
MIA_example

Membership Inference Attacks
In this notebook, we describe some of the potential consequences if we fail to ensure security on TRE releases.

We will look at a particular problem which can arise without malicious actions by researchers or TRE staff. In
other words, our scenario is one which can happen even if all researchers and TRE staff are well-intentioned.

In order to illustrate the point in a setting which makes sense, we will use only a simulated data set: all
patients, samples and so on are fictional.

We will consider a scenario in which we recruit a group of drug users, with the intent of trying to predict
bad financial outcomes in order to help other drug users avoid these. We presume that we recruit a range of
people with the assurance that their participation is anonymous. We will show that we may inadvertently
give away the details of the people who participated, even without directly releasing their data.

This example is extreme; technically, it uses a very overfitted model. This is largel just to make the effects
obvious; the same effects can occur in less extreme settings.

Throughout this document, text and output in red will indicate private data which is protected on a TRE.
Text and output in blue will indicate data that is publically available. We will show that using only publically
available data we can work out some data that was only privately available.

Problem overview

Intravenous (IV) drug users in the community often face financial difficulties, due to a range of factors. These
financial difficulties can make it harder to address drug related problems and have serious effects on quality
of life. In order to help IV drug users avoid severe financial difficulties, we are interested in answering the
following research question:

Given a particular IV drug user, what is the probability they are financially insolvent?

In order to do this we recruit 50 IV drug users with the promise that their participation in the study will be
anonymous. We record whether they are financially solvent, along with their age, sex, level of education,
housing status, number of previous periods of rehabilitation, and number of previous drug convictions.

Here are the first ten rows of the our private data:
head(data_matrix)

names age education sex prev_convictions housing prev_rehab solvent
1 Michelle 34 Some_secondary F 2 Other 0 1
2 Lindsay 35 Secondary M 0 Supported 1 1
3 James 40 University F 2 Other 4 1
4 Kenneth 36 University M 3 Other 1 1
5 Emily 32 None M 1 No_fixed 2 0
6 Rebecca 22 Some_secondary M 0 Supported 0 0

Importantly, the status of these individuals as being included in the study is private:
head(in_study)

name age in_study
1 Michelle 34 In study

1

2 Lindsay 35 In study
3 James 40 In study
4 Kenneth 36 In study
5 Emily 32 In study
6 Rebecca 22 In study

We plan to learn a rule to predict the variable solvent on the basis of the other variables. The details will
not matter much, but in this case we will use technical tool called a Gaussian Process classifier.

Data analysis (on safe haven)

We now try and learn our rule from the data. It will turn out that the rule we learn is not very good (it is
‘overfitted’, meaning that it works well on the data we already have, but would not work well if we were to
try and use it on new people).
mod1=gausspr(solvent~.,data=data_matrix[,-1],kpar=list(sigma=3))

We release this rule (in the form of a model) to the public (now we are blue):
summary(mod1)

Length Class Mode
1 gausspr S4

Looking a bit more closely at what we released, we haven’t released anyone’s data directly: the command
dput shows us exactly what is released verbatim, and it’s clear that nobody’s data is directly included in this:
dput(mod1)

new("gausspr", tol = numeric(0), scaling = list(scaled = c(TRUE,
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE,
FALSE, FALSE, TRUE), x.scale = list(`scaled:center` = c(age = 29.64,
prev_convictions = 1.18, prev_rehab = 1.66), `scaled:scale` = c(age = 6.25564235106914,
prev_convictions = 1.22374467124812, prev_rehab = 1.52006981579727
)), y.scale = list(`scaled:center` = 0.5, `scaled:scale` = 0.505076272276105)),
sol = structure(numeric(0), .Dim = c(0L, 0L)), alphaindex = list(),
nvar = numeric(0), alpha = structure(c(0.494194475985336,
0.504104719583325, 0.494975370432552, 0.494793634826664,
-0.475868325923097, -0.495157346699524, 0.494486065455878,
-0.496066461223181, -0.475896248799934, -0.494971531503884,
0.49496865457255, -0.494963738012464, 0.496898997759016,
0.498109833034276, 0.495126721198407, -0.49334379925321,
0.493741731688079, -0.495290313082235, -0.496274888678442,
0.495214858416443, -0.494973867072998, 0.494986490980358,
-0.495298492091012, -0.506388103152589, -0.498104390660131,
-0.496443904999153, 0.494527975607549, -0.495035556900245,
-0.494819934435864, 0.49504832631987, -0.495054254978252,
-0.465828581073045, -0.465873633772586, 0.494825177970834,
0.494500497558978, 0.494523702434531, -0.494505012533582,
0.496100821437075, -0.494915907373877, -0.495261742190387,
0.495278188034688, 0.497718678979343, 0.49497479127283, -0.494860693951191,
0.494987436860571, 0.49735083822366, 0.495084555000569, -0.492507960456503,
0.495140677238289, -0.494974774878679), .Dim = c(50L, 1L), .Dimnames = list(
c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28",

2

"29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46",
"47", "48", "49", "50"), NULL)), type = "regression",
kernelf = new("rbfkernel", .Data = function (x, y = NULL)
{
if (!is(x, "vector"))
stop("x must be a vector")
if (!is(y, "vector") && !is.null(y))
stop("y must a vector")
if (is(x, "vector") && is.null(y)) {
return(1)
}
if (is(x, "vector") && is(y, "vector")) {
if (!length(x) == length(y))
stop("number of dimension must be the same on both data points")
return(exp(sigma * (2 * crossprod(x, y) - crossprod(x) -
crossprod(y))))
}
}, kpar = list(sigma = 3)), kpar = list(), xmatrix = structure(c(0.696970791377618,
0.856826477473402, 1.65610490795232, 1.01668216356919, 0.37725941918605,
-1.22129744177179, -0.42201901129287, -1.70086450005914,
-0.262163325197086, 0.856826477473402, 0.0575480469944821,
-1.06144175567601, 0.537115105281834, 1.65610490795232, -1.38115312786757,
-0.741730383484438, -0.262163325197086, -0.102307639101302,
-0.42201901129287, -0.581874697388654, 0.696970791377618,
-0.581874697388654, -0.901586069580222, 1.17653784966497,
1.81596059404811, -0.581874697388654, 1.01668216356919, 1.81596059404811,
0.0575480469944821, 2.13567196623967, -0.581874697388654,
0.217403733090266, 0.37725941918605, -1.38115312786757, -0.581874697388654,
1.33639353576075, -0.42201901129287, 0.37725941918605, 0.0575480469944821,
1.01668216356919, -0.741730383484438, 0.537115105281834,
-1.22129744177179, -2.02057587225071, -0.581874697388654,
-1.38115312786757, 0.0575480469944821, -1.06144175567601,
-0.102307639101302, -0.102307639101302, 0, 0, 0, 0, 1, 0,
0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 0, 0.670074419334279, -0.964253432700547,
0.670074419334279, 1.48723834535169, -0.147089506683134,
-0.964253432700547, -0.964253432700547, -0.147089506683134,
-0.147089506683134, -0.147089506683134, 0.670074419334279,

3

1.48723834535169, -0.964253432700547, -0.964253432700547,
-0.964253432700547, -0.964253432700547, 0.670074419334279,
-0.964253432700547, 0.670074419334279, -0.964253432700547,
-0.964253432700547, 1.48723834535169, -0.147089506683134,
-0.964253432700547, -0.964253432700547, 1.48723834535169,
2.3044022713691, -0.147089506683134, -0.964253432700547,
-0.964253432700547, 1.48723834535169, -0.147089506683134,
-0.964253432700547, 0.670074419334279, 0.670074419334279,
2.3044022713691, -0.964253432700547, 1.48723834535169, 0.670074419334279,
-0.147089506683134, -0.964253432700547, -0.147089506683134,
-0.964253432700547, 0.670074419334279, 0.670074419334279,
0.670074419334279, 0.670074419334279, -0.964253432700547,
-0.964253432700547, -0.964253432700547, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,
1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, -1.09205510348834, -0.434190583314643, 1.53940297720646,
-0.434190583314643, 0.223673936859058, -1.09205510348834,
0.223673936859058, -0.434190583314643, -0.434190583314643,
1.53940297720646, 0.223673936859058, -1.09205510348834, 0.223673936859058,
0.881538457032759, -0.434190583314643, 0.223673936859058,
-1.09205510348834, 0.223673936859058, -1.09205510348834,
-0.434190583314643, 1.53940297720646, -0.434190583314643,
-1.09205510348834, -0.434190583314643, 1.53940297720646,
0.223673936859058, 1.53940297720646, -1.09205510348834, 0.881538457032759,
-1.09205510348834, 0.881538457032759, -1.09205510348834,
-1.09205510348834, 0.223673936859058, -1.09205510348834,
1.53940297720646, -1.09205510348834, -0.434190583314643,
0.223673936859058, -1.09205510348834, -1.09205510348834,
-1.09205510348834, 2.19726749738016, 0.881538457032759, 0.881538457032759,
-0.434190583314643, -0.434190583314643, 0.881538457032759,
0.223673936859058, 2.19726749738016), .Dim = c(50L, 13L), .Dimnames = list(
c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28",
"29", "30", "31", "32", "33", "34", "35", "36", "37",
"38", "39", "40", "41", "42", "43", "44", "45", "46",
"47", "48", "49", "50"), c("age", "educationNone", "educationSome_secondary",
"educationSecondary", "educationUniversity", "educationProfessional",
"sexF", "prev_convictions", "housingRent", "housingSupported",
"housingOther", "housingNo_fixed", "prev_rehab"))), ymatrix = NULL,
fitted = structure(c(0.49575501767583, 0.485844774077841,
0.494974123228614, 0.495155858834503, -0.51408116773807,
-0.494792146961643, 0.495463428205288, -0.493883032437986,
-0.514053244861233, -0.494977962157282, 0.494980839088616,
-0.494985755648702, 0.493050495902151, 0.49183966062689,

4

0.494822772462759, -0.496605694407956, 0.496207761973087,
-0.494659180578931, -0.493674604982725, 0.494734635244724,
-0.494975626588168, 0.494963002680809, -0.494651001570154,
-0.483561390508578, -0.491845103001036, -0.493505588662013,
0.495421518053617, -0.494913936760921, -0.495129559225303,
0.494901167341296, -0.494895238682915, -0.524120912588122,
-0.52407585988858, 0.495124315690332, 0.495448996102188,
0.495425791226635, -0.495444481127585, 0.493848672224091,
-0.49503358628729, -0.494687751470779, 0.494671305626479,
0.492230814681823, 0.494974702388337, -0.495088799709976,
0.494962056800596, 0.492598655437506, 0.494864938660597,
-0.497441533204663, 0.494808816422877, -0.494974718782487
), .Dim = c(50L, 1L)), lev = logical(0), nclass = 0L, error = 0.24377893993342,
cross = -1, n.action = NULL, terms = solvent ~ age + education +
sex + prev_convictions + housing + prev_rehab, kcall = .local(x = x,
data = ..1, kpar = ..2))

Now someone outside of the TRE can use the model to make predictions for new people, and hopefully help
them avoid insolvency.

Attacker - what we know

Suppose now that we are an adversary. . . (job interview)

Some people have made public that they were part of the study: their information is as follows:
some_people_in_study=data_matrix[sample(3:30,20),]
some_people_NOT_in_study=new_data[sample(3:30,20),]

head(some_people_in_study)

names age education sex prev_convictions housing prev_rehab solvent
27 John 36 Some_secondary F 4 No_fixed 4 1
20 Ashley 26 Secondary M 0 Own 1 1
8 Elizabeth 19 None F 1 Supported 1 0
11 Angela 30 Some_secondary F 2 Rent 2 1
13 Tyler 33 None F 0 Other 2 1
21 Jason 34 Some_secondary F 0 Other 4 0

We also know the details of some people who were not in the study:
head(some_people_NOT_in_study)

names age education sex prev_convictions housing prev_rehab solvent
22 Christina 35 None F 4 Supported 3 0
7 Jose 31 Some_secondary F 4 Own 0 1
16 Thomas 22 Secondary M 0 Other 2 1
18 Brittany 24 None M 1 Supported 3 0
19 Nicholas 27 None M 1 Other 0 1
9 Megan 29 None F 1 Supported 2 0

Attacker - what we can do

We have four potential candidates from a job interview,
candidates

5

names age education sex prev_convictions housing prev_rehab solvent
1 Michelle 34 Some_secondary F 2 Other 0 1
2 Lindsay 35 Secondary M 0 Supported 1 1
3 Zachary 24 University M 5 Rent 0 1
4 Sean 20 University M 4 No_fixed 0 1

The job interview candidates will not tell us if they are IV drug users. Can we use the released model to find
out if they were in the study

Attack procedure

Let’s say we use the model released from the TRE to make predictions on the people we know were in the
dataset.
p1=predict(mod1,newdata=some_people_in_study,type="response")
head(data.frame(names=some_people_in_study$names,model_output=p1))

names model_output
1 John 0.7502257
2 Ashley 0.7498787
3 Elizabeth 0.2505514
4 Angela 0.7500031
5 Tyler 0.7490281
6 Jason 0.2499996

and the people we know were not in the study
p2=predict(mod1,newdata=some_people_NOT_in_study,type="response")
head(data.frame(names=some_people_NOT_in_study$names,model_output=p2))

names model_output
1 Christina 0.5000843
2 Jose 0.5000056
3 Thomas 0.5010153
4 Brittany 0.4999616
5 Nicholas 0.4982589
6 Megan 0.5084548

A pattern is suddenly obvious! People in the study have predictions which are very close to 25% or 75%
People who were not have predictions close to 50%.

So now we make predictions on our job interview candidates:
p3=predict(mod1,newdata=candidates,type="response")
head(data.frame(names=candidates$names,model_output=p3))

names model_output
1 Michelle 0.7503941
2 Lindsay 0.7453887
3 Zachary 0.4999998
4 Sean 0.4999577

It’s immediately obvious who was in the study and who was not:
candidate_status

names age status
1 Michelle 34 In study; drug user
2 Lindsay 35 In study; drug user

6

3 Zachary 24 Not in study
4 Sean 20 Not in study

This is a violation of the privacy of the individuals (Michelle and Lindsay) who volunteered to be in the study.

Summary

Privacy was violated even though nothing malicious was done by researchers and no data was directly released.

7

	Membership Inference Attacks
	Problem overview
	Data analysis (on safe haven)
	Attacker - what we know
	Attacker - what we can do
	Attack procedure
	Summary

