Programming trustworthy Infrastructure As Code in a
Secure Framework

Juncal Alonso!, Christophe Joubert?, Leire Orue-Echevarria', Matteo Pradella®*?,
Daniel Vladugic®

1 TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Cientifico y
Tecnoldgico de Bizkaia, Astondo bidea,700, E-48160 Derio, Spain

2 PRODEVELOP S.L., Paseo Ciutadella, 13 - entresuelos 2,3 y 4, 46003 Valencia, Spain

3 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano,
Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
4 IEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy
5 XLAB d.o.0., Pot za Brdom 100, 1000 Ljubljana, Slovenia
juncal.alonso@tecnalia.com, cjoubert@prodevelop.es,
leire.orue-echevarria@tecnalia.com, matteo.pradella@polimi.it,
daniel.vladusic@xlab.si

Abstract. Infrastructure-as-Code (IaC), enables the automation of several de-
ployment, configuration and management tasks. IaC has a lot of potential in cloud
computing as it results in a significant saving of time when an application needs
to be redeployed on a different set of resources, even running on different infras-
tructures. Unfortunately, IaC still suffers from some important issues, such as the
large variety of competing tools or the strong orientation toward the cloud, leav-
ing aside e.g. the edge. Also, trustworthiness and security aspects of are often left
for the end of the cycle, where errors and vulnerabilities are often too late or too
expensive to correct. We present here the PIACERE project, which provides tools,
methods and techniques for the Infrastructure-as-Code approach. The project will
make the creation of IaC more accessible to designers, developers and operators,
increasing the quality, security, trustworthiness and evolvability of infrastructural
code while ensuring its business continuity by providing self-healing mechanisms
anticipation of failures and violations.

Keywords: Secure software engineering, DevOps, Infrastructure as Code, De-
vOps Modelling Language, self-learning and self-healing mechanisms, optimiza-
tion algorithms, security analysis

1 Introduction

The virtualization revolution that has taken place in the last years along with the advent
of the cloud computing continuum (combination of cloud and edge), has allowed for an
increase in the use of software to build, control and configure entire virtual data centers
and the entire infrastructure layer. The use of such tools and APIs has only stressed the
importance of software in the infrastructure arena. Moreover, the significance of soft-
ware has recently grown to the point of merging the role of software developers with that
of infrastructure operators, whose main focus is the automation of infrastructure-related

2 J. Alonso, C.Joubert, L. Orue-Echevarria, M. Pradella, D. Vladusi¢

activities through the use of software, giving birth to the Infrastructure as Code trend,
the engine of the DevSecOps [1,2,4] movement, which is an organizational change
that consists of using software engineering tactics that reduce the technical and orga-
nizational distance between development and operation, leading to the creation of a
single, well-coordinated team of people.

Infrastructure-as-Code (1aC) [3], enables the automation of several deployment,
configuration and management tasks that otherwise would have to be performed manu-
ally. IaC has a lot of potential in a cloud computing context as it results in a significant
saving of time when an application needs to be redeployed on a different set of resources
or needs to be extended with new components, even possibly running on different cloud
infrastructures. In these cases, the infrastructural code can be reused, adapted, if needed,
and then run for recreating very quickly the new or extended software instance. As such,
TaC has represented a very important progress that has dramatically changed the work
organization of many IT-intensive organizations (e.g. Netflix®).

Unfortunately, IaC still suffers from these five main issues:

1. alarge variety of competing tools requiring the adoption of different programming
languages for writing infrastructural code,

2. the fact that all these tools and languages are focusing on a single or a small set of
automation steps and of types of resources (e.g. VMs),

3. they mostly focus on cloud computing leaving aside other computational resources
such as the edge;

4. they focus on certain phases of the lifecycle of the IaC such as provisioning, con-
figuration or deployment but there is not really an end-to-end solution covering the
Devs and the Ops;

5. trustworthiness and security aspects of the [aC are often left for the end of the cycle,
for once the code is already in operation, when it is already too late, the errors and
vulnerabilities are expensive to correct and can affect the business continuity of the
application.

As an example of the problems just mentioned, software configuration can be per-
formed by writing Chef recipes or Puppet code, just to name two well-known lan-
guages, while deployment orchestration can be defined by relying on TOSCA, Ter-
raform, Brooklyn or many other less known approaches. Moreover, Software-Defined
Networking (SDN) exploits specific protocols, such as OpenFlow or NETCONF, each
with its own data modeling language, storage mechanisms, and based on a large number
of proprietary protocols and configuration languages. The same occurs if the monitoring
stack, the load balancer or the auto-scaling mechanism are to be configured using pro-
prietary languages and associated tools. Such a diversity implies that adopting the IaC
approach today requires a variety of specialized skills and DevSecOps environments
that, in many cases, companies do not have, and struggle to find.

The main objective of the PIACERE project is thus to provide means (tools, meth-
ods and techniques) to enable most organizations to fully embrace the Infrastructure-
as-Code approach, through the DevSecOps philosophy, by making the creation of such
infrastructural code more accessible to designers, developers and operators (DevSecOps

® https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd 72715

Programming trustworthy Infrastructure As Code in a Secure Framework 3

teams), increasing the quality, security, trustworthiness and evolvability of infrastruc-
tural code while ensuring its business continuity by providing self-healing mechanisms

anticipation of failures and violations, allowing it to self-learn from the conditions that
triggered such re-adaptations.

- Enable the definition of semantic machine-readable
abstractions of infrastructural artifacts from some of the
major existing laC languages

« Support for Infrastructural requirements specification,

including NFRs

. Automatic infrastructural code « Modelling libraries of common patterns and typical

generation supported by language \ requirements to support context specific instantiation

transformations \\ _and different domains (Public Sector, critical
- Support for the most prominent \ | infrastructures,5G).

target environments and \ « Support for evolution and extension of the

languages infrastructural artifacts -

Buee « 1aC execution to orchestrate

the deployment.
« (Optimized) Execution

\ |
\ w\
\)
\ / —
i o 1 environment
+ Model level verification to check that the _/
model of the execution environment can |— F .
be transformed into executable code. |
« Code level verification to assess the DEV — 0OPs

« Runtime security monitoring
correctness of the generated laC « Monitoring tools and metrics
« laC code security inspection to check the time - series collection

1aC code against cybersecurity issues
« Component security inspection checking \
for known security vulnerabilities in /
imported software components \ « Support for laC self-healing decisions based on
\\ the anomalousevents identified or predicted.
\ « Self learning algorithms to detect non-
- Isolated testing of laC behaviour (Canary | compliance or anomalies of a NFR of the
c | deployed laC
Environment) N B e
. « Support for 1aC improvements identification
« Catalogue of services, resources and
. based on the monitored metrics
infrastructural elements
- Optimi

deployment configuration

Fig. 1. Relationship between PIACERE and the DevOps cycle.

To achieve the IaC DevSecOps concept, PIACERE will provide an integrated De-
vSecOps framework to develop, verity, release, configure, provision, and monitor in-
frastructure as code. The extensible architecture and modular approach of PIACERE
will support the different DevSecOps activities. Using a single integrated environment
(IDE) to develop infrastructural code will unify the automation of the main DevSecOps
activities and will shorten the learning curve for new DevSecOps teams. PIACERE will
allow DevSecOps teams to model different infrastructure environments, by means of
abstractions, through a novel DevOps Modeling Language (DOML), thus hiding the
specificities and technicalities of current solutions. Moreover, PIACERE will provide
an extensible Infrastructural Code Generator (ICG), translating DOML into source files
for different existing IaC tools, to reduce the time needed for creating infrastructural
code for complex applications. The provided extensibility mechanisms (DOML-E) shall

ensure the sustainability and longevity of the PIACERE approach and tool-suite (new
languages and protocols that can appear in the near future).

2 The PIACERE Approach

The PIACERE workflow (Figure 2) starts from the specification of qualitative require-
ments such as infrastructure, security, networking and software characteristics. These

4 J. Alonso, C.Joubert, L. Orue-Echevarria, M. Pradella, D. Vladusi¢

IDE jPemmpsss s Generated
: Infrastructure as Coder DeVSeCOpS
|| Infrastructural Infrastructural /{ é — ‘ H
Security DOML oy \s : _Terraform
Networking | — !
| Software DOML-E H W
REQUIREMENTS »\ ————— e
| | (qualitative) | T ——
~ VT E\ 1aC static SAST
g ew ificati
&) infrastructural vertication |
o components Model ‘ Security components ‘
checker inspector
5“"‘”"“3 ___) Available resources
eploye I < : 1
e i _Execution environment : Canary IOP+ ;
! Run-time monitoring system @ ; environment = A S
i | L .esource
— H Optimized] e~
- mm E Q| Toovere B el
\ ! : configuration M -)_ Infrastructural NFRs
\ i ' for laC g Ontimizer [err—- B3 ™ nd constraints
! Self learning Self healing : - (quantitative)
I mechanisms @ mechanisms 3 IaC simulation L
: ol /‘ Reliability, security and behaviour DevSecOpS
i Y Automatic laC execution platform (IEP) | testing
PIACERE SecDevOps framework for 1aC t

Fig. 2. The PIACERE workflow.

trigger the development of both the application and infrastructural software. Among
the others, they identify those non-functional requirements for application software that
become functional ones (need for provisioning certain services, for configuring certain
network functions and the like, security requirements, etc.) for the infrastructural code.
Based on these requirements, the DevSecOps team will focus on the development of the
infrastructural code. Through DOML, the DevSecOps Modeling Language, the topol-
ogy and the properties of the infrastructure to be created such as computation, memory,
networking, software and services resources, security requirements and rules, will be
defined. This will allow the DevSecOps team to model an infrastructure with its config-
uration abstracting the peculiarities of the provisioning and configuration of complex
execution environments, without being limited by the lack of knowledge on the large
variety of needed IaC languages and protocols.

After the modeling stage, the DevSecOps team will check if the resulting model can
be turned into executable code (verification at model level), using the Verification Tool
(VT), a composition of tools that works both at the level of models and infrastructural
code.

Once the infrastructure, network, and execution environment models are ready and
verified, the DevSecOps team will generate the infrastructural code from them through
the PIACERE Infrastructure Code Generator (ICG). The currently most prominent tar-
get [aC environments and languages (e.g. Terraform, Ansible, TOSCA) will be sup-
ported by ICG, in terms of provisioning and deployment orchestrators, configuration
management environments, monitoring platforms, and network APIs. The adequacy of
the generated infrastructural code will be checked, ranging from syntactic correctness to
consistency and ability to fulfill specific non-functional properties such as performance
of applications after their deployment. Special focus on security will be included. The
VT will contain an [aC code Security Inspector that will check the IaC code against the
known cybersecurity issues offering a Static Analysis Security Testing. Additionally,
the VT will support the testing of the specific security libraries and middleware to be

Programming trustworthy Infrastructure As Code in a Secure Framework 5

used within the framework to build the security inclusion policy. This whitebox fuzzing
testing will be executed by the Security Components Inspector. All these components
(from DOML to VT) supporting the IaC DevSec process will be integrated in an IDE
which will offer the IaC developers an integrated framework to support the design, de-
velopment, generation and verification of the infrastructural code.

Once the code is verified, PIACERE will support the simulation of the conditions
of the production environment through the Canary Sandbox Environment, enabling iso-
lated execution and testing of the IaC behavior (reliability and behavior testing and
cybersecurity threats) while identifying potential vulnerabilities and bottlenecks before
the code is deployed. As part of this pre-deployment phase, PIACERE will offer the
IaC optimized execution platform (IOP), which will include both a catalog describing
the available services (e.g. IaaS, XaaS) and infrastructural elements (e.g. computation,
networks) to deploy the IaC, and an Optimizer that will provide the best combination of
those services with such resources, based on a set of constraints (e.g., types of infras-
tructural elements, NFRs, and so on).

The following step is the execution at runtime of the created IaC through the IaC
execution platform (IEP). The main task of the execution platform is to create a de-
ployment plan by splitting the work into separate tasks, ordering them according to
their interdependencies, and distributing them to the specialized subsystems that per-
form the actual provisioning (e.g. creating virtual machines using proper IaaS connec-
tor, installing software packages or adjusting application configuration using Ansible).
Tracking dependencies also encompasses information transfer between interdependent
tasks, which is vital for producing functioning end-results. The PIFACERE Monitoring
platform will log the whole IaC execution run, making metadata and metrics about the
creation of resources available to the rest of the PIACERE components. This will en-
able insight into the effects of the specific IaC code, enabling feedback not only on the
application’s own runtime, but also on its provisioning, deployment. In such a complex
system, PIACERE will also verify any security violation at runtime through Runtime
security monitoring. This data (security-, performance-, uptime-related) will feed the
PIACERE Self-learning and self-healing mechanisms to ensure that the conditions of
the QoS are met at all times and that a failure or non-compliance of NFRs is not likely
to occur. If any of these occurs an alert to the DevSecOps teams will be sent and the
most appropriate IaC deployment configuration will be sought and selected by the opti-
mizer again. PIACERE will support the automatic re-deployment of the selected IaC to
ensure that their infrastructural code is always conforming to the SLAs committed with
the end-user even if the environmental situation changes.

3 Conclusion

The main aim we envision for the PIACERE project is to enable organizations to em-
brace the Infrastructure-as-Code (IaC) approach, through the DevSecOps philosophy,
by making the creation of such code more accessible to designers, developers and op-
erators (DevSecOps teams), increasing the quality, security, trustworthiness and evolv-
ability of infrastructural code while ensuring its business continuity by providing self-

6 J. Alonso, C.Joubert, L. Orue-Echevarria, M. Pradella, D. Vladusi¢

healing mechanisms anticipating to failures and violations, and self-learning from the
conditions that triggered such re-adaptations.

The envisioned PIACERE benefits will be assessed and demonstrated on its Use
Cases (5G, Public Administrations, Critical Infrastructures), with the focus on the util-
ity and suitability of the PIACERE approach and toolset in real cases from relevant
application domains and industrial sectors (telco, IoT, services).

Acknowledgments This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 101000162.

References

1. Bass, L.J., Weber, LM., Zhu, L.: DevOps - A Software Architect’s Perspective. SEI series in
software engineering, Addison-Wesley (2015)

2. Mohan, V., Othmane, L.B.: Secdevops: Is it a marketing buzzword? - mapping research on
security in devops. In: 2016 11th International Conference on Availability, Reliability and
Security (ARES). pp. 542-547 (2016)

3. Morris, K.: Infrastructure as Code: Managing Servers in the Cloud. O’Reilly Media, Inc., 1st
edn. (2016)

4. Myrbakken, H., Palacios, R.C.: DevSecOps: A multivocal literature review. In: Mas, A.,
Mesquida, A.L., O’Connor, R.V., Rout, T., Dorling, A. (eds.) Software Process Improvement
and Capability Determination - 17th International Conference, SPICE 2017, Palma de Mal-
lorca, Spain, October 4-5, 2017, Proceedings. Communications in Computer and Information
Science, vol. 770, pp. 17-29. Springer (2017), https://doi.org/10.1007/978-3-319-67383-7_2

