Drug response prediction for cancer
patients

Scientists have created a model to predict whether or not cancer patients will respond to a
drug.

The same scientist published the details of their research, how the model was built and a
detailed description of the data (e.g., the health conditions investigated), the NHS board
where the data was collected. The data was deidentified and was not released as it is

confidential patient information, and any leak might break existing legislation.

The researchers balanced the benefits and potential risks of the model realease, and it was
decided that overall, there is a clear benefit for the population for the model to be made

public.

What they didn't realise, is that the NHS board in question is home to a famous Member of
Parliament (MP). This famous MP is a former Prime Minister. There had been some
speculation that the MP had cancer, but it is not in the public domain.

Membership Inference

We will use this example to demonstrate a membership inference attack. In such an attack,
an attacker has access to information about a particular individual (maybe they are famous),
and attempts to find out if their data was used to train the model. In this case, knowing if
they were in the training set for the model would be disclosive as it would reveal that they
had indeed suffered from cancer (all people in the training set had cancer)

Let's get hands on with this example.

The following code imports some standard libraries that we will need.

import random
from itertools import product
import numpy as np

np.random.seed(1234)
random.seed(12345)

from scipy.stats import poisson

import pandas as pd

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

Create the original model

We are assuming that a model is trained within a TRE on real data. However, we do not have

access to real data, so we will randomly generate some realistic looking data.

In particular, we will generate data for 200 people: all are cancer patients, 100 responded
well to the drug, and 100 did not. Our MP will be one of the patients in the good
responders set.

For each patient, we generate six values that in reality would be extracted from their
electronic health records:

1. diabetes -- whether or not the patient suffers from diabetes (1 = yes, 0 = no)

2. asthma -- whether or not the patient suffers from asthma (1 = yes, 0 = no)

3. bmi_group --the BMI group in which the patient falls (1, 2, 3, or 4)

4. blood_pressure --the blood pressure group in which the patient falls (0, 1, 2, 3, 4, or
5)

5. smoker -- whether or not the patient is a smoker (1 = yes, 0 = no)

6. age --the patient's age

Each patient is also associated with a value to indicate whether they responded well to the
drug (1) or not (0).

#1 1s cancer, 0 is no cancer, this is our Label and what we want to predict.
response = [1]*%99 + [0]*100

df = pd.DataFrame()

#diabetes 0 no, 1 yes
df['diabetes'] = [[1, ©@][random.random()>0.7] for n in range(99)] +
[[1, @][random.random()>0.2] for n in range(100)]

#asthma © no, 1 yes
df['asthma'] = [[1, @][random.random()>0.7] for n in range(99)] +
[[1, @][random.random()>0.5] for n in range(100)]

#bmi group 1 under, 2 normal, 3 overweight, 4 obese

df['bmi_group'] = [random.choices([1, 2, 3, 4], weights = [0.5, 5, 7, 5], k = 1)[0
for n in range(99)] +
[random.choices([1, 2, 3, 4], weights = [1, 7, 4, 1], k = 1)[0]
for n in range(100)]

#blood pressure 0 is low, 1 is normal, 5 is extremly high
df['blood_pressure'] = [random.choices([0, 1, 2, 3, 4, 5],

weights = [0.5, 1, 5, 6, 1, 0.5], k = 1)[0]
for n in range(99)] +
[random.choices([0, 1, 2, 3, 4, 5],

weights = [0.5, 5, 5, 1, 1, 0.5], k = 1)[0]

for n in range(100)]

#smoker © is non smoker, 1 is smoker
df['smoker'] = [[1, @][random.random()>0.8] for n in range(99)] +
[[1, @][random.random()>0.2] for n in range(100)]

#age

X = np.arange(20,90)

pmf = poisson.pmf(x, 72)

age = [random.choices(x, weights = pmf, k = 1)[0] for n in range(99)]

X = np.arange(20,90)

pmf = poisson.pmf(x, 55)

age2 = [random.choices(x, weights = pmf, k = 1)[@] for n in range(100)]
df['age'] = age + age2

#Add the data of your MP
response = response + [1]

#add new row to end of DataFrame
#the order of the list indicates in order diabetes, asthma, bmi_group, blood_press

df.loc[len(df.index)] = [1, 1, 3, 2, 1, 62]

This looks like the kind of data that might exist within a TRE. Here's the first few rows:

print(df.head())

diabetes asthma bmi_group blood pressure smoker age

0 1 (4] 4 3 1 72
1 1 1 2 3 0 83
2 (4] 0 4 3 1 63
3 1 1 4 3 o 77
4 1 1 4 2 1 87

Our MP is the final row of the data, here are their values:

print(df.iloc[199,:])

diabetes 1
asthma 1
bmi_group 3
blood_pressure 2
smoker 1
age 62

Name: 199, dtype: int64

Model training

The researcher trained a particular machine learning model called a Support Vector Machine
(SVM). This is a very popular model for tasks in which we want to assign things (in this case
patients) to groups (in this case cancer v non-cancer). The attribute inference attack we will

perform is not unique to SVMs, we just use them as a popular example.

Training the model is very straightforward -- just a couple of lines of code (the details are
not important).

Train a model

prng = np.random.RandomState(12)

svc = SVC(C=1, gamma=3, probability=True, random_state=prng)
svc.fit(df, response)

SVC(C=1, gamma=3, probability=True,

random_state=RandomState(MT19937) at ©x159E5341140)
The trained model can be used to make predictions about new individuals. Given data for an
individual, it will produce two scores (probabilities). The first is how likely they are to belong
to the non-responders group (higher = more likely) and the second how likely they are to
belong to the responders group. The scores are always positive, and sum to 1.

For example, if we have an individual who has diabetes, has asthma, has a bmi group of 1,
blood pressure of 5. is a non-smoker and is 72 years old, we can use the model to predict

whether or not they should belong in the cancer or non-cancer groups:

test_example = pd.DataFrame(

{
‘diabetes': 1,
‘asthma': 1,
'bmi_group': 1,
'blood_pressure': 5,
‘smoker': 1,
‘age': 72
}, index=[1]
)
predictions = svc.predict_proba(test_example)
print(f'non-responders score = {predictions[@][0]:.2f}")
print(f'responders score = {predictions[@][1]:.2f}")

non-responders score = 0.49
responders score = 0.51

The attack

We now assume the role of the attacker. The attacker knows some general properties about
the data -- for example, they know the range of values each variable can take. They also
know the configuration of the classifier that was trained (that it was an SVM and any
parameters that were used to define it (more on this later)). Finally, they know (or can make
a good guess at) the input data for the MP (they are famous and this information is perhaps
in the public domain). The attacker is going to try and determine, from this information, and
with access to the trained model, whether or not the MP was in the dataset and hence
determine if they had cancer or not.

How does the attack work?

Recall that when we used the model to make predictions, the model provided two scores --
the cancer and non-cancer scores. The more extreme these scores become (e.g one is close
to 1 and the other to O (recall that they have to add up to 1)), the more confident the model
is in assigning that example. It is not uncommon for models to have higher confidence for
examples that they were trained on than examples that they haven't seen before. It is this
property that the attacker will make use of.

In particular, the attacker will generate their own dataset (known as shadow data) that has
similar properties to the original. They can do this randomly -- it doesn't matter that it won't
be quite right -- all they need to know is the rough ranges of the variables. They will then
use some of this data to train their own model (a shadow model). This allows them to see
roughly what kind of confidence their model gives to examples it was trained on, and
examples it wasn't trained on. This gives them an idea about how confident the original
model is likely to be on data it was trained on, and data it wasn't trained on. Comparing this
to the actual confidence obtained when the MPs data is given to the original model will

allow them to infer if the MP was in the training data or not.
Let's look at that step-by-step...

Firstly, the attacker presents the MPs data to the original model to see what the model's

predictions are...

mp_data = pd.DataFrame({
'diabetes': 1,
‘asthma': 1,
"bmi_group': 3,
'blood_pressure': 2,
'smoker': 1,
'age': 62
}, index=[1])
mp_preds = svc.predict_proba(mp_data)
print(mp_preds)

[[0.06161495 ©.93838505]]

The model stronly predicts that the MP is in the reponder class. This in itself doesn't tell the
attacker that the model was in the training set. What the attacker needs is to estimate how
confident the model is when presented with examples from the training set, and when not.
This is where the shadow model comes in -- they hope that their shadow model is similar
enough to the original that the confidences it gives can be used as a proxy against which to

compare these values for the MP.

The attacker generates their shadow data. There are lots of ways they could do this, in this
case they use the same process we used above.

#1 1s cancer, © 1is no response, this is our label and what we want to predict.
shadow_response = [1]*100 + [©]*100

shadow_df = pd.DataFrame()

#diabetes © no, 1 yes
shadow_df['diabetes'] = [[1, ©][random.random()>0.7] for n in range(100)] +
[[1, @][random.random()>0.2] for n in range(100)]

#asthma © no, 1 yes
shadow_df['asthma’] [[1, @][random.random()>0.7] for n in range(100)] +

[[1, @][random.random()>0.5] for n in range(100)]

#bmi group 1 under, 2 normal, 3 overweight, 4 obese
shadow_df["bmi_group'] = [random.choices([1, 2, 3, 4],
weights = [0.5, 5, 7, 5], k = 1)[0]
for n in range(100)] +
[random.choices([1, 2, 3, 4],
weights = [1, 7, 4, 1], k = 1)[0]
for n in range(100)]

#blood pressure 0 is low, 1 1s normal, 5 is extremly high
shadow_df['blood_pressure'] = [random.choices([©0, 1, 2, 3, 4, 5],
weights = [0.5, 1, 5, 6, 1, 0.5],
k = 1)[e]
for n in range(100)] +
[random.choices([0, 1, 2, 3, 4, 5],
weights = [©.5, 5, 5, 1, 1, @.5],
k = 1)[0]
for n in range(100)]

#smoker © 1s non smoker, 1 1s smoker
shadow_df['smoker'] = [[1, @][random.random()>0.8] for n in range(100)] +
[[1, @][random.random()>0.2] for n in range(100)]

#age
X = np.arange(20,990)
pmf = poisson.pmf(x, 72)

age = [random.choices(x, weights = pmf, k = 1)[@] for n in range(100)]
X = np.arange(20,90)

pmf = poisson.pmf(x, 55)

age2 = [random.choices(x, weights = pmf, k = 1)[@] for n in range(1090)]
shadow_df['age'] = age + age2

Now, we split the shadow data into two. We will use one set to train the shadow model

shadow_train_x, shadow_test_x, shadow_train_y, shadow_test_y = train_test_split(
shadow_df, shadow_response, test_size=0.5

)

And train the shadow model...

Train a model

prng = np.random.RandomState(12)

shadow_svc = SVC(C=1, gamma=3, probability=True, random_state=prng)
shadow_svc.fit(shadow_train_x, shadow_train_y)

SVC(C=1, gamma=3, probability=True,

random_state=RandomState(MT19937) at ©x159E5341840)
The attacker now passes the portion of shadow data used for training, and the portion used
for testing through the trained shadow model to extract the model's confidence. For each
example, the attacker just needs the highest of the two values (reponse confidence or non-
response confidence, whichever is larger). A quick look at the average of these values for the
two sets tells us that the shadow model assigns much higher confidence to training

examples than non-training examples

train_preds = shadow_svc.predict_proba(shadow_train_x).max(axis=1)

test_preds = shadow_svc.predict_proba(shadow_test_x).max(axis=1)

print(f'Mean of confidence for training examples = {train_preds.mean():.2f}")
print(f'Mean of confidence for non-training examples = {test_preds.mean():.2f}")

Mean of confidence for training examples = 0.92

Mean of confidence for non-training examples = 0.54

The attacker now knows the kind of confidence values that their shadow model gives to
training and non-training examples. They're confident that the data they generated is similar
enough to the original data, and that their model is confifgured similarly to the original
model (remember that the researcher released this information) to assume that these
confidence values are similar to those that the original model would give on training and
non-training data. They can therefore use them as a baseline against which to compare the

the value they got when they presented the MP's data to the original model.

print(f'Maximum confidence for MP in original model: {mp_preds.max():.2f}")

Maximum confidence for MP in original model: 0.84

The attacker can do this comparison in a number of ways. Here we will assume that the
attacker trains another ML model (the attack model) to distinguish between these two sets
of confidences. We use a LogisticRegression model (a very simple classifier), but the attacker
could use anything.

from sklearn.linear_model import LogisticRegression
1r = LogisticRegression()

train_x = np.vstack((train_preds[:, None], test_preds[:, None]))
train_y = np.hstack((np.ones(len(train_preds)), np.zeros(len(test_preds))))
lr.fit(train_x, train_y)

LogisticRegression()

The attacker now passes the maximum confidence value they got from the original model
with the MPs data to this new model to obtain a prediction as to whether or not it was in
the training data. Note that the prediction takes the same form as previous predictions: two
confidence values. One the confidence of it not having been in the training set, another the

confidence that it was:

input_array = np.array([[mp_preds.max()]])

prob_membership = lr.predict_proba(input_array)

print(f'Confidence of non-membership = {prob_membership[@][0]:.2f}")
print(f'Confidence of membership = {prob_membership[@][1]:.2f}")

Confidence of non-membership = 0.20
Confidence of membership = 0.80

The model is making a strong prediction that the MP was in the training data, and therefore

the attacker concludes that they did have Cancer. This prediction is correct.

Mitigation

Mitigating this kind of attack involves configuring the classifier to not give different
confidences to examples that it has been trained upon. In this case, decreasing the SVMs
gamma parameter will have a strong effect. For example, here is what happens in the attack
if the original model's gamma is reduced from 3 to 0.1

prng = np.random.RandomState(12)
svc = SVC(C=1, gamma=0.1, probability=True, random_state=prng)
svc.fit(df, response)

mp_preds = svc.predict_proba(mp_data)
print(mp_preds)

shadow_svc = SVC(C=1, gamma=0.1, probability=True, random_state=prng)
shadow_svc.fit(shadow_train_x, shadow_train_y)

train_preds = shadow_svc.predict _proba(shadow_train_x).max(axis=1)

test_preds = shadow_svc.predict_proba(shadow_test x).max(axis=1)

print(f'Mean of confidence for training examples = {train_preds.mean():.2f}")
print(f'Mean of confidence for non-training examples = {test_preds.mean():.2f}")

1r = LogisticRegression()

train_x = np.vstack((train_preds[:, None], test_preds[:, None]))

train_y = np.hstack((np.ones(len(train_preds)), np.zeros(len(test_preds))))
lr.fit(train_x, train_y)

input_array = np.array([[mp_preds.max()]])

prob_membership = lr.predict_proba(input_array)

print(f'Confidence of non-membership = {prob_membership[@][0]:.2f}")
print(f'Confidence of membership = {prob_membership[@][1]:.2f}")

[[©.15803859 0.84196141]]

Mean of confidence for training examples = 0.93

Mean of confidence for non-training examples = 0.90

Confidence of non-membership = 0.52

Confidence of membership = 0.48

The attack is now almost completely ambiguous, providing the attacker with no information

as to whether or not the MP was in the training set.

The technical effect gamma has on the SVM is unimportant -- the important point is that
changes to the model's configuration can play a significant role in its vulnerability.

Conclusions

This example has shown how an attacker can perform a membership inference attack to
determine that a well-known individual was in a model's training data.

It is hopefully clear that this is non-trivial -- the attacker has to put in quite a lot of effort.
Their success is also contingent on them knowing certain things about the problem. In
particular:

1. Enough information about the original data that they can generate a shadow dataset.
This will be things like: types of variables, ranges of variables, distributions of variables.
Such information is often available at population levels (e.g. average age, proportion of
population with diabetes etc).

2. Configuration information about the original model. In this case, it was the parameters
that define the model and, in particular a parameter called gamma that is used in the
SVM. It is quite common for researchers to publish this information.

3. The input values for the individual in question. This is harder to come by, but for
famous individuals, it's conceivable that a lot of this information might be in the public
domain.

