

Seascape Developer’s Reference v3.2

Segmentation and Cover Classification Analyses of

Seabed Images

Please use the following citation in published literature using Seascape:

Teixidó N, Albajes-Eizagirre A, Bolbo D, Le Hir E, Demestre M, Garrabou J, Guigues L, Gili JM,

Piera J, Prelot T, Soria-Frisch A (2011) High-resolution software for Segmentation and Cover

Classification Analyses of Seabed Images (Seascape). Mar Ecol Prog Ser 431: 45-53

Seascape is an open-source platform and the compiled software, source code, developer guide,

and user manual are available online at this site (http://www.seascapesoft.com/documentation).

Seascape is available as free software under the terms of the Free Software Foundation's

(http://www.gnu.org/) GNU General Public License (GPLv3)

(http://www.gnu.org/licenses/gpl.html) in source code form.

http://www.gnu.org/�

Seascape Developer’s Reference

2

Table of contents

Brief Specification v3.2 3

Optimizations made on the segmentation algorithm and the code 4

Brief description of the segmentation algorithm 4

Base segmentation 4

Graph segmentation 4

Scale climbing 5

Energy complexity 5

Base segmentation criteria and threshold 6

Selection of the number of scales to work with 6

Specification of the new classes implemented on version 3 7

Segmentation Parameters Window 7

Table Window 7

Segment Sizing Window 7

Navigation Window 8

Export XLS Window 8

My About Window 8

wx Image Panel 8

UML diagrams for interface classes 9

Implementation of polygon routines. How to extract polygonal data from raster data 9

Extracting isolate regions from a bitmap set 9

Computing area and perimeter values of the polygons formed by the isolated
regions

9

References 10

Seascape Developer’s Reference

3

Brief Specification version 3.2

This application has been developed with wx Widgets library. In the development

package the source code in C++ is provided, together with the working solution for

Visual Studio 2003.

The code is compounded by the Sxs and Lgl libraries for image segmentation, the wx

widgets library, the classes implementing, the interface (explained below) and the

auxiliary libraries BasicExcel and Tinyxml.

InterfaceMedSeg is the main class and the entry point of the application. This is the

class the wx engine will call at the startup of the application (as stated on sxs.cpp). This

is the class containing pointers to all other classes needed by the application and the

class modeling the GUI interface. It contains a member of the class LeftWindow for

the left frame of the application. It contains a ScrollWinMedSeg member for the frame

of the application where the image will be drawn.

InterfacecMedSeg also contains members for ManageClassMedSeg,

ManageColorMaps and AddClassMedSeg classes which will inherit from window

class of wx library and will contain the management pop up windows for species,

colormaps, etc.

InterfacecMedSeg also contains members for languageloader and locationloader
classes which will manage language strings and species data. Each time the

application needs to retrieve or update any data regarding language strings or species

items, it will be done through function calls to those members.

ImageMapping class is used to contain information about the image to be segmented,

and LayerOnSelection class is used to manage the layers to be drawn over the image

to be segmented. The layers will contain the colored regions for each classified

species.

Sxs and lgl classes are the classes used by the classification engine (the SxS and LGL

libraries). BasicExcel and TinyXML are classes from the two libraries used to work

with MS Excel format and XML format.

Seascape Developer’s Reference

4

Optimizations made on the segmentation algorithm and on the code

In this version, the underlying segmentation library has been optimized to enable the

possibility of working with Seascape processing large resolution images. To achieve

such optimization, two aspects of the segmenting algorithm have been upgraded and

one new parameter to the interface has been added. A new dialog window has been

added to the library in order to require the user to input some parameters before the

segmentation process is run.

The two upgrades on the segmenting algorithm (and, thus, the library) are: The

variability added to the node energies complexity and the variability on the criteria and

threshold used for the base segmentation of the first stage of the algorithm.

 Brief description of the segmentation algorithm
The segmentation algorithm is compounded on three major stages: Base

segmentation, graph construction and scale climbing. The implementation of the

algorithm is specified on the file sxsImageScaleClimbing.cpp of the SxS library.

 Base segmentation
In this stage, the original image is segmented in different regions following a criterion.

The input will be the original image, and the output is a set of different regions. Each of

these regions will be compounded by the pixels, geographically adjacent, which the

difference among them regarding the segmentation criterion is lower than a fixed

threshold. Therefore, the lower this threshold is fixed, the more different resulting

regions will be obtained, being the pixels inside each set more similar among them.

This stage is implemented on the function computeBaseSegmentation().

 Graph construction
In this stage, the input is the set of different regions resulting from the previous stage,

and the output is a graph. This graph is build by creating a node per each of the

resulting sets from the previous stage and creating a vertex between two nodes if the

two nodes are geographically adjacent. Moreover, in this stage an energy value is

computed for each vertex. This value will be set with regards to the difference between

the nodes being connected. The way this energy value is computed will affect on the

computational cost of the algorithm. The more complex this energy is, the higher the

computational cost will be.

This stage is implemented on the function buildGraph() .

Seascape Developer’s Reference

5

 Scale climbing
In this stage, the input will be the enriched graph resulting from the previous stage, and

the output is the whole structure resulting from the segmentation algorithm. From the

enriched graph, a tree is build. First step is to create a branch on the tree from each of

the nodes in the graph. Such nodes will keep all the information contained on the

graph, including the vertex with the energies. Therefore, this step just involves a

change of representation of the data. The important step is the next one, the scale

climbing. This is an iterative process by means of which, at each interation, the pair of

nodes with the lowest coupling energy are attached to a new node that will be parent of

the two on the tree. For the new node all the energies are recomputed, obtaining a new

coupling energy between the new node and all the other remaining nodes on the tree.

Repeating such iteration, a binary tree is obtained, being the node created on the last

iteration the root node of the tree. One of the more important aspects of this algorithm

is the fact that, during the iterative process, a structure is build, so at the time of using

the tree, it results easy to find the height on the tree representing a determined

segmentation scale value.

This stage is implemented on the functions buildBase(), buildHeap(), climb() and

postProcess().

Energies complexity

To establish a variable level of energy complexity, instead of a fixed level as before, we

had to modify the class 'PiecewiseAffineFunction' on the '

sxsPiecewiseAffineFunction.h' of the SxS library. We added a private member of the

class of type 'unsigned int' and labeled 'maxNPieces', as well as modified the function

that returns that value. We also modified the constructor of the class, so each new

instantiation had to be created with a set value for this member. In order to maintain the

consistency of the library, we had to modify the classes

'ImageScaleClimbingParameters' and 'ScaleClimbingParameters' in order to

contain this new parameter. Also, in order to make the library use this new parameter,

we had to modify 'ImageScaleClimbing' and 'ScaleClimbing' classes.

In order to make the interface use this new feature of the library, we added on the new

dialog window a slider that the user will use to select a value for the level of complexity.

This value will be send to the segmentation library though the

'ImageScaleClimbingParameters' class.

Seascape Developer’s Reference

6

Base segmentation criteria and threshold

Two aspects were upgraded regarding the base segmentation stage of the algorithm:

The criteria used to perform such base segmentation and the threshold value used for

it. The criteria were modified due to the existence of a bug on the library that implied

the usage of only one channel of information for the base segmentation. Moreover, a

new function coding has been added, so it is possible to add new different criteria on

future versions of the library. The implemented one has been the Euclidean distance

between pixel channel values in order to decide if differently segment two pixels or not.

The other aspect is the addition of variability to the threshold of segmentation. That is,

adding a variable to modify on execution time the behavior. In this release, this

threshold is applied to the current segmentation criteria. That is, the parameter

selected will affect the euclidean distance value needed to differently segment two

pixels.

To implement this upgrades we modified the 'ConnectedComponents' function on

'lglImageBasicAlgorithms_code.h' file. On the same file we introduced the new

function 'connectedCritera' that implements the Euclidean distance criteria. This late

function is now used by 'ConnectedComponents' solving at the same time the

previous bug of the library.

Again, modifications on 'ImageScaleClimbingParameters' and

'ScaleClimbingParameters' classes were necessary to keep libraries consistency.

Also a slider has been implemented on the new dialog window in order to require the

user to enter the value for such threshold.

Selection of the number of scales to work with

One of the main memory consuming parts of the application is the creation of several

bitmap images on memory in order to work with different levels of scales. Three

bitmaps files of the size of the original image times the selected zoom level are needed

for each desired level of scale to work with. Therefore, it is important to be able to

select how many scale levels the user needs. To require the user such parameter, a

slider has been added on the new dialog window. This will set the value of a variable

labeled 'm_nlevels' that will substitute the compiling time defined constant, previously

labeled 'NB_ECHANT_SEG'.

Seascape Developer’s Reference

7

Specification of the new classes implemented on version 3.2

 Segmentation Parameters Window
This is the class implementing (through inheritance of wxFrame) the new window

requiring the user the parameter values for the segmentation algorithm. It contains

three sliders from the wxWidgets library. It is worth noticing that the actual submission

of the parameters to the segmentation function is done at the class' function OnClose

(thrown while the user closes the window). This function creates a

ImageScaleClimbingParameters instantiation with the gathered values from the sliders.

Then, with such instantiation, it destroys itself (as instantiation of wxFrame) and then it

throws the DoExecution function from the interface in order to perform the

segmentation.

class SegmentationParametersWindow : public wxFrame

 wxSlider *m_slider_baseSeg_thrd;

 wxSlider *m_slider_energyComplexity;

 wxSlider *m_slider_levels;

 void OnClose(wxCloseEvent& event);

 Table Window
This is the class implementing (through inheritance of wxFrame) the new window for

displaying the current state of the classified polygons table. It will contain an wxGrid,

and the constructor will have an integer parameter higlight. If highlight is set at the time

of creating the instantiation, then the corresponding row of the table will be highlighted.

This way, the same class can be used for normally displaying the table as well as for

displaying the table with highlighting one one of the polygons.

class TableWindow : public wxFrame

 wxGrid *tableGrid;

 TableWindow(wxWindow *parent, wxWindowID id, const wxString& title, int highlight);

 Segment Sizing Window
This is the class implementing (through inheritance of wxFrame) the new window that

will require the user to input the size of the segmented. It is worth noticing that on the

function OnClose, the class will update the values for the sizing of the image.

class SegmentSizingWindow : public wxFrame

 void OnClose(wxCloseEvent &ev);

Seascape Developer’s Reference

8

 Navigation Window
This is the class implementing (through inheritance of wxFrame) the window that will

display a miniature of the image being processed and a frame over it corresponding to

the current zoom view set on the interface. This window will be floating on top of the

application while activated. It is important that this class has to implement wrapper

functions for the paint and repaint events on the wxWidgets' loop library. Being closs-

platforming a key issue on this release, such wrapping functions have been developed

to correctly perform on any host OS.

class NavigationWindow : public wxFrame

 bool m_flagRefresh;

 wxString *_imagePath;

 void OnPaint(wxPaintEvent &ev);

 void RePaint(wxScrollWinEvent &ev);

 Export XLS Window
This is the class implementing (through inheritance of wxFrame) the new window that

will require the user to input variable fields to attach to the exported XLS file.

class ExportXLSWindow : public wxFrame

 My About Window
This is the class implementing (through inheritance of wxFrame) the new window that

will display the credits of the application, as well as the logos of the involved

institutions.

class MyAboutWindow : public wxFrame

 wx Image Panel
This is a custom widget class developed (from

http://wiki.wxwidgets.org/An_image_panel) to easily display images on the application

used to set many different small images for the logos on the about window.

class wxImagePanel : public wxPanel

 void paintEvent(wxPaintEvent & evt);

 void paintNow();

 void OnSize(wxSizeEvent& event);

 void render(wxDC& dc);

http://wiki.wxwidgets.org/An_image_panel�

Seascape Developer’s Reference

9

 UML diagrams for interface classes
Attached to this document there are provided two UML diagram picture files. First

diagram displays the main classes involved in the interface, and the second diagram

displays all the classes involved in the interface.

Implementation of polygon routines. How to extract polygonal data from raster
data

To obtain polygon data, such as area and perimeter, from raster data (such as a

bitmap, our data), some routines to transform the data were implemented.

These routines attain two steps:

• Extracting isolate regions from a bitmap set

• Computing area and perimeter values of the polygons formed by the
isolated regions.

This process is computationally expensive with large sets of pixels, and it is run for a

region every time a new pixel is added to a region. Therefore, if the user is labeling a

very large region with the same species, a slowdown of the interaction speed will be

noticed.

 Extracting isolate regions from a bitmap set
For the first stage, the method of fill flooding Error! Reference source not found. was

implemented. With an initial set of pixels, we start from the first one of the set, and run

a fill flooding procedure, separating from the initial set the pixels reached by the

flooding and keeping the remaining pixels for the next iteration. Once the initial set is

empty, we obtained as many sets as isolated regions there are on the initial set.

 Computing area and perimeter values of the polygons formed by the
isolated regions
Once we have the pixels of each region isolated, we needed to obtain from the pixels

the area and the perimeter of the corresponding polygon for the region. The area is

computed by determining the side length of the pixels, and then simply obtaining the

area of each pixel times the number of pixels in the set.

For the perimeter computation of the polygon, we implemented a methodology

presented in Error! Reference source not found. that apparently attains good results.

The idea is obtain the contribution of each pixel on the set to the perimeter. This is

Seascape Developer’s Reference

10

achieved by classifying each pixel on one of the 256 different classes of pixel

established (each class is for each possible configuration of pixel depending on how

many and where contiguous neighbors the pixel has). If a pixel has 8 neighbors, this

makes 256 possible combinations. Each of the 256 classes has a contribution value.

Each pixel is classified according to its neighbors, obtained the contributing value and

added this last to the total perimeter of the polygon.

References
[1] Flood filling. http://en.wikipedia.org/wiki/Flood_fill

[2] Prashker, S. 'An Improved Algorithm for Calculating the Perimeter and Area of

Raster Polygons', Geocomputation '99, Fredericksburg, Virginia, July 24, 1999.

http://www.geovista.psu.edu/geocomp/geocomp99/Gc99/076/gc_076.htm

http://en.wikipedia.org/wiki/Flood_fill�

	Optimizations made on the segmentation algorithm and on the code
	Brief description of the segmentation algorithm
	Base segmentation
	Graph construction
	Scale climbing

	Energies complexity
	Base segmentation criteria and threshold
	Selection of the number of scales to work with

	Specification of the new classes implemented on version 3.2
	Segmentation Parameters Window
	Table Window
	Segment Sizing Window
	Navigation Window
	Export XLS Window
	My About Window
	wx Image Panel
	UML diagrams for interface classes

	Implementation of polygon routines. How to extract polygonal data from raster data
	Extracting isolate regions from a bitmap set
	Computing area and perimeter values of the polygons formed by the isolated regions
	References

