised as a master-worker structure: 

• The master, executed in the computing resource where the application is launched, is 

responsible for steering the distribution of the application and data management.  

• The worker(s), co-located with the Master or in remote computing resources, are in charge of 

responding to task execution requests coming from the Master. 

One key aspect is that the master maintains the internal representation of a COMPSs application as a 

Direct Acyclic Graph (DAG) to express the parallelism. Each node corresponds to a COMPSs task and 

edges represent data dependencies (and so potential data transfers). As an example, presents the DAG 

representation of the EDDLL training operation presented in Figure 1.  

 

Figure 2. DAG representation of the application presented in Figure 1. 

Based on this DAG, the runtime can automatically detect data dependencies between COMPSs tasks: 

as soon as a task becomes ready (i.e., when all its data dependencies are honoured), the master is in 

1. @task (is_replicated = True) 
2. def build (model): 
3.  # The model is created at each worker 
4.  […] 
5. @task(INOUT = weights) 
6. def train_batch(model, dataset): 
7.  # Executed at each worker  
8.  […] 
9. def main(): 
10.  # A new model is created  
11.  net = eddl.model([…]) 
12.  build(net) 
13.  for i in range(num_epochs): 
14.    for j in range(num_batches): 
15.     weight[j] = train_batch(net,dataset) 
16.    # Synchronize all weights from workers 
17.    compss_wait_on(weight) 
18.    # Update weights on the model 
19.       update_gradients(net,weight) 

Figure 1. A (simplified) snipped of EDDLL training 

operation parallelised with COMPSs. 
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charge of distributing it among the available workers, transferring the input parameters before starting 

the execution. When the COMPSs task is completed, the result is either transferred to the worker in 

which the destination COMPSs tasks executes (as indicated in the DAG), or transferred to the master if 

a compss_wait_on call is invoked. 

One of the main features of the COMPSs framework is that it abstracts the parallel execution model 

from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that 

would tie them to a particular platform, boosting portability among diverse infrastructures and so 

enabling its execution in both a classical HPC environment and a cloud-based environment. To do  so,  

COMPSs  abstracts  the  underlying  infrastructure  by  creating  a  set  of  execution environments, 

named COMPSs workers, in which COMPSs tasks execute. Internally, the COMPSs runtime  

implements  different  adapters  to  support  the  execution  of  COMPSs  tasks  in  a  given resource. 

Through a set of configuration files, the user specifies the available computing resources, which may 

reside in a computing cluster or in the cloud.  

Figure 3 shows an example of this deployment. The execution starts in the Computing Resource 1, 
where the COMPSs Master executes. Then four workers are deployed in four different resources to 

distribute the workload, where the EDDLL training operations can be distributed.  

 

Figure 3. COMPSs deployment in a HPC infrastructure. 

The COMPSs runtime is already supported in the Marenostrum Supercomputer3 as a loadable module,  

in which the COMPSs workers are executed in the different Marenostrum computing nodes, each 

equipped with 2 Intel Xeon Platinum 8160 CPU with 24 cores each at 2.10GHz, 96 GB of main memory 

and 200 GB local SSD available as temporary storage during jobs. The COMPSs runtime is then 

responsible for distributing the parallelversion of the EDDLL training operation as described above. 

2.2. StreamFlow 

StreamFlow4 is a novel Workflow Management System (WMS) capable of scheduling and coordinating 

different DL workflow steps on top of a diverse set of execution environments, ranging from 

practitioners’ desktop machines to entire HPC centres. In particular, each step of a complex pipeline 

can be scheduled on the most efficient infrastructure, with the underlying run-time layer automatically 

taking care of worker nodes’ lifecycle, data transfers, and fault-tolerance aspects. 

The basic idea behind the StreamFlow paradigm is to easily express correspondences between the 

description of a coarse-grain application workflow, i.e., a graph containing the application steps with 

the related data dependencies, and the description of an execution environment, i.e., a manifest defining 

the capabilities of a target infrastructure. Starting from such description, the StreamFlow run-time layer 

is then able to orchestrate both the worker nodes’ lifecycle and the execution of the application on top 

of them. 

 
3 https://www.bsc.es/marenostrum/marenostrum 
[1] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “Streamflow: cross-breeding cloud with 

HPC,” IEEE Transactions on Emerging Topics in Computing, 2020. doi:10.1109/TETC.2020.3019202 

https://euc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DGB&rs=es%2DES&wopisrc=https%3A%2F%2Feverisgroup.sharepoint.com%2Fsites%2FDeepHealth%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F0ed5882ef9db470ea371122183798047&sc=https%3A%2F%2Feverisgroup%2Esharepoint%2Ecom%2Fteams%2Fhippocrates%2FDocumentos%2520compartidos%2FForms%2FAllItems%2Easpx&wdenableroaming=1&mscc=1&hid=A47AB79F-D033-2000-D1AB-C08731A99C06&wdorigin=Other&jsapi=1&jsapiver=v1&newsession=1&corrid=887cfa93-7016-4e91-b1e9-97bdbfd465dc&usid=887cfa93-7016-4e91-b1e9-97bdbfd465dc&sftc=1&mtf=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ftnref1
http://dx.doi.org/10.1109/TETC.2020.3019202


Chapter 11 - Leveraging heterogenous HPC and cloud computing infrastructures  

for IA-based Medical solutions 

 

  

With respect to the majority of WMSs on the market, StreamFlow gets rid of two common design 

constraints: 

• There is no need for a single shared data space accessible from all the workers involved in a 

workflow execution. This allows supporting complex and hybrid execution infrastructures, 

including hybrid HPC/cloud architectures. 

• Steps can be offloaded to multi-agent execution environments, ensuring the co-allocation of 

multiple and potentially heterogeneous worker nodes. This allows to offload steps involving 

distributed architectures, e.g., a multi-node DNN training driven by a COMPSs’ master-worker 

infrastructure. 

To provide enough flexibility, StreamFlow adopts a three-layered hierarchical representation of 

execution environments. A complex, multi-agent environment is called model and constitutes the unit 

of deployment, i.e., all its components are always co-allocated when executing a step. Each agent in a 

model, called service, constitutes the unit of binding, i.e., each step of a workflow can be bound to a 

single service for execution. Finally, a resource is a single instance of a potentially replicated service 

and constitutes the unit of scheduling, i.e., each workflow step is offloaded to a configurable number of 

resources to be processed. As an example, a Helm chart describing a COMPSs master pod and four 

COMPSs worker pods constitutes a model with two services, the former with one resource and the latter 

with four resources. 

 

Figure 4. StreamFlow logical stack. 

Figure 4 shows the StreamFlow’s logical stack. The Deployment Manager is the component in charge 

of creating and destroying models when needed. To do that, it mainly relies on external 

orchestration technologies (e.g., Slurm, Kubernetes or Docker Compose) by means of pluggable 

implementations of the Connector interface. After a model is deployed, the Scheduler component is in 

charge of selecting the best resource on which each workflow step should be executed while 

guaranteeing that all the requirements are satisfied. Finally, the Data Manager, which knows where 

each step’s input and output data reside, must ensure that each service has access to all the data 

dependencies required to complete the assigned workflow step, performing data transfers only when 

necessary. 

Instead of coming with yet another way to describe workflow models, StreamFlow relies on an existing 

coordination format, called Common Workflow Language (CWL). CWL is an open standard for 

describing analysis workflows, following a declarative JSON or YAML syntax. Being CWL a fully 
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declarative language, it is far simpler to understand for domain experts than its Make-like or dataflow-

oriented alternatives. Moreover, the fact that many products offer support for CWL, either alongside a 

proprietary coordination language or at higher-level semantics on top of low-level APIs, fosters 

portability and interoperability. 

It is also worth noting that StreamFlow does not need any specific package or library to be installed on 

the target execution architecture other than the software dependencies required by the host application 

(i.e., the involved workflow step). This agentless nature allows virtually any target architecture 

reachable by a practitioner a potential target model for StreamFlow executions, as long as a compatible 

Connector implementation is available. 

3. Cloud Infrastructures 

3.1. Hybrid Cloud 

The hybrid cloud is the combination of Private Cloud and Public Cloud, allowing the exploitation of 

the best of both types. There are several reasons why it may be interesting to have a hybrid cloud. The 

three most typical cases are the following:  

• Security: Sensitive information that cannot be at risk, e.g., banking or health information, is 

kept into the private part of the cloud to minimize potential risks.  

• Cost: The presence of sporadic peaks on the computing workload can be served with public 

cloud resources, without requiring dimensioning the private cloud infrastructure to compensate 

the peaks. By doing so, the hybrid cloud part is used for the usual load, and the public part is 

used to compensate the peaks while keeping the service alive. 

• Availability: In the same way as with a Content Delivery Network (CDN), a hybrid private – 

multi-public cloud can be created. Multi-public clouds can be chosen to be close to customers 

to reduce latency and maximize available bandwidth, to reduce cost or to improve availability.  

The DeepHealth HPC toolkit includes an on-premise private cloud based on a Kubernetes cluster (and 

hosted by the DeepHealth partner TREE Technology), and a public cloud in AWS computing resources, 

as illustrated in Figure 5.  

 

Figure 5. Hybrid Cloud Environment. 

By doing so, the DeepHealth hybrid cloud allows to provision computing resources in a flexible way to 

accommodate project requests. GPU computing capabilities can be added – both through provisioning 

on the on-premise Kubernetes cluster and via nodes provisioned using Amazon Elastic Kubernetes 

Service (EKS) technology on Amazon Web Services (AWS). This hybrid infrastructure has two main 

pieces: Rancher and API Services. 

1. The open-source Rancher multi-cluster orchestration platform is used5 to support the management 

of the clusters. Rancher allows managing the operational and security challenges on multiple 

 
5 https://rancher.com/docs/rancher/v2.x/en/ 

https://rancher.com/docs/rancher/v2.x/en/
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Kubernetes clusters across any infrastructure. Moreover, its web interface provides control over 

deployments, jobs, pipelines, including an app catalog for fast deployment using the Helm software 

package manager6. 
2. An API has been developed to facilitate the use and/or integration of the libraries with the 

Kubernetes platform. Moreover, a high-level REST API has been developed on top of the 

Kubernetes API to help abstract the user from the infrastructure itself, simplifying the deployment 

and management of the workflows. It provides functions of varying complexity, from simple ones, 

like list of Pods, to more complex ones such as expose Pods – which implements functionality 

abstracting the user from the potentially complex configuration of the clusters (e.g., multi-cloud, 

hybrid cloud, etc.). The API itself can support the addition of new Kubernetes clusters both on-

premise and in the cloud from any provider. To guarantee properly authenticated and authorized 

access to the DeepHealth cloud, a connection through a VPN is required to access the API. 

3.2. Parallel Execution on Cloud Environments 

DeepHealth exploits the parallelisation of DL operations on cloud enviroments by the usage of the 

COMPSs and StreamFlow parallel frameworks presented in Section 2. Next sections describe them. 

3.2.1. Parallel Cloud Execution based on COMPSs 

Unlike the Linux-based infrastructure, there is no need for setting up the execution environment in all 

the computing resources, but only a docker image must be available, e.g., Docker Hub7. Figure 6 shows 

an example of this deployment. The execution starts in the computing resource 1, where the COMPSs 

Master executes. Then three workers are deployed in three different containers in the cloud 

infrastructure (in our case the cloud is provided by TREE), where the COMPSs application is distributed 

(in our case, EDDLL training operations). 

Moreover, the COMPSs runtime is being adapted to support the cloud infrastructure provided by TREE. 

The cloud is based on Kubernetes (K8S)8, and allows to manage applications in a container technology 

environment and to automate the manual processes to deploy and scale containerized applications. 

Moreover, an API is being developed by TREE to help abstracting the user from the infrastructure itself, 

speeding up the processes of deployment and management of the workflows. COMPSs runtime interacts 

with this API to deploy workers and distribute the workload. 

The DeepHealth hybrid cloud has been integrated with the COMPSs framework (see Section 2.1), 

which allows to accelerate the Deep Learning training operations by dividing the training data sets 

across a large set of computing nodes available on cloud infrastructures, and upon which partial training 

operations are then be performed. This combination is done through the REST API, allowing COMPSs 

to abstract from the hybrid infrastructure and perform their workloads regardless of where they are 

deployed.  

Figure 6 shows a possible distribution of the execution of the parallel version of the EDDLL training 

operation presented in Section 2.1, in the DeepHealth hybrid cloud considering three COMPSs workers, 

setting the number of replicas to 3. The COMPSs runtime use the DeepHealth cloud API to 

automatically deploy the master and the three replicas in which the COMPSs workers will be executed. 

Once the deployment is completed, the parallel execution of the training operation is initiated, and so 

the COMPSs runtime starts the distribution of the different COMPSs tasks (i.e., the build and 

train_batch tasks shown in Figure 2, guaranteeing the data dependencies among tasks. In this case, 

the update_gradients function is executed in the COMPSs master to aggregate the partial 

computed weights at the end of each epoch. 

 
6 https://helm.sh/ 
7 https://www.docker.com/products/docker-hub 
8 https://kubernetes.io/ 

https://helm.sh/%22%20/
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Figure 6. Distributed EDDLL training on the DeepHealth Hybrid Cloud. 

3.2.2. Parallel Cloud Execution based on Stream-Flow 

StreamFlow relies on the University of Torino's OpenDeepHealth (ODH), which implements a hybrid 

HPC/cloud infrastructure to effectively support the training and inference of AI models. The WMS 

introduced in Section 2.2, is the key technology enabling a transparent offloading of AI tasks to 

heterogeneous sets of worker nodes, hiding all deployment and communication complexities to the 

expert users. 

 

Figure 7. OpenDeepHealth Architecture. 

As shown in Figure 7, ODH includes two different infrastructures: 

• The HPC component is the C3S OCCAM (Open Computing Cluster for Advanced data 
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Manipulation)9 cluster, with 46 heterogeneous nodes also including NVIDIA Tesla K40 and 

V100 GPUs. Workloads are orchestrated through an elastic virtual farm of hardened Docker 

containers, running directly on top of the bare metal layer. 

• The cloud component is the HPC4AI10 private cloud, a multi-tenant Kubernetes cluster running 

on top of an OpenStack cloud. The underlying physical layer consists of high-end computing 

nodes equipped with Intel Xeon Gold 80-cores and 4 NVIDIA Tesla T4 GPUs per node. 

ODH implements a novel form of multi-tenancy called “HPC Secure multi-Tenancy” (HST), 

specifically designed to support AI application on critical data. HST allows resource sharing on a hybrid 

infrastructure while guaranteeing data segregation among different tenants, both inside the cloud and 

between the HPC and cloud components. Moreover, access to the tenant is mediated by an identity 

manager, guaranteeing identity propagation across the entire environment. 

ODH platform fully integrates the DeepHealth toolkit via Docker containers, both on bare metal and in 

the multitenant Kubernetes cluster. The DeepHealth toolkit provides functionalities to be used for both 

training and inference, addressing the complexity of the different available computational resources and 

target architectures at both the training and inference stages. The training phase is performed by AI 

experts mainly in research-focused environments using specialized architectures like HPC centres with 

FPGAs and GPUs because the main goal is optimizing the number of samples processed per second 

without hindering the overall accuracy. In the inference step, based on pre-trained models and deployed 

in production environments (and even small devices in the edge), response time for prediction of a 

single sample is crucial. 

Leveraging on the StreamFlow capability to coordinate tasks running on different execution 

environment, each step of an AI pipeline can be executed on the computational component that is more 

appropriate according to the specific characteristic of the computation. For instance, the computational-

heavy training step can be initially tested on a multiGPUs node and then executed on the OCCAM HPC 

cluster, while the much more lightweight inference step, can be offloaded to a CPU-equipped 

Kubernetes worker node in HPC4AI allowing, when needed, an interactive inspection of the final 

results. An AI expert can simply launch the pipeline directly from his computer using StreamFlow, 

which orchestrates the execution of the first step on OCCAM and the second one on HPC4AI. It also 

manages all the required data transfers in a fully transparent way. We demonstrated this approach with 

the Lung Nodule Segmentation AI pipeline, a DeepHealth project use case (see Figure 8) that will be 

described in Chapter 12. 

 

Figure 8. A DeepHealth Use Case AI Pipeline executed using StreamFlow. 

Moreover, integration between StreamFlow and COMPSs provides the ability to perform the distributed 

training in the ODH cloud environment, by using the clouds capabilities of COMPSs 

The idea behind this overall approach is that the ability to deal with hybrid workflows can be a crucial 

 
9 M. Aldinucci and others, “OCCAM: a flexible, multi-purpose and extendable HPC cluster,” Journal 

of Physics: Conference Series, vol. 898, 2017 
10 M. Aldinucci, S. Rabellino, et al. “HPC4AI, an AI-on-demand federated platform endeavour,” in Acm 

computing frontiers, Ischia, Italy, 2018. doi:10.1145/3203217.3205340 

http://dx.doi.org/10.1145/3203217.3205340
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aspect for performance optimization when working with massive amounts of input data and different 

needs in computational steps. Accelerators like GPUs, and in turn different infrastructure like HPC and 

clouds, can be more efficiently used selecting for each application the execution plan that better fits the 

specific needs of the computational step of the ML applications developed in the project. 

4. Acceleration Devices: GPU and FPGAs 

4.1. FPGA Acceleration 

FPGAs are devices with reconfigurable logic that can be combined and interconnected in order to 

process a specific algorithm. Contrary to CPUs and GPUs, in an FPGA the architecture (design) is 

adapted to the algorithm, thus, offering an opportunity to their optimization. On the other hand, the 

resources of an FPGA device are limited and usually the device works at a lower frequency. Therefore, 

a careful and custom design is needed in order to take benefits out of it. Although FPGAs are well suited 

for inference in Deep Learning, they can also be used in specific situations for training processes. 

FPGAs are supported in the DeepHealth project in two orthogonal although complementary and needed 

directions. First, large FPGA infrastructures are being adapted to the project by suitable interfaces and 

protocols specific of FPGAs. Second, specific and optimized FPGA algorithms are developed for 

specific use cases within the project. In the next sections we describe the adaptations and developments 

performed for the infrastructure and then the optimizations at algorithmic level. 

4.1.1. The DeepHealth FPGA infrastructure 

The Mango FPGA Platform 

The DeepHealth toolkit includes the MANGO FPGA platform, developed within the European 

MANGO project. As part of DeepHealth activities we are evolving this cluster of FPGAs from a 

hardware prototyping platform to a high performance and low energy compute platform. The platform 

consists of two clearly differentiated subsystems: the General-purpose Nodes (GNs) and the 

Heterogeneous Nodes (HNs).  The former executes the host applications, as well as the low-level 

communication libraries, run; the latter represent the computational part of the system built upon the 

FGPA modules: 

• A GN (see Figure 9) consists of a Supermicro SuperBlade module SBI-7128RG-F equipped with 

an Intel Xeon processor E5-2600 v3, 64 GB of RAM memory and 1 TB of SSD storage. Each GNs 

is connected via PCIe to two HNs, so it can use both HN subsystems. GNs are also connected to 

the HNs via Ethernet and USB for cluster programming and management purposes. 

• An HN (see Figure 9 and Figure 10) consists of 12 FPGA modules mounted on top of 4 proFPGA 

motherboards and placed in an FPGA cluster. This setup is extended with a total amount of 22 GB 

of RAM memory split in several DDR3 and DDR4 modules among different FPGAs. The HN is a 

heterogeneous subsystem since it contains different types of FPGAs, it is composed by Xilinx 

Kintex Ultrascacle XCKU-115, Xilinx Virtex 7 V2000T, Xilinx Zynq 7000 SoC Z100 and Intel 

Stratix 10 SG280H FPGA modules. The HN cluster is also equipped with FPGA interconnection 

cables to enable direct communications between its FPGAs. The cables are disposed in such a way 
that maximize communication bandwidth among the overall system but keeping the throughput 

balance between the different FPGA modules. The HN also includes one PCIe extension board that 

enables PCIe communications with the GN. Figure 10 shows the positioning and interconnections 

of the different FPGA / memories and cables between the different modules. 

Overall, the complete DeepHealth FPGA-based infrastructure consists of a total of 4 GNs and 8 HNs 

arranged in two cabinets as shown in Figure 9.  
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Figure 9. MANGO Hardware: GNs and HNs. 

 

Figure 10 HN modules and interconnection. 

With the objective of facilitating programmability, the DeepHealth FPGA platform the FPGA in two 

partitions: a static partition, known as shell, and a reconfigurable partition (see Figure 11). The former 

remains unchanged while the host is up and running. When the host is booting this partition is loaded 

into the FPGA from an external memory drive. Once uploaded, it provides the required interfaces to 

communicate with attached peripherals and the host where the FPGA is connected to in an efficient 

way. In the MANGO cluster the connection to the host is accomplished through a PCIe Gen3 x8 bus, 

offering a bidirectional raw bandwidth of 16GB/s, approximately. In addition, the static partition 

provides the clocks and reset networks to the rest of the elements in the FPGA, such as kernels. On 

contrary, the reconfigurable partition consists of a placeholder, inside of the FPGA, that can be changed 

at runtime using the features that the shell provides. This partition contains the resources in which 

application kernels can be deployed. 

The MANGO cluster is compatible with the OpenCL application programming interface (API)11 for 

FPGA initialization, data transfer and kernel offloading, supporting both Xilinx and Intel FPGAs. 

Kernels are the part of the application that will run on the FPGA, so as to provide acceleration 

capabilities to the applications.  

 

Figure 11. FPGA logical design of two FPGAs in the same cluster connected with Chip2Chip. 

Furthermore, the FPGA design has been instrumented to support communication between the different 

FPGAs an HN is composed of. On the one hand, FPGA-to-FPGA connections within a cluster use the 

I/O pins available on the devices. On the other hand, connections between FPGAs at different clusters 

use the so-called Multi-Gigabit Transceivers (MGT). With these communication channels the GNs has 

DMA access to all the devices in an HN cluster, as well as to offload and control application kernels 

running on different FPGAs. At the same time, HN clusters are able to communicate with each other. 

 
11 Khronos.org/opencl 
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To accomplish these goals the design incorporates an IP core provided by Xilinx named 

Chip2Chip(C2C). This IP core works like a medium access bridge connecting two devices over a 

memory-mapped interface in compliance with AXI protocol specifications.  

C2C can be configured to work in master or slave mode, as depicted inFigure 11. To connect two 

FPGAs with C2C one device has to be configured as master and the other device as slave. The rest of 

the FPGAs in a cluster can be connected similarly, following a daisy chain. In this architecture, the host 

has access to the memory on the slave FPGA through the C2C instances. Equally, provided the required 

logic is available, a kernel executing on the master FPGA can access the memory of the slave FPGA. 

As a result, this communication interface enables the host to offload and control kernels not only in the 

master FPGA, but also in the slave one. 

Multi-FPGA support 

Another feature being researcher within the DeepHealth FPGA infrastructure is the analysis on the use 

of multiple FPGAs for the implementation for a single inference network. Uniting the compute and 

memory resources of all used FPGAs makes possible to implement neural networks with higher 

requirements of memory (weights) and/or with a higher level of parallelism, reducing the latency. 

The N2D2 (Neural Network Design & Deployment) deep learning framework made by DeepHealth 

partner CEA12 (see Section 4.1.3 for further details), features a technology called dNeuro13, which is 

able to export an inference network as a hardware description in RTL language, suitable for synthesis 

and implementation on a FPGA. dNeuro is optimized to use the available compute resources (mainly, 

DSPs) as efficiently as possible, and to use only the embedded memory resources (block RAMs), also 

in the scope of efficiency. dNeuro generates the network according to specified constraints, allowing 

more or less parallelism depending on the number of available DSP units. Specifying a number of DSPs 

higher than in a single FPGA results in a network suitable for multi-FPGA execution. 

CEA is developing technology to map netlists automatically onto a multi-FPGA platform, similarly as 

if this platform were a single, larger FPGA. For this, the netlist has to be split into multiple netlists, one 

for each FPGA. The partitioning must be as efficient as possible, in order to maintain efficient 

communication between the FPGAs, both in terms of critical path preservation and control of the 

number of inter-FPGA signals. To achieve this goal, specifically adapted state-of-the-art hypergraph 

partitioning techniques are being used to ensure the overall performance improvement of the 

application. 

4.1.2. An Optimised FPGA Board Design for DL  

DeepHealth is also investigating on the development of a FPGA board (see Figure 12) optimized for 

inference. The key component of the board is an INTEL Stratix-10 MX1650 or MX2100 FPGA. Both 

types are package and pin compatible and have FPGA internal High Bandwidth Memory (HBM) 

embedded. The MX2100 provides 16GByte of HBM memory and the MX1650 provides 8GByte of 

HMB memory. The MX2100 is the preferred choice and will be used for the first board designs. 

 

 
12 https://github.com/CEA-LIST/N2D2 
13 https://www.cea.fr/cea-tech/leti/Documents/démonstrateurs/Flyer_DNEURO.pdf 
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Figure 12. The new FPGA board. 

Furthermore, SODIMM connectors are used for memories and peripherals which are connected to 

regular FPGA I/Os. In DeepHealth these SODIMM extension board sites can be used to attach 

additional memories to the FPGA depends on the applications requirements. Examples of such 

memories are DDR4 memory or high-speed SRAM memories to support random memory access with 

a minimal latency. 

For direct host communication a PCIe interface (Gen3 x 16) is implemented. To communicate with 

external devices via high-speed interfaces four QSFP28 interfaces are available at the bracket. Each of 

these interfaces provides a full-duplex bandwidth of 100GBit/s. To interconnect multiple of these FPGA 

boards or to further extend the capabilities for external communication general purpose connectors are 

available at the backside of the board. 

Finally, a board support package (BSP) is provided to use OpenCL/HLS tools for programming and 

integration of the hardware into the DeepHealth infrastructure. 

4.1.3. FPGA-based Algorithms 

Pruned and quantized models enable the use of FPGA devices for energy-efficient inference processes 

when compared to GPUs or CPUs. This section presents the use of these two techniques in the 

DeepHealth FPGA infrastructure 

Quantization and N2D2 and interface with DeepHealth via ONNX 

N2D2 is a comprehensive solution for fast and accurate DNN simulation and full and automated DNN-

based applications building. It integrates database construction, data pre-processing, network building, 

benchmarking and hardware export to various targets. It is particularly useful for DNN design and 

exploration, allowing simple and fast prototyping of DNN with different topologies.  

Once the training DNN performances are satisfying, an optimized version of the network can be 

automatically exported for various embedded targets. An automated network computation 

performances benchmarking can also be performed among different hardware targets. Various targets 

are currently supported by the tool-flow: from plain C code to C code tailored for High-Level Synthesis 

(HLS) with Xilinx Vivado HLS and code optimized for GPU. Various optimizations are possible in the 

exports: (1) DNN weights and signal data precision reduction (down to 8 bit integers); (2) non-linear 

network activation functions approximations; and (3) different weights discretization methods. 

The post-training quantization algorithm is done in three steps: 

1. Weights normalization:  all weights are rescaled in the range [−1.0,1.0], 

2. Activations normalization: activations at each layer are rescaled in the range [−1.0,1.0] for 
signed outputs and [0.0,1.0] for unsigned outputs. The optimal quantization threshold value of 

the activation output of each layer is determined using the dataset, and implies the use of 
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additional shifting and clipping layers. 

3. Quantization: inputs, weights, biases and activations are quantized to the desired precision. 

Interworking between the N2D2 framework and the EDDL library is possible thanks to the ONNX file 

exchange format. This allows any Neural Network designer to get advantage of both environments. 

This integration is illustrated with the two flows outline hereafter.  

In order to obtain an inference code making an intensive usage of integer operators rather than floating-

point ones, the flow is the following:  

1. Regular training performed in EDDL; 

2. export by EDDL of the trained Neural 

Network to ONNX; 

3. import of the ONNX network into N2D2; 

4. 8-bit quantization of the network using N2D2; 

5. export the quantized network to ONNX; 

6. import the ONNX into EDDL; 

7. generation of the inference code using EDDL 

facilities.  

This flow is schematized on Figure 14. It can be 

adjusted to take advantage of the various automated 

inference code generators proposed by N2D2. 

FPGA based HPC oriented flows are as follows: 

1. N2D2 users to access to the FPGA based HPC inference code generation provided by the 

EDDLL library; 

2. EDDL users to benefit for N2D2 training capabilities not available in EDDL yet; 

3. regular training performed in N2D2; 

4. 8-bit quantization of the network within N2D2; 

5. export the quantized network to ONNX; 

6. import the ONNX Neural Network into EDLL; 

7. generation of the inference code using EDDLL facilities.  

The performance of the ISIC classification use-case generated through this flow are detailed below.  

With 63% classification accuracy, it shows up the same accuracy as the floating-point version with a 

memory footprint divided by four. The storage memory size for the weights and biases of the standard 

VGG16 network is estimated to 512.28 Mega bytes. When performing quantization, the weights are 

stored in signed 8 bits integers, and biases in signed 16 bits integers. Each layer requires an additional 

scaling factor, stored in an unsigned 8-bit integer. Coming from 32 bits values, the required storage size 

will be divided by almost 4. The storage memory size for the weights and biases of the quantized 

VGG16 network is estimated to 1 074 445 952 bits, which is 128.08 MB. 

Similar results were obtained with different versions of the MobileNet network14. The original version 

of MobileNet was trained on the ISIC dataset: recognition rates ranged from 73% to 79% depending on 

the alpha factor (from 0.25 to 1) which drastically impacts the required memory size. Eight bits 

quantization and export times were in the range of 150 to 500 seconds, and the recognition rates of the 

quantized networks remained in the same range as before. The estimated memory footprint was 440 kB 

(alpha = 0.25), 1250 kB (0.5) and 4050 kB (1) with estimated frame rate on FPGA ranging from 250 to 

1780 frames per second. 

DNN Compression Methods 

 
14 https://arxiv.org/abs/1704.04861 

Figure 13. Quantization flow with EDDL 
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It is well known that many DNNs, trained on some tasks, are typically over-parametrized.15 DeepHealth 

also includes pruning techniques. The goal of these techniques is to achieve the highest sparsity (i.e. the 

maximum percentage of removed parameters) with minimal (or no) performance loss. One possible 

approach relies in a regularization strategy, used at training time, employing the use of the sensitivity 

term16 in order to penalize the parameters which are not useful towards the solution of the target 

classification task: 

𝑆𝑤 =
1

𝐶
∑ |

𝜕𝑦𝑘
𝜕𝑤

|

𝐶

𝑘=1

 

where 𝐶 is the number of the output classes, 𝑦𝑘 is the 𝑘-th output of the model and 𝑤 is the evaluated 

parameter. The lowest 𝑆𝑤, the least its change will perturbate the change of the output. Through this 

metric, it is possible to remove parameters which impact the least the model’s performance. It has been 

recently shown that iterative pruning strategies enable the achievement of higher compressions, 

justifying the relative training overhead towards one-shot approaches.17 

Recently, a lot of attention has been devoted to the problem of the so-called structured pruning: unless 

focusing on single parameters, which enable a reduced gain in terms of FLOPs and memory footprint 

at training time, pruning algorithm should be focused on removing entire neurons. Comparing 

LOBSTER,18 which is a state-of-the-art un-structured pruning algorithm which removes a very large 

quantity of parameters, to SeReNe,19 which is a sensitivity-based structured pruning algorithm, results 

that structured pruning strategies, despite removing less parameters than the unstructured ones, bring 

significant advantages in terms of memory footprint and FLOPs reduction, achieving up to 2 × footprint 

saving and 2 × FLOPs reduction, evaluated at inference time on resource-constrained devices, for 

complex architectures like ResNet and VGG-16, trained on state-of-the-art tasks, with no performance 

loss. 

Development of DL Kernel on the DeepHealth FPGA Infrastructure 

DL kernel are specialized on the most frequent neural network layers used in the specific domain of the 

project (image-related classification and segmentation processes for health), therefore convolutions, 

resizing, and pooling operations are the focus of the kernel. However, the design of the kernel is 

performed using high-level synthesis (HLS). With HLS an algorithm described in high-level language 

such as C++ is transformed into an implementation on a reconfigurable device or even into an ASIC. 

The kernel design follows the dataflow model by Xilinx combined with the use of streams. With this 

model a pipelined design between modules can be created and data can be processed concurrently on 

all the connected modules. The use of streams enables concurrency. 

 

 
15 H. N. Mhaskar, T. Poggio, Deep vs. shallow networks: An approximation theory perspective, Analysis 

and Applications 14 (06) (2016) 829–848. 
16 E. Tartaglione, S. Lepsøy, A. Fiandrotti, G. Francini, Learning sparse neural networks via 

sensitivity-driven regularization, in: Advances in Neural Information Processing Systems, 2018, pp. 3878–3888. 
17 Tartaglione, Enzo, Andrea Bragagnolo, and Marco Grangetto. "Pruning artificial neural networks: a way to find well-

generalizing, high-entropy sharp minima." International Conference on Artificial Neural Networks. Springer, Cham, 2020. 
18 Tartaglione, Enzo, et al. "LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks." arXiv preprint 

arXiv:2011.09905 (2020). 
19 Tartaglione, Enzo, et al. "SeReNe: Sensitivity based Regularization of Neurons for Structured Sparsity in Neural 

Networks." arXiv preprint arXiv:2102.03773 (2021). 
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Figure 14. Baseline kernel design. 

Figure 14 shows the baseline design for the kernel targeting convolutional operations. Each box 

represents a different module and arrows represent streams. The kernel reads data (activations, bias, 

and weights) from a DDR memory attached to the FPGA and produces features being written back to 

the DDR memory. The images (activations) are pipelined through all the modules. The padding module 

provides padding support to the input images read in a streamflow fashion and then forwards the padded 

image to the next module. The cvt module converts the input stream into frames of pixels that will be 

convolved in the mul module and reduced in the add module. Finally, the produced features are written 

back to memory. 

The design supports parallel access to memory in order to processes a defined number of input (CPI) 

and output (CPO) channels. Therefore, the design can be customized to different granularities of the 

convolution operation. Indeed, the number of convolutions operations performed in each cycle is CPI 

x CPO as each CPI channel is used for each CPO channel (direct convolutions supported). Figure 15 

shows the parallel multiplications performed and the frames generated by the cvt module. 

 

Figure 15. Multiplications in 2D convolution kernel. 

4.2. Many-core and GPU Acceleration 

The EDDL implementation is optimized to efficiently execute on a single computing node featuring 

many-core fabrics or a set of GPU cards accelerators. In that regard, the EDDL includes an API to build 

the neural network and the associated data structures (according to the network topology) on the 

following acceleration technologies (named Computing Service in EDDL nomenclature): CPU, GPU 

and FPGA. Tensor operations are then performed using the hardware devices specified by means of the 

Computing Service provided as a parameter to the build function. Moreover, the number of CPU cores, 

GPU cards or FPGA cards to be used are indicated by the Computing Service. This section presents the 

many-core and GPU acceleration included in the EDDL. See Section 4.1 for FPGA acceleration. 
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On many-core CPUs, tensor operations are performed by using the Eigen20 library that rely the 

parallelization on OpenMP21. When using GPU cards, the forward and backward algorithms are 

designed to minimize the number of memory transfers between the CPU and the GPU cards in use, 

according to the configuration of the Computing Service. EDDL incorporates three modes of memory 

management to address the lack of memory when a given batch size does not fit in the memory of a 

GPU. The most efficient one tries to allocate the whole batch in the GPU memory to reduce memory 

transfers at the minimum, the intermediate and least efficient modes allow to work with larger batch 

sizes at the cost of increasing the number of memory transfers to perform the forward and backward 

steps for a given batch of samples.  

In the case of using more than one GPU in a single computer, the EDDL internally creates one replica 

of the network per GPU in use, and automatically splits every batch of samples into sub-batches, one 

sub-batch per GPU, so that each sub-batch is processed by one GPU. Every time a batch is processed, 

the weights stored in each GPU are different and weight synchronization every certain number of 

batches is required to avoid divergence. The weight synchronisation is done by transferring all the 

weights from GPU memory to CPU memory, computing the average, and transfer back the updated 

weights to the memory of all the GPU cards in use, i.e., to all the replicas of the network. The computing 

service used for defining the use of GPU cards has an attribute to indicate the number of batches 

between weight synchronizations. As memory transfers between CPU and GPU must be reduced as 

much as possible, a trade-off between performance and divergence must be reached by means of this 

attribute, whose optimal value will vary depending on the data set used for training and the topology of 

the neural network.  

EDDL support for GPUs has been implemented twice, by means of CUDA kernels developed as part 

of the EDDL code, and by integrating the NVIDIA cuDNN library. The use of different hardware 

accelerators is completely transparent to developers and programmers who use the EDDL; they only 

need to create the corresponding Computing Service to use all or a subset of the computational 

resources. 

5. Conclusions 

DeepHealth HPC toolkit allows the European Distributed Deep Learning Library (EDDL) to be 

efficiently executed on HPC and Cloud infrastructures. On one side, it includes HPC and cloud 

workflow managers to parallelise the execution of EDDL operations, including the parallelisation of 

the costly training operations; on the other side, it supports the most common hardware acceleration 

technologies, i.e., many-cores, GPUs and FPGAs, to further accelerate the training and inference 

operations in single computing nodes. Moreover, the DeepHealth HPC toolkit provides to the 

data/computer scientists the level of abstraction needed to describe the underlying computing 

infrastructure in a fully transparent way. 

 

 

 
20 G. Guennebaud, B. Jacob and others, “Eigen v3.,” 2010. [Online]. A vailable: http://eigen.tuxfamily.org. [Accessed 2 

November 2020]. 
21 L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory programming.,” Computational Science 

& Engineering, vol. 5, no. 1, pp. 46-55, 1998. 
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