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Structural Causal Modeling (SCM) using DAGs, or Graphical Causal Modeling (Elwert 

2013), is based on the seminal work of Pearl (2009). It has origins in the path analysis of Wright 

(1921). Other early contributions include those of Haavelmo (1943), Simon (1954) and Strotz 

and Wold (1960) in economics, and Hubert Blalock (1962) in social sciences. Structural Causal 

Modeling can be viewed as a graph-theoretic approach to structural equation modeling, where 

the absence (or presence) of arrows between two variable represents a presumption of absence 

(or presence) of causal relationship between the two variables (Bollen and Pearl 2013). 

Developed as a non-parametric approach to causal inference, it’s extensions to linear (Gaussian) 

structural equation modeling has been discussed in Pearl (2012), Bollen and Pearl (2013), and 

Chen, Pearl and Kline (2018). Relationship to structural models in economics is discussed by 

Pearl (2015), Heckman and Pinto (2015) and White and Chalak (2009).  

Strutural Causal Modeling using DAGs has recently extensive application in 

epidemiology (Textor et al 2016), medical sciences (Shrier and Platt 2008; Wang and Bautista 

2015), sociology (Elewert 2013), as well as some applications in psychology (van Kampen 2013) 

and economics (White and Chalak 2009; White and Lu 2011). A related application of DAGs is 

in causal discovery as part of the Tetrad Project (van Kampen et al 2014). 

In Structural Causal Modeling, the model, which represents the causal assumption of the 

researcher, is represented using a Directed Acyclical Graph (Lauritzen 1996). The use of DAGs 

provide a principled approach to identifying minimally sufficient covariates (adjustment sets) 

that can be used as control variables to eliminate confounding. This is achieved through the 

application of graph-theoretic principles such as d-separation and back-door criterion (Pearl 

2009)  
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The DAG represents the qualitative causal assumptions of the researchers and the 

substantive knowledge the researcher has about the world. The DAG encodes all the causal 

assumptions in the model through the presence/absence of directed arrows (Pearl 2009; Elwert 

2013). These arrows can be unidirectional (X→Y), representing a causal effect or a bidirectional 

(X→Y) representing a confounder1.  

The existence of a directed arrow between two nodes X→Y represents a weak 

assumption about the causal effect of X on Y. This is considered to be a weak (conservative) 

assumption, as it does not preclude the absence of a relationship between the two variable. In 

contrast, the absence of an arrow between two variable represents a strong assumption made by 

the modeler that the two variables are not causally related – hence independent (X_||_Y). Once 

the graphical model is formulated, it’s implications can be tested again data. 

There are three key advantages of Graphical Causal Modelling using DAGs. These are: 

(1) availability of local testable implications (2) principled approach to identifying conditioning 

variables (3) provision model implied IVs and conditional IVs to address confounding bias. 

Firstly, the model provides certain testable implications on the data. These represents 

quantitative restrictions on the probability distribution on datasets that are compatible with the 

DAG model. These testable implications are in the form of conditional independence between 

variables that must hold true in the data, for the data to be consistent with the model. These 

implications emerge from the d-separation criterion that will be discussed later. These 

implications can be considered to be local tests of model fit. A consequent advantage of 

graphical SCM models compared to traditional SEM models (Bollen 1989) is that it allows for 

identification for part of the model even if the overall model is unidentified (Chen, Pearl and 

Kline 2018).  

Second, it provides a principled approach to identifying conditioning variables to 

estimate coefficient. It is common in regression models to control for confounding bias by 

introducing control variables. However, the inappropriate selection of such conditioning 

variables can introduce new biases. The use of SCM enables a graph-theoretic approach to 

identifying minimal conditioning (or adjustment) sets. This can eliminate biases such as 

 
1 The birectional arrow can be replaced by an unobserved (latent variable) XU→Y 
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Berkson’s bias (also called M-bias or endogenous selection) and over-conditioning bias (Pearl 

2009), an issue that is frequently overlooked in empirical studies (Elwert and Winship 2014).  

Thirdly, the SCM approach provides a graph theoretic approach to handling confounding 

bias (endogeneity) by identifying implied instrument variables (IVs) as well as conditional IVs. 

(Angrist, Imbens, and Rubin 1996; Brito and Pearl 2002; Van Der Zander, Liśkiewicz, and 

Textor 2015) 

Building Blocks of Structural Causal Models 

The use of graphs for graphical analysis can be traced to the work of Sewell Wright and 

his pioneering path tracing rules (Wright 1921). Method of vanishing partial correlations to 

assess model fit (Blalock 1962; Simon 1977). We begin with the definition of key components of 

every SCM model: nodes, paths, and, routes (Chen and Pearl 2014; Chen Pearl and Kline 2018; 

Thoemmes et al 2018). In a graphical model, each node represents a variable. A path consists of 

a directed arrow that connected two nodes. The path represents a possible influence of one 

variable on the other. A sequence of paths is termed as a route.   

A graphical model can be decomposed into four building blocks involving two paths 

between three variables X, Y, Z. These are chains (X→Z→Y), inverse chains (XZY), forks 

(XZ→Y) and colliders (X→ZY). These structures imply certain independencies in the data. 

The collider represents blocking of information in the path at the middle variable Z. This implies 

an unconditional independence (X_|_Y). Conditioning on Z opens up this closed path, 

introducing a spurious relation between X and Y (M-bias or Berkson bias). The other three 

structure chains, inverse chains, and forks do not imply any unconditional independencies. 

Instead, they imply the conditional independencies given by (X_|_Y|Z). That is conditioning on 

the middle variable closes the path between X and Y and renders the two variable independent. 

These basic rules for conditioning can be extended to a set of variables. An important implication 

is that sensitivity to different control sets is not necessarily a test of robustness as conditioning on 

a collider or it’s descendants can introduce a spurious relationship between two variables (Chen 

and Pearl 2014). 

Partial correlation coefficient between X and Y is the correlation between the two 

variables after controlling for Z. The partial regression coefficients can be calculated from the 
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pairwise correlation coefficients using Cramer (1946) (Chen and Pearl 2014). If the conditioning 

set Z involves a large number of variables, the above relation can be used recursively. However, 

this is unwieldy. If the objective is to obtain partial correlation, the d-separation criteria that 

employs a graph theoretic approach is more convenient. 

D-Separation Criterion 

The d-separation criterion is provided by Pearl (1988). It enables us to derived the model 

implied conditional independences and zero partial correlation by analyzing the path diagram. 

This is used to obtain testable implications which can be used as goodness of fit test, as well as 

aid us in in the identification analysis 

Three rules of d-separation are the following (Chen and Pearl 2014; Chen, Pearl and Kline 

2018): 

(1) Variables X and Y are d-separated given a conditioning set Z if there are no active routes 

between X and Y given Z. 

(2) A path between two variables is d-separated if (1) the path is a chain or fork and one of the 

variables in the middle of the path is controlled or (2) the path contains a collider. 

(3) If X and Y are d-separated given a set Z in the path diagram, G, this implies that X and Y are 

independent given Z. In a linear model, this implies that the partial correlation coefficient =0.  

The d-separation criteria impose restrictions on the causal model in the form of 

conditional or unconditional independencies. These conditional independencies must exist in the 

data for it to be compatible with a given model. If one or more of the implied independencies 

does not hold in the data, this means that the causal model has been incorrectly specified. Thus 

independencies implied in the model, identified by the d-separation criterion provides very 

strong tests of the credibility of the model.  

A conditional independence implied by the model (such as X_|_Y|Z) can be tested by 

regressing both X and Y on Z and then testing for non-zero correlation between the residuals. If 

the data is normally distributed, then linear regression can be used, else non-parametric 

regression techniques should be used to compute the residual. The R package dagitty provides 

this feature (Textor et al 2016) 
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Identification and Single Door Criterion Criterion 

The d-separation criterion can be utilized to identify causal relationship between two 

variables. This is achieved by blocking all the non-causal (or back-door paths) that introduce 

spurious relationship between X and Y. This criterion can be used to identify the minimal 

conditioning set.  

Single Door Criterion. (Pearl 2009, Chen, Pearl and Kline 2018): Let G be a DAG and  

be path coefficient in the path X→Y. If there exists a set of variable W such that  

(1) W contains no descendent of Y 

(2) W d-separates X from Y in subgraph G obtained by removing the edge X→Y from G. 

Then  is given by the regression coefficient  (Y,X|W).  

A related criterion called back door criterion provides the conditions for estimating a total effect 

using OLS even when the overall model is not identified (Chen and Pearl 2014; Pearl 2009). 

Back-door Criterion for Total Effect 

It may be possible to identify some of the model coefficients, even if the overall model is not 

identified. The back-door criterion (Pearl 2000; Chen and Pearl 2014) may be used in 

identification of a total effect. For any two variables X and Y in a causal diagram G, the total 

effect of X on Y is identifiable if there exists a set of measurements Z that  

(1) No member of Z is a descendent of X; and 

(2) Z d-separates X from Y in the subgraph Gx formed by deleting from G all arrows 

emanating from X 

If the above two conditions are satisfied, then the total effect of X on Y is given by YX.Z 

Instrumental and Conditional Instrumental Variables 

The graph theoretic definition of Instrumental Variables in Provided by Brito and Pearl (2002) 

and Chen and Pearl (2014). A variable Z qualifies as an instrumental variable for coefficient  

from X to Y if  
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(1) Z is d-separated from Y in the subgraph G obtained by removing the edge X→Y from G 

and  

(2) Z is not d-separated from X in G 

Conditional instruments are variable that can be utilized as IVs once they are conditioned on a 

set of set of other variables. In many models, an IV that meets exclusion restriction may not be 

available, instead a conditional IV may exist that satisfies the exclusion restriction (Van Der 

Zander, Liśkiewicz, and Textor 2015) 

A variable Z is a conditional instrumental variable given a set W for coefficient  from X to Y if  

(1) W contains only non-descendants of Y 

(2) W d-separates Z from Y in the subgraph G obtained by removing edge X→Y from G 

(3) W does not d-separate Z from X in G 

When Z is a conditional instrument for a  given a set W, then  = ZY.W/ZX.W 

The R package Dagitty provides a convenient way to identifying conditioning variables (Textor 

and Liskiewicz 2012) and conditional IVs (Van Der Zander et al 2015). 

Use of Local Fit Measures in DAGs 

In traditional path models/ SEMs fit measures are reported such as 2 and various fit 

indices such as RMSEA and CFI. The use of local fit measures have been largely absent, with 

the exception of the use of modification indices (Thoemmes, Rosseel and Textor 2018). In 

graphical modeling using DAGs, the use of local fit measures provided by the d-separation 

criterion provides several advantages not provided by global fit measures. Local tests help us 

identify the parts of the graphical model that are supported by the data. Local tests can also be 

performed immediately after data collection and can sometime provide information about which 

part of the overall model does not fit the observed data.  

Equivalent Models 

Equivalent models are alternative models with the same data implications in relation to d-

separation. Models are equivalent if they have the same skeleton and same v-structure (Pearl 

2009). The presence of equivalent models pose a threat to the uniqueness of the model.  
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