
Estimating VARs & SVARs

Appendix to Advanced Macroeconomics: An Easy Guide

Appendix C in the book discussed the estimation of a DSGE model. These estimations are known as struc-

tural estimations, because they are built on the basis of a ”structural model”. An alternative way of doing

macroeconomic forecasting is to use an approach that is agnostic about the model and works through unveiling

the statistical properties of the data itself. This is the approach that was pioneered by Chris Sims and earned

him, eventually, the Nobel Prize in Economics.

This appendix will introduce you to the estimation of VARs and SVARs. In order to do so we will do three

things. First, we will introduce the concepts from a theoretical point of view. Then we will review the concepts

of reduced form vector autoregressions (VARs) and structural vector autoregressions (SVARs). To do so we will

refer to a specific case, which is the estimation of these models applied to a two variable system including US

GDP and US inflation. As we go along, we will provide the codes in R so that you can apply these methods to

your own variables of interest.

Reduced form VARs

The VAR approach is, by now, very well incorporated in standard statistical packages 1, so here we will just

provide a basic review of the main concepts which may enable to tackle further readings on your own.

We will start by defining the vector autoregression (VAR) representation. It’s name makes it look more

difficult than it is. Consider two variables (yt, xt) with one lag (but you can add as many lags as you like),

yt = φ11yt−1 + φ12xt−1 + ut,

xt = φ21yt−1 + φ22xt−1 + vt,

where ut and vt are white noise, possibly correlated with each other. We can write this system with vectors and

matrices, (
yt

xt

)
︸ ︷︷ ︸
≡zt

=

[
φ11 φ12

φ21 φ22

]
︸ ︷︷ ︸

≡Φ

[
yt−1

xt−1

]
︸ ︷︷ ︸
≡zt−1

+

[
ut

vt

]
︸ ︷︷ ︸
≡ωt

.

Even more compactly we can write this VAR(1) model (the one in the parenthesis stands for the number of

lags) for the vector zt as

zt = Φzt−1 + +ωt, (1)

and we call this as a reduced-form VAR. Notice that while the notation looks complex this is nothing more than

running an OLS regression of these two variables on themselves lagged! There is really not much more to it.

1Here we are going to develop our empirical example with RStudio
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Notice that the matrix of variance and covariances is

Ω = Eωt ω
′

t =

(
σ2
u σuv

σvu σ2
v

)
, (2)

where the critical feature is that the off diagonal elements may not be zero. This means that the shocks may

be correlated. This will be a source of problem as we will see quickly. Let us show you an example of this.

Consider the GDP and the CPI for United States since 2008 to 2020. The data will look something like

Figure 1: Endogenous Variables

As can be seen both variables have a trend, which can complicate the estimations, so it becomes necessary to

compute the growth rates to make the variables stationary. After this transformation GDP growth and inflation

will look something as in Figure 2, where you can see that the data is stationary. Notice the big swing at the end

resulting from the Covid pandemic.

Figure 2: Growth Rates of Endogenous Variables
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#Removing our environment and setting the working directory

rm(list=ls())

setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #With this command you set the directory

where the script is saved

#First, we have to load the libraries that we will use in this exercise. If you have never used it, you

must first run the command install.packages() and inside the argument put the argument in quotes

library(openxlsx)

library(ggplot2)

library(tidyr)

library(dplyr)

library(zoo)

library(tidyverse)

library(vars)

library(stargazer)

#Once you imported the series of interest, it is easy to plot them with the ggplot package. For

example, we create an object with the graph of the GDP, but you can replicate it for the case of

CPI or growth rates as well (here we put the basic command, but you can explore other variants of

format and design).

gdp.graph <- dataset %>%

ggplot(aes(x=Date3, y=GDP,group=1)) +

geom_line()

If we carry out the estimation of a VAR(1), the coefficient values are as follows.

Dependent variable:

GDP Growth Inflation

GDPt−1 −0.24 −0.01
(0.16) (0.01)

Inflationt−1 −0.42 0.18
(1.98) (0.16)

Constant 4.31∗∗∗ 0.35∗∗∗

(1.27) (0.10)

Observations 51 51
R2 0.07 0.03

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

##### VAR Estimation #####

# First we create the time series objetc for the estimation and then we create a matrix with both series
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GDP <- ts(dataset$GDP.Growth, start = c(2008, 01), frequency = 4)

CPI <- ts(dataset$Inflation, start = c(2008, 01), frequency = 4)

Yd <- cbind(GDP,CPI)

# Now, we estimate a reduced form VAR(1)

VAR <- VAR(Yd, p = 1, type = "const")

fitvar <- VAR$varresult #here we extract the results of the estimation of both equations

stargazer(fitvar$GDP, fitvar$CPI, type = "text" ) #here you can replace the type argument for "latex"

and you get the latex code for your document

Again nothing new here. These are just two OLS equations. However we can use them mechanically to

estimate both variables going forward. How? It is very simple. You have the data until today, and the regression

estimates the value tomorrow as a function of today’s value. So you get an estimate for tomorrow’s variables, and

then use that to get an estimate for the day after and so on. In doing so you typically assume that the futures

errors are zeros, but you could actually add some ”exogenous” disturbance if you think there is a reason for doing

so.

Figure 3: Forecast for Endogenous Variables

##### Forecast #####

#Here, we use the command "predict" to compute the forecast n periods ahead for GDP growth

GDP_fcst<- predict(VAR, n.ahead = 16)

#Here, we append the forecast output to the real variable and then we create a data frame object to do

the plot of interest. The symbol "$" allows you to get inside the forecast object and select the

part of that you are interested on (It’s easy to compute the same results for Inflation)

gdp.fcst<- append(GDP,GDP_fcst$fcst$GDP[,1])

gdplow<-append(GDP,GDP_fcst$fcst$GDP[,2])

gdpupper<-append(GDP,GDP_fcst$fcst$GDP[,3])

#Here we create a sequence of a date for the forecast period, and then, we append this object to the
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‘‘in sample’’ date.

date.ext<- seq(as.Date("2021-01-01"), by = "quarter", length.out = 16)

date.fcst<- append(dataset$Date, date.ext)

#Finally, we create a data frame with the date and the variable of interest that we will use to

generate the graphs of interest

fanch_gdp<- data.frame(date.fcst,gdp.fcst,gdplow,gdpupper)

All VARs have what we call a moving average representation. This moving average representation is also

called the impulse response function. Let’s see why by using a very simple example. Consider the following VAR

model

yt = αyt−1 + εt

We can rearrange the equation and get,

yt(1− αL) = εt,

where L is the lag operator. Furthermore

yt =
εt

(1− αL)
= εt + (αL)εt + (αL)2εt + ...+ (αL)pεt

= εt + αεt−1 + α2εt−2 + ...+ αpεt−p.

Notice that the coefficients of this representation give the impact of a shock so many periods before on the variable

today. If we plot the sequence of coefficients we will see how a shock affects the variable over time. As we said this

is what is called the impulse response. Of course, if the system has more lags and more variables the equivalent

to the α above will be a matrix of coefficients. But conceptually it is the same.

Computer packages will have a command to get these impulse responses. For the case above they take the

following form
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Figure 4: Impulse Response Functions

Remember that our empirical estimate is for the rate of growth. If you want to get the effect on GDP you

have to sum up the coefficients to get the accumulated effect, which will give you the effect on the level of the

GDP variable.

Figure 5: Cumulative Impulse Response Functions for GDP Growth
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##### Impulse Response Functions #####

#For example we compute the GDP response to an Inflation shock, with a thousand of replications by

bootstrap and a traditional confidence interval (and we do the same for the cumulative impulse

response function). Notice that we impose "ortho=FALSE" because the default of this package

computes the structural impulse response functions, which we will see below.

var_irf <- irf(VAR, impulse = "CPI", response = "GDP", ortho = FALSE, n.ahead = 16,boot = TRUE, runs =

1000, ci=0.95)

var_cum_irf <- irf(VAR, impulse = "CPI", response = "GDP", ortho = FALSE, n.ahead = 16,boot = TRUE,

runs = 1000, ci=0.95,cumulative = TRUE)

In a multivariable problem the MA representation is

zt = ωt + φ1ωt−1 + φ2ωt−2 + ...+ φpωt−p.

Now, there is a problem with the impulse response just computed. We can’t shock an equation to evaluate

the response of the system to that shock because when we shock one we shock we need to move the other because

σuv 6= 0! So it is impossible in this framework to interpret what the impulse response in a simple VAR means. In

other words, it is a response to something that does not exist (in the real world these shocks don’t move on their

own). This is the reason we need to step up to a “structural VAR” which precisely makes the shocks independent

from each other.

Structural VARs

How do we do that? What we need to do is to ortogonalize the matrix of variances and covariances. Let’s look

for a matrix Ω such that

Ω = AA
′
.

Let’s now define a transformation of the original shock

ω̃t = A−1ωt.

Notice that if we compute the variance covariance of this modified shock we get

V ar ω̃t = A−1V ar ωtA
−1
′

= AA−1A
′
A−1

′

= I.

The modified shocks are independent of each other! So we can re-write the multivariate impulse response function

as

zt = AA−1ωt + φ1AA
−1ωt−1 + φ2AA

−1ωt−2 + ...+ φpAA
−1ωt−p.

And then:

zt = Aω̃t + φ1Aω̃t−1 + φ2Aω̃t−2 + ...+ φpAω̃t−p

The coefficients A, φ1A, φ2A ...φpA ... are called the structural impulse response functions, and they can be

interpreted as independent shocks to the variable in the corresponding equation or have a deeper economic

meaning. The important point is that they move on their own, as they are uncorrelated to the other shock.
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The challenge then is to find the matrix A. One idea, initially suggested by Chris Sims, is to allow A to be a

lower triangular matrix. This implies

A =

(
a 0

b c

)
.

To compute the values of A we use

AA
′

=

(
a 0

b c

)(
a b

0 c

)
=

(
σ2
u σuv

σvu σ2
v

)
.

Simple algebra can be used to compute the solution for A

a =
√
σ2
u , b =

σuv√
σ2
u

, c =

√
σ2
v −

σ2
uv

σ2
u

.

To get an idea of what this means, multiply the dependent variables by the inverse of the matrix A to obtain

A−1zt =

(
1
a 0

− b
ac

1
c

)(
yt

xt

)
=

(
1
ayt

− b
acyt + 1

cxt

)
.

The Cholesky decomposition orders the variables from the most exogenous to the less exogenous. Then the shock

to the most exogenous variable can be interpreted as an independent shock to that variable, and the shocks to

the second variable as an independent shock to the second variable (the first one is exogenous to it) and so on.

An alternative way of estimating a structural VAR is what is known as the Blanchard-Quah decomposition.

In this approach we impose long term constraints. Here (and in BQ’s original paper) the assumption is that one

(we will call it demand) shock does not alter GDP in the long run. Remember that to compute the coefficients

of the matrix A we have the following matrix and equations:(
a11 a12

a21 a22

)(
a11 a21

a12 a22

)
=

(
σ2
u σuv

σvu σ2
v

)
,

where

a2
11 + a2

12 = ω11

a11 a21 + a12 a22 = ω12

a21 a11 + a22 a12 = ω21

a2
21 + a2

22 = ω22.

But one equation is redundant here because the second and third equations are identical. We have three equations

(though not linear) so, at least, we need one additional equation to solve for the values of the A matrix. We

impose our long term restriction to get our remaining equation. The long run effect is computed by summing

the effects over time (in our model we sum the effects on the growth rate to impose a restriction on the level of

GDP). The cumulative impulse response is the sum of the individual components:

∞∑
j=1

Aj =

∞∑
j=1

φjA.

The restriction that the long run effect is zero is obtained by making the upper left element of the above sequence
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equal to zero:
∞∑
j=1

φ11,t A(0)11 +

∞∑
j=1

φ12,t A(0)21 = 0,

which is the result we were looking for by assuming long-term neutrality on the GDP variable of the first shock.

This provides one additional restriction that allows us to solve for the values of A.

Most statistical packages will provide an option to estimate this structural VAR. In the case of RStudio, the

“BQ” command allows executing the Blanchard and Quah decomposition on the VAR object that we estimated

earlier. Having done this, we can compute the structural impulse response functions as they appear in Figures 6

and 7.

##### Blanchard & Quah Decomposition #####

SVAR<-BQ(VAR) #This command generates the decomposition between short and long run of the VAR that we

estimates on previous steps

#For the Structural Impulse Response Functions, the idea is similar than later. For example, we compute

the GDP response to a Demand shock, with a thousand of replications by bootstrap and a traditional

confidence interval (and we do the same for the cumulative structural impulse response function)

svar_irf <- irf(SVAR, impulse = "CPI", response = "GDP", n.ahead = 16,boot = TRUE, runs = 1000, ci=0.95)

svar_cum_irf <- irf(SVAR, impulse = "CPI", response = "GDP", n.ahead = 16,boot = TRUE, runs = 1000,

ci=0.95, cumulative=TRUE)

Figure 6: Structural Impulse Response Functions

,

And to check long run neutrality example we accumulate the impulse response functions.
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Figure 7: Structural Cumulative Impulse Response Functions for GDP Growth

Notice that the effect on output of the demand shock is zero!
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