
Instance based attacks
This notebook demonstrates additional issues that are unique to instance-based models.

Instance-based models are popular within Machine Learning -- common examples are K-
Nearest-Neighbours and the Support Vector Machine. All machine learning models
(instance-based or otherwise) require access to data during the training phase. What makes
instance-based models distinct is that they also require access to training data to make
predictions and therefore need to store some of the training data within the model file.

As it is this model file that researchers wish to export from the TRE, this constitutes a
problem.

We will illustrate this with an example.

INFO:c:\Users\simonr04\git\GRAIMatter\data_preprocessing\data_interface.py:ROOT PR
OJECT FOLDER = c:\Users\simonr04\git\GRAIMatter

Here we are using an open source dataset as we cannot show an example with data from
the TRE.

INFO:c:\Users\simonr04\git\GRAIMatter\data_preprocessing\data_interface.py:DATASET
FOLDER = c:\Users\simonr04\git\GRAIMatter\data

INFO:c:\Users\simonr04\git\GRAIMatter\data_preprocessing\data_interface.py:Loading
mimic2-iaccd

INFO:c:\Users\simonr04\git\GRAIMatter\data_preprocessing\data_interface.py:Preproc
essing

Training the model

In [1]: import os

import logging

import numpy as np

import pylab as plt

%matplotlib inline

logging.getLogger('matplotlib.font_manager').disabled = True

os.chdir("c:\\Users\\simonr04\\git\\GRAIMatter")

from data_preprocessing.data_interface import get_data_sklearn

logging.basicConfig(level = logging.DEBUG)

In [2]: DATASET_NAME = "mimic2-iaccd"

X, y = get_data_sklearn(DATASET_NAME)

Choose some features (we don't need all of them)

FEATURES = [

 "age", "gender_num", "bmi", "day_icu_intime_num", "liver_flg", "copd_flg"

]

subX = X[FEATURES].copy()

Round bmi to an integer

subX['bmi'] = subX['bmi'].astype(int)

subX['age'] = subX['age'].astype(int)

We now train an instance-based model (a Support Verctor Machine; SVM). In this case, we
are predicting whether an individual admitted to hospital died or not.

We start by splitting the data into two sets, and then training the model with one of the sets.
We show the model performance via a ROC curve. This is just to show that the model is able
to do something (lines above the dashed line show performance better than guessing).

[<matplotlib.lines.Line2D at 0x2c91c5636d0>]

In [3]: from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_curve

font = {'size': 14}

plt.rc('font', **font)

train_X, test_X, train_y, test_y = train_test_split(subX.values,

 y.values.flatten())

svm = SVC(probability=True, gamma=.01)

svm.fit(train_X, train_y)

train_probs = svm.predict_proba(train_X)

test_probs = svm.predict_proba(test_X)

plt.figure(figsize=(10, 10))

fpr, tpr, _ = roc_curve(test_y, test_probs[:, 1])

plt.plot(fpr, tpr, label='test')

fpr, tpr, _ = roc_curve(train_y, train_probs[:, 1])

plt.plot(fpr, tpr, label='train')

plt.legend()

plt.xlabel('fpr')

plt.ylabel('tpr')

plt.plot([0, 1], [0, 1], 'k--')

Out[3]:

The python object svm is the model. This is what a researcher would want to save and
export from the TRE.

Unfortunately, it includes exact copies of some of the data examples. Details in the next cell.

In this example, the SVM has stored exact copies of 441 of the original data rows
(out of 798 total rows)

Without these, the SVM won't work. They are immediately accessible with access to the
svm object. For example, here are the top 5, and the same rows from the training data for

comparison:

In [5]: n_support_vectors = len(svm.support_vectors_)

n_total = len(train_X)

print(f"In this example, the SVM has stored exact copies of {n_support_vectors}

 of the original data rows (out of {n_total} total rows)")

In [6]: NTOP = 5

for i in range(NTOP):

 sv_idx = svm.support_[i]

 sv = svm.support_vectors_[i]

 original = train_X[sv_idx, :]

 print(f"EXAMPLE {i}")

 print("\t Original:\t", original)

 print("\t Stored:\t", sv)

EXAMPLE 0

	 Original:	 [46. 1. 39. 5. 0. 0.]

	 Stored:	 [46. 1. 39. 5. 0. 0.]

EXAMPLE 1

	 Original:	 [36. 1. 26. 5. 0. 0.]

	 Stored:	 [36. 1. 26. 5. 0. 0.]

EXAMPLE 2

	 Original:	 [67. 1. 19. 4. 0. 0.]

	 Stored:	 [67. 1. 19. 4. 0. 0.]

EXAMPLE 3

	 Original:	 [55. 0. 19. 6. 0. 0.]

	 Stored:	 [55. 0. 19. 6. 0. 0.]

EXAMPLE 4

	 Original:	 [87. 0. 24. 7. 0. 0.]

	 Stored:	 [87. 0. 24. 7. 0. 0.]

It is immediately clear that exporting the model would, in effect export exact copies of some
individual level data.

This is an issue with all instance-based models where an attacker has direct access to the
contents of the model (or the model file). It is not an issue if the attacker is only able to
query the model and not have access to its inner workings.

