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Abstract
Energy Conservation Measures are mandatory in order to 
improve buildings’ energy performance by using upgraded 
technologies, systems and installations. However, the lack of 
accurate techniques for Measurement & Verification (M&V) 
imposes insurmountable barriers towards their extended fi-
nancing. The development of precise M&V techniques to 
estimate energy savings is a critical issue that can be tackled 
through the adoption of predictive models for the adjusted 
baseline energy consumption in the reporting period.

The most commonly used M&V practices to date are re-
ported in the International Performance Measurement and 
Verification Protocol (IPMVP), where the most widespread 
techniques per case for calculating energy savings are defined. 
More specifically, the IPMVP indicates the adoption of linear 
regression methods to predict the adjusted baseline energy 
consumption of a building, exploiting outdoor temperature 
and heating degree days.

In this paper, utilisation of Deep Learning for training ener-
gy consumption predictive models is examined, as vast amount 
of data from Internet of Things devices are available nowadays. 
Thus, the feedforward Artificial Neural Network (ANN) is pro-
posed for predicting the adjusted baseline energy consump-
tion, using the hour of the day, the day of the week and weather 
data as training features. The proposed models incorporate 
both linear and non-linear relationships, in contrast to linear 
regression methods.

To validate the proposed method, an experimental applica-
tion is implemented, applying the developed models on an edu-
cational institution in Latvia. The building has been renovated 
regarding its heating supply and ventilation system, as well as 
its enclosing structures insulation. The predictions from the 
ANN models are compared with the ones from the traditional 
degree days method, indicating that ANN achieves higher ac-
curacy in energy savings estimation for electricity and diesel 
fuel consumption.

Introduction
The building sector is critical for accomplishing the EU’s ener-
gy and climate objectives, as buildings are responsible for 40 % 
of the Union’s total energy usage (EC, 2020). Simultaneously, 
the inhabitants’ quality of life would be essentially increased, 
transforming existing inappropriate buildings into energy ef-
ficient ones and consequently enabling in a way the tackling 
of energy poverty. Moreover, adopting energy retrofitting ac-
tions to renovate the building stock would realise the goal of 
carbon-neutrality by 2050, set by the European Green Deal 
(EC, 2019). Several countries have already developed strategy 
plans that focus on the renovation of buildings in the residen-
tial sector. At the same time, the EU has presented tools and 
schemes to inspect the progress in energy efficiency financ-
ing of buildings (Marinakis, 2020), such as the EU Building 
Stock Observatory (BSO)1, which monitors the performance 
of buildings across many countries, and the Smart Readiness 

1. https://ec.europa.eu/energy/eu-buildings-database_en
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Indicator (SRI)2, which is a methodology for rating a building’s 
capacity to incorporate smart-ready services.

In this context, the EU has proposed a revision of the Energy 
Efficiency Directive (EED)3 under Fit for 55 package, which re-
quires the public sector to renovate 3 % of its building per year. 
The 2018 Directive on EED4 still imposed, updates the 2012 
Directive and the key element of it, is the energy efficiency tar-
get for 2030 of at least 32.5 %. The most significant components 
of the above-mentioned directives are the renovation of public 
buildings into nearly Zero-Energy Buildings nZEB (Annun-
ziata et al., 2013), higher energy savings targets, energy perfor-
mance certificates (EPCs) and long-term renovation plans for 
buildings in the EU, among others.

Additionally, numerous research and innovations projects 
have been financed towards this direction, with the scope of 
providing novel methodologies, frameworks and digital tools 
(Papapostolou et al., 2020, Sarmas et al., 2022) to assess and 
monitor the energy consumption of buildings. As a result of 
this initiative, different aspects of the performance of a building 
have been controlled, including the energy efficiency levels of 
buildings (Marinakis et al., 2013, Ferreira et al., 2016, Marina-
kis et al., 2020), the energy poverty levels across the countries of 
the union (Santamouris et al., 2016, Arsenopoulos et al., 2021) 
and the different proposed performance certification schemes 
(Olaussen et al., 2017).

One of the most interesting issues in the field of energy effi-
ciency, is the measurement of energy savings stemming from 
Energy Conservation Measures (ECMs) in buildings (Mari-
nakis et al., 2018). The term ECM refers to any required activity 
which is performed to the building or to any of the building’s 
subsystems after the initial building construction, such as ther-
mal insulation, HVAC improvement or lighting reconstruction. 
ECM evaluation in buildings varies and depends on many fac-
tors which introduce a probabilistic aspect increasing the com-
plexity of the problem. Therefore, estimating the uncertainties 
of ECMs energy savings is a critical issue, especially during 
risk analysis and evaluation for decision making purposes. The 
techniques which are deployed to assess the energy savings of 
ECMs are referred to as Measurement and Verification (M&V) 
protocols. The adoption of accurate M&V protocols is of great 
importance and can be achieved through the development of 
predictive models to estimate the adjusted baseline energy con-
sumption in the reporting period. Several M&V practices have 
been proposed to measure the energy savings of ECMs, the 
most widely used being the International Performance Meas-
urement and Verification Protocol (IPMVP), which was origi-
nally issued in 2000 with the scope to promote investments in 
energy and water efficiency (IPMVP, 2001).

In this study, a data-driven approach is presented aiming at 
determining the energy savings of a building refurbishment. 
The proposed approach is based on Deep Learning (DL) mod-
els, using the feedforward artificial neural network (ANN) 
composed of three layers, usually referred to as Multilayer Per-
ceptron (MLP). The proposed models exploit the abundance of 

2.  https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-build-
ings/smart-readiness-indicator

3. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0558

4. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2002&rid=7

available data before and after the refurbishment takes place, 
in order to provide more accurate energy savings predictions 
compared to the traditional statistical models. The proposed 
models were implemented in Python programming language, 
and they were applied on a real case study.

The paper is organised as follows: Section  2 provides the 
description of the problem, as well as a review of relevant 
background literature. This is followed by a description of the 
methodology followed, in Section 3. Results of the case study 
are provided in Section 4. Finally, in Section 5 the outcomes 
and conclusions are summarised and key points for further re-
search are proposed.

Problem Setting and Review
Energy savings can be estimated by comparing the energy used 
before and after the implementation of an energy efficiency 
renovation. Throughout this section we use the terminology 
as it has been applied by the Efficiency Valuation Organisa-
tion (EVO) (IPMVP, 2001), which develops, maintains and 
improves the IPMVP since 1997, and ASHRAE’s Guideline 14 
(ASHRAE, 2002). In this respect, the term baseline period is 
used to refer to the period before the ECM installation, while 
the term reporting period refers to the period after the ECM 
installation. The main idea is that energy savings due to an 
ECM cannot be directly calculated by comparing the measured 
energy consumption of a building before and after the ECM 
installation. This can be attributed to the different set of condi-
tions that may affect the use of energy in the building between 
the two periods, such as weather conditions, building occupan-
cy and other socioeconomic factors (Nikolaidis et al., 2009). A 
typical example is when there are different shifts in an office 
building between the baseline and the reporting period, result-
ing in diverse levels of equipment and building usage. Another 
common example can be considered when the calendar year of 
the baseline period is significantly warmer or colder than the 
one of the reporting period.

The method for estimating energy savings after the ECM 
installation is based on energy measurements before and af-
ter the retrofit takes place. The measurements before the ECM 
installation are used to calculate the baseline energy, while the 
measurements after the ECM installation are used to compute 
the reporting period energy. The adjusted baseline energy is 
the result of a normalisation process of the baseline energy 
against weather effects. Finally, energy savings can be estimat-
ed as the difference between the adjusted baseline energy and 
the reporting period measured energy. Figure 1 summarises 
the calculation of energy savings based on the IPMVP frame-
work.

The IPMVP proposed four different options for M&V of 
building renovations depending on the availability of measures 
and on the extent of the ECM installation. More specifically, the 
energy consumption of a building can be measured with smart 
meters isolating a specific retrofit, with fuel and/or electricity 
supplier invoices or with computer simulations modelling the 
inspected facility. Moreover, the M&V process can be applied 
to a specific retrofit or to the whole building, depending on 
whether the ECM installation affects a specific sub-system of 
the facility The four options proposed by the IPMVP protocol 
(IPMVP, 2001) are presented in Table 1. 
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The presented framework has been widely adopted and 
many studies have been conducted focusing on finding the 
most appropriate regression methods and models to predict 
the adjusted baseline energy for the whole facility (Option 
C). One of the most common and simplest approaches for 
weather normalisation of energy consumption are the degree 
days, a relative measure of outdoor air temperature, as energy 
consumption is shows high correlation with the outdoor air 
temperature in heated/cooled buildings (Kaiser et al., 2010). 
Heating Degree Days (HDD) are used for periods that the 
building is heated, while Cooling Degree Days (CDD) are ex-
ploited for calculations related to the cooling of buildings. The 
application of this regression method is quite simple, requir-
ing the selection of a base temperature which serves as com-
parison factor for the average temperature of each day. The 
degree days can be calculated, measuring how many degrees 
the outside temperature was lower than the base temperature 
for HDD (or higher for CDD) (Mokhtar, 2022). The utilisa-
tion of degree days for estimating the adjusted baseline energy 
has been promoted in several studies (Aris et al., 2015, Razali 
& Dahlan, 2015), mainly due to the ease of implementation 
and to the fact that weather is the main driving factor for en-
ergy use.

However, the degree days method is based on the daily aver-
age, thus failing to incorporate patterns across the day, as well 
as other influencing factors. In this context, there is a consider-
able amount of literature investigating different methods and 
models for energy consumption prediction. These methods 
include statistical techniques, machine learning (ML) and DL 
models such as the KNN algorithm and ANNs, as well as en-
ergy simulation software. A detailed review of these studies is 
presented in the following paragraphs.

A study which estimates the accuracy of automated M&V 
techniques for energy savings in commercial buildings and goes 
beyond the regression models has been conducted (Grander-
son et al, 2016). Nine different models, including Principal 
Component Analysis, Random Forests, ensemble approaches 
and nearest neighbors advanced regression among others, are 
tested, in order to measure energy savings calculations of whole 
buildings. A data-driven methodology has been proposed to 
estimate the achieved energy savings on synthetic and real-time 
datasets using the building energy simulation software Energy-
Plus (Grillone et al., 2021). The methodology clusters the build-
ings using a Gaussian mixture model and a Bayesian Confir-
mation Criterion to estimate the optimal number of clusters 
aiming to extract typical consumption patterns of buildings. 

Figure 1. Energy savings calculation according to the IPMVP framework. Savings can be estimated with measurements before and after the 
ECM installation, but a normalisation of the baseline energy is also required to incorporate weather and other effects. 

 

Table 1. The four M&V options according to the IPMVP.

Option Description Calculation 
Option A: Partially Measured 
Retrofit Installation 

Measurement of specific sub-systems 
of the building, when not all the 
parameters can be measured. 

Engineering calculations using 
post-retrofit measurements. 

Option B: Retrofit Installation Measurement of specific sub-systems 
of the buildings, when all the 
parameters can be measured. 

Engineering calculations using 
post-retrofit measurements. 

Option C: Whole Facility Measurement of energy use at the 
whole facility. 

Regression analysis techniques 
using smart meters data. 

Option D: Calibrated 
Simulation 

Savings are determined by simulating 
certain sub-systems or the whole 
facility. 

Energy use simulations using fuel 
and/or electricity invoices. 
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Then, weather dependent analysis was performed to identify 
the temperature dependence of the building, by calculating the 
change-point temperature of the building. A Gaussian Process 
modelling framework has been proposed (Heo & Zavala, 2012) 
to determine energy savings and uncertainty level in M&V 
practices. The methodology can capture complex behaviour, 
including nonlinearities, multivariable interactions, and time 
correlations as opposed to existing modelling practices. This 
approach has been applied to two case studies, one considering 
a simulated scenario of a predictive control system deployed 
in a typical office building and another to verify energy sav-
ings of a retrofitted building. An approach to calculate building 
energy consumption in commercial buildings by using gradi-
ent boosting machine (GBM) has been proposed (Touzani et 
al, 2018). By using k-fold-blocks cross validation and the grid 
search method to tune the hype-parameters of the model, the 
algorithm is applied to predict the electricity consumption 
in real data commercial buildings. The underlying algorithm 
used is the XGBoost algorithm and the results were compared 
against to a Random Forest baseline and Time-of-Week-and-
Temperature model, showcasing a much greater accuracy. A 
generalised approach to predict retrofit effects, by demonstrat-
ing a data-driven approach using cumulative data of previous 
implemented retrofit projects has also been proposed (Xu et al., 
2021). By applying the Causal Forest method, in measured data 
(energy use, weather historical information, retrofit records, 
building characteristics), energy savings were predicted in six 
retrofit actions and sub-actions (advanced metering, building 
envelope, commissioning, GSALing, HVAC and lighting). 

ANNs have also been extensively deployed for energy con-
sumption prediction. ANN models based on the Levenberg-
Marquardt algorithms using as features the hour of the day, day 
of the week, outdoor temperature, wind speed and direction, 
relative humidity and indoor temperature have been proposed 
(Ye et al., 2020). The method was compared to the linear and 
quadratic regression methods following the IPMVP protocol in 
air-source heat pump retrofit in residential housing. The energy 
savings of an ECM program at one floor of a university building 
were determined (Mustapa et al., 2020), using Non-Linear au-
toregressive with Exogenous inputs Artificial Neural Network 
(NARX-ANN). The quantified energy savings estimated by the 
NARX-ANN model was then compared with the Multiple Lin-
ear Regression results. A baseline model of a building’s energy 
consumption using a hybrid ANN-cross validation technique 
has been developed (Adnan et al., 2020) to predict a building’s 
monthly energy consumption. The baseline model used lim-
ited data, consisting of the working days, class days and cooling 
degree days. By creating the baseline energy model with the 
hybrid neural network, the post retrofit energy savings can be 
predicted with high accuracy for option C of IPMVP method.

Finally, comparisons among different algorithms have been 
developed attempting to compare the accuracy of different ap-
proaches. An automated method has been developed (Agenis-
Nevers et al., 2021) to select the most relevant baseline model 
to capture energy savings for buildings. New explanatory vari-
ables were introduced, and 11 different algorithms were tested, 
classified in three categories based on their ability to compute 
IPMVP indicators: class 1 models (Linear Regression), class 2 
models with non-parametric regression methods (LARS2, 
RLM, BAYES, GPR) and class 3 models with non-linear Ma-

chine Learning Algorithms (KNN, SVML, GAMLOESS, CUB-
IST, RF). Moreover, four inversed modelling approaches have 
been compared (Zhang et al., 2015) in order to estimate the 
energy performance of a building’s subsystem (HVAC hot wa-
ter energy consumption) pre-retrofit. The data-driven energy 
prediction models (change-point regression model, Gaussian 
Process Regression, Gaussian Mixture Regression and ANN 
model) were trained with pre-retrofit building data in order to 
be used as baseline models in a retrofit project.

Proposed Methodology
In this study we propose the MLP for estimating the adjusted 
baseline energy consumption for a facility as a whole (Option C 
of the IPMVP) during the reporting period breaking the analy-
sis into two heating subsystems: electric and diesel fuel. The 
MLP can be described as a feedforward ANN that connects a 
set of input data with a set of output labels (Gardner & Dorling, 
1998). The typical MLP structure is composed of multiple lay-
ers of interconnected nodes. The first layer is called input layer, 
the last one is called output layer, while the middle ones are 
called the hidden layers of the network. Each layer is fully con-
nected to both the preceding and the succeeding ones (Atkin-
son & Tatnall, 1997). The architecture of MLPs and the usage of 
a non-linear activation function enables them to deal with non-
linear separable problems (Zou et al., 2008). The training pro-
cess of MLPs is based on a backpropagation algorithm which 
consists of two steps (Mas & Flores, 2008, Haykin, 1999): the 
feedforward step, where the input vector crosses forward the 
network, and the backpropagation step, where the predicted 
output is compared to the real value, causing weight adjust-
ment based on an error-correction rule. The architecture of a 
typical MLP network with fully connected layers is depicted 
in Figure 2.

Each single output is calculated by the MLP from multiple 
inputs of the preceding layer with the method of linear com-
bination with respect to the input weights. Then, the output is 
determined through a non-linear activation function (Bishop, 
1995). This process is represented by the following equation:

𝑦𝑦 = 𝑓𝑓 $% 𝑤𝑤!𝑥𝑥! + 𝑏𝑏
"

!#$
* 

 
where y is the output, xi is the input vector (i = 1, 2, …, n), wi is 
the weighting factor, b is the bias factor and f is the activation 
function.

MLPs have been extensively used in various regression prob-
lems in the energy sector, offering high predictive accuracy for 
both energy supply and energy demand problems. Although 
there are several differences between these two types of prob-
lems, they are closely related because the nature of the problem 
is the same (time-series forecasting problems) and there is high 
degree of similarity between the features of these problems, 
such as weather features and seasonal variables. Several stud-
ies, for example (Soofastaei et al., 2016, Ehteram et al., 2021, 
Ekonomou, 2010), have been carried out focusing on energy 
consumption prediction both in building level and in national 
level, in various forecast horizons. Additionally, feedforward 
ANNs have been successfully applied on energy production 
prediction problems, either from photovoltaic panels (Ehsan et 
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al., 2017, Azimi et al., 2016), or from wind turbines (Velo et al., 
2014, Yeh et al., 2014). In the proposed models, the linear acti-
vation function has been selected for the output layer because 
it produces a continuous interval of activation values, which 
is necessary in this regression problem. However, the deriva-
tive of the linear activation function is fixed, thus it cannot be 
utilised in the hidden layers (Agostinelli et al., 2014). On the 
contrary, the rectified Linear Activation Function (ReLU) was 
deployed for the hidden layers, as it is not limited by a fixed de-
rivative and it is computationally inexpensive (Schmidt-Hieber, 
2020). The formula of the ReLU activation function is repre-
sented by the following equation:

𝑦𝑦 = max{0, 𝑥𝑥} = 	𝑓𝑓(𝑥𝑥) = /0, 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0 

 
Two separate MLP models have been developed to address the 
problem of electricity and diesel fuel consumption forecasting. 
The need for separate models is justified by the fact that the 
available data for each consumption series have different granu-
larity; electricity consumption data are hourly, while diesel fuel 
consumption data are daily. The architecture of the proposed 
MLP model for electricity consumption includes three hidden 
layers (the first one includes 32 units, the second one includes 
64 units and the third one includes 16 units). The correspond-
ing MLP model for diesel fuel consumption includes three hid-
den layers (the first one includes 16 units, the second one in-
cludes 16 units and the third one includes 8 units). The optimal 
number of layers and units per layer were selected after apply-
ing a grid search method on a sample of data which were used 
as validation set. Both networks were optimised with the adam 
optimiser (Zhang, 2018) based on the mean absolute error cri-
terion, and the remaining hyperparameters were determined as 
follows, for the electricity consumption model: batch size=32, 
number of training epochs=32 and validation split=0.2, and for 
the diesel fuel consumption model: batch size=16, number of 
training epochs=32 and validation split=0.2. The implemen-
tation of the proposed MLP models was designed with Keras 
(Keras, 2015), which is one of the most used Python DL APIs.

The electricity consumption forecasting model is designed 
to provide hourly predictions for the energy consumption of 
the selected target. The choice for hourly output data has been 
made in order to secure aligned point forecasts for the adjusted 
baseline energy and the reporting period measured energy, as 
most smart meters can provide reliable hourly measurements 
of electricity consumption. The features of the model are both 
weather and seasonal features. More specifically, the proposed 
MLP includes the following features: (a) outdoor air tempera-
ture, (b) hour of the day, (c) day of the week, (d) weekday or 
weekend (binary variable), (e) month of the year, (f) vacation 
period or not (binary variable). The last feature is of great im-
portance for buildings which are utilised as offices, as in va-
cation period they are vacant, thus being less energy costly. 
August and Christmas were considered as the only vacation 
periods in the context of this study.

The diesel fuel consumption forecasting model is developed 
to provide daily predictions. Daily heating forecasting models 
instead of hourly, can allow the generalisation of them, espe-
cially under IPMVP Option C, where the building-as-a-whole 
is considered. The daily amount of diesel fuel consumption of 
a building is aggregated and does not incorporate the fluctua-
tions in the consumption, based on its tenants’ actions (heating 
scheduling, occupancy, etc.) that occurs in day-to-day activi-
ties and could affect the hourly diesel fuel consumption mod-
els. The features of the proposed diesel fuel forecasting model 
are the following: (a) average daily outdoor air temperature, (b) 
day of the week, (d) weekday or weekend (binary variable), (e) 
month of the year, (f) vacation period or not (binary variable).

Results
The proposed methodology has been evaluated on a real build-
ing and the predictions of the MLP models have been com-
pared with the results that the traditional degree days method 
has given. The evaluated building is a secondary education 
school in north-eastern Latvia, and more specifically in the 
town of Gulbene. The building has undergone a series of ma-

Figure 2. The multilayer perceptron (MLP). The architecture of the MLP includes an input layer, one or more hidden layers, and an output 
layer.0§1 The typical MLP network is fully connected.
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jor renovations including insulation of the entire exterior wall 
with mineral wool of 120mm, building cap insulation with ex-
panded polystyrene, modernisation of the rainwater drainage 
system, replacement of wooden doors and windows with PVC 
profile ones and restoration of the heating system’s pipe insula-
tion.

The dataset of the experimental application consists of two 
years of electricity and diesel fuel data. Electricity data have 
been provided with hourly frequency from smart meters in-
stalled in the building, while diesel fuel data have been pro-
vided with daily frequency. The starting date of data recording 
is March 2019, and the ending date is February 2021. Weather 
data in an hourly interval were also gathered from the mete-
orological station of Aluksne, which is a nearby town to Gul-
bene. In this 2-year period no renovations have been made to 
the building in order to test the prediction accuracy of the pro-
posed MLP model. In this respect, the first year of data were 
exploited to train the model, while the second year of data were 
used as test set. 

The selected data have been pre-processed to extract outliers 
and replace missing data with the method of linear interpola-
tion using data of the same hour from previous and next days. 
The summer months were marked as vacation period because 
the school was closed and same applies for the Christmas vaca-
tion period. Finally, dates that school was closed due to COV-
ID-19 were also taken into consideration and were marked as 
outliers. The last step before applying the MLP models was the 
data standardisation process. For the standardisation of data, 
the standard scaler of the Scikit-Learn library was exploited 
(Pedregosa et al., 2017), which performs scaling of all the fea-
tures by removing the mean and scaling to unit variance. A 
comparative plot of the electricity consumption time-series 
showing one month of hourly data (720 hours) is depicted in 
Figure 3. The solid line represents the real consumption of the 
building, while the dashed line represents the predicted con-
sumption by the MLP model. The corresponding comparative 
plot for diesel fuel consumption, including three months of 
daily data (30 daily forecasts) is presented in Figure 4. The first 
forecasts of Figure 4 correspond to a three-week interval that 
the school was closed due to COVID-19, which inevitably af-
fects the accuracy of the model.

The developed forecasting models are evaluated using the 
Mean Absolute Error (MAE) and the Coefficient of Variation 
of the Root Mean Squared Error (CVRMSE). MAE serves as an 
error index that measures the individual differences between 
the real and the predicted values. The formula for MAE is given 
as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =	
1
𝑛𝑛( |𝑦𝑦! − 𝑦𝑦,!|

"

!#$
 

 
CVRMSE is an index recommended by ASHRAE 14 (Ashrae, 
2020) which serves as a normalised version of the Root Mean 
Squared Error (RMSE) index, as it is divided by the average 
consumption value. CVRMSE is calculated by the following 
equation:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =	
1
𝑦𝑦+
,∑ (𝑦𝑦! − 𝑦𝑦0!)"#

!$%
𝑛𝑛  

 

The developed MLP model for electricity consumption has 
shown a MAE index of 4.678 kWh (corresponding to 32.59 % 
normalised value) and the CVRMSE of the model is 47.17 %. 
These indexes indicate a quite good performance of the MLP 
model, taking into account the short training period of only 1 
year and the fluctuations in building occupancy due to COV-
ID-19. More specifically, the CVRMSE value is higher than the 
proposed value of ASHRAE Guideline 14, but this is because 
the testing period of the MLP model’s performance coincides 
with the outbreak of the pandemic, resulting in some school 
classes kept closed for some days because of COVID-19 active 
cases, affecting the occupancy and consequently the energy 
consumption of the building. 

Nevertheless, a comparison with the traditional method of 
degree days would emphasise the advantages of the proposed 
model. In this respect, the consumption of the building has also 
been estimated applying the HDD method as follows: A base-
line temperature of 15 °C was selected and heating degree days 
were calculated as the difference between the mean daily tem-
perature and the baseline temperature. Then, a linear regres-
sion model was performed using the first year of the dataset as 
training set and the second year of the dataset as test set. Both 
training and test sets were aggregated in daily format by sum-
ming 24-hourly electricity values for each day. The selection 
of 15 °C as baseline temperature was based on minimizing the 
error on the fit against baseline data. Eventually, the average 
HDD for the training period was 8.019 °C, while for the test-
ing period it was 7.983 °C. It is important to mention that no 
electrical cooling system operates in the building; therefore, the 
analysis is performed based only on HDDs and CDDs are not 
calculated, as well.

The MLP model for diesel fuel consumption has even better 
accuracy resulting in a MAE index of 0.280 MWh (corresponds 
to a 23.45 % normalised value) and a 37.35 % CVRMSE index. 
The respective error metrics for the HDD method regarding 
the diesel fuel consumption of the building are 0.337 MWh 
for MAE (28.22 %) and 42.29 % for CVRMSE. Finally, the dif-
ferences between the MLP method and the HDD method in 
yearly level are presented in Table 2.

Summing up the daily forecasts of the linear regression HDD 
method, electricity consumption during the second year was 
estimated 134,654 kWh. On the other hand, summing up the 
hourly forecasts of the MLP model the cumulative predicted 
electricity consumption has been found 131,549 kWh. Given 
that the real cumulative electricity consumption during the test 
period has been measured 125,706 KWh, it is evident that the 
MLP significantly outperforms the HDD method. Same applies 
for the heating consumption model which has a deviation per-
centage of 1.358 %, in comparison to the HDD method that 
performs worse having a deviation percentage of 1.836 %.

Conclusions
The deployment of DL models for predicting energy consump-
tion in buildings has the potential to provide enhanced results 
compared to the traditional regression methods in terms of 
accuracy, because DL models exploit not only the outdoor air 
temperature measurements but also several factors to provide 
the forecasts. However, great emphasis must be placed on data 
quality, as occupancy data in a building tend to be less reliable 
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Figure 4. Example illustrating how the MLP diesel fuel forecasting model performs. This example refers to a randomly selected period (from 
October 2020 until December 2020, 90 daily point forecasts in total) of the evaluation period. The dashed line refers to the predicted con-
sumption, while the solid line to the measured values. 

Figure 3. Example illustrating how the MLP electricity forecasting model performs. This example refers to a randomly selected period (2020-
10-05 to 2020-11-03, 720 hourly point forecasts in total) of the evaluation period. The dashed line refers to the predicted consumption, 
while the solid line to the measured values.

Table 2. Comparison of the MLP model and the HDD method based on the predicted annual cumulative electricity and diesel fuel consumption.

 

 

Metric Real Value MLP method HDD method 

Annual Electricity 
Consumption (KWh) 

125,706 131,549 134,654 

Deviation Percentage 
of Electricity 

Consumption (%) 

- 4.647 7.118 

Annual Diesel Fuel 
Consumption (KWh) 

435,810 441,730 443,811 

Deviation Percentage 
of Diesel Fuel 

Consumption (%) 

- 1.358 1.836 
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than meteorological data used by traditional methods, while it 
is also common for such data to be unavailable. In this paper, 
two feed-forward neural network models were presented for 
electricity and diesel fuel consumption prediction in buildings, 
aiming to calculate the adjusted baseline energy of renovated 
buildings during the reporting period. The developed MLP 
models, having both weather and seasonal features, outper-
form the traditional degree days method when applied to a real 
case study, involving an institutional building in Latvia. The 
case study was based on a 2-year dataset with hourly frequency 
electricity data and daily frequency diesel fuel data, where both 
methods were applied.

It should be noted, though, that the use of ANN includes 
significant limitations, as the training process of such models 
requires the existence of large datasets. More specifically, at 
least a whole calendar year of data must be given as input to 
the model in order to learn data patterns and provide precise 
forecasts. Another drawback of deep learning is the low de-
gree of interpretability of the model results, in contrast to lin-
ear degree-day regressions which provide useful explanatory 
variables through their slope and intercept. The overwhelming 
advances in data processing and data sharing, as well as the 
evolution of Internet-of-Things (IoT) devices and the digitisa-
tion impact of this era enable the existence of large volume 
datasets that can be fed to DL models. However, alternative 
approaches must be investigated, such as transfer learning 
which could enable transferring knowledge from a building 
to another even if those buildings are in different locations. 
Finally, future research could focus on further exploring how 
the most appropriate features that affect a building’s energy 
consumption could be incorporated in DL models to increase 
the forecasting accuracy, resulting in a more precise estimation 
of the energy savings of ECMs.
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