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Abstract. Least squares algorithm is set up for getting solution of the time dependent one
dimensional advection-di�usion equation (ADE). The cubic B-spline least squares method is
coupled with the Crank-Nicolson scheme to produce the numerical method which is used to
integrate the ADE fully. Two test problems are studied to illustrate the e�ciency of the proposed
method.
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1. Introduction

Our environment has been contaminated everyday from industrial sources and plants. The
study of contaminant transport require the knowledge of basic sciences such as mathematics
and physics. Transportation of contaminants and contamination rate can be determined by way
of mathematical modeling. ADE has served to model the transport of contamination in media.
Combination of ∂U

∂t
, advection ∂U

∂x
and di�usion ∂2U

∂x2 terms constitute the ADE:

∂u(x, t)

∂t
+ ϵ

∂u(x, t)

∂x
− γ

∂2u(x, t)

∂x2
= 0, x ∈ [a, b], t ≥ 0, (1.1)

where ϵ and γ are parameters, t and x are time and space coordinates respectively. The initial
condition (IC) is given as

u(x, 0) = f(x). (1.2)

Dirichlet boundary conditions (BCs) are

u(a, t) = 0, u(b, t) = 0. (1.3)

ADE describes contaminant transportation u(x, t) in a moving �uid with a constant speed ϵ
and di�usion coe�cient γ in x direction at time t. Finding solutions of the ADE is a long
standing problem. The equation includes behaviors of both advection and di�usion processes
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depending upon value of ϵ (advection coe�cient) and γ (di�usion coe�cient). Many numeri-
cal methods have been constructed to display the interaction between advective and di�usive
processes. When the equation becomes advection dominated, numerical methods may exhibit
some combination of spurious oscillations and excessive numerical di�usion. Progress is going
on to overcome such di�culties e�ectively. Intrinsic numerical methods must be built up to
avoid undesirable solutions.
The least squares technique is not much common to solve partial di�erential equations due
to application di�culties as much as the �nite element method and �nite di�erence method.
But there exists least squares studies on solving partial di�erential equations. ADE are also
handled by means of the least squares method. A space time least squares �nite element scheme
is constructed for advection-di�usion equation [1]. A p-version based space-time least squares
�nite element method is applied to solve the unsteady convection-di�usion equation [3]. A
computational scheme based on weighted residual least squares method using cubic B-splines
is developed to solve ADE in the study [5]. The space time least squares formulation using the
linear and quadratic B-spline basis functions have been presented for solving the ADE in the
studies [2, 4].
In this paper, time derivative and spatial derivatives of ADE are discretized by help of the
Crank-Nicolson method and the cubic B-spline least squares method respectively. This new
algorithm is described in section 2. Accuracy of presented method is demonstrated by studying
two test problems in the section of numerical simulations.

2. Cubic B-spline Least Squares Method

Consider equally distributed mesh points a = x0 < x1 < x2 < ... < xN = b with h = (b− a)/N
and xm = x0 +mh together with �ctitious points x−3, x−2, x−1, xN+1, xN+2, xN+3 outside the
domain [a, b]. The cubic B-spline basis functions Bm(x) ∈ C2[a, b] at the grid points are de�ned
as

Bm (x) =
1

h3


(x− xm−2)

3, if x ∈ [xm−2, xm−1]
h3 + 3h2(x− xm−1) + 3h(x− xm−1)

2 − 3(x− xm−1)
3, if x ∈ [xm−1, xm]

h3 + 3h2(xm−1 − x) + 3h(xm−1 − x)2 − 3(xm−1 − x)3, if x ∈ [xm, xm+1]
(xm+2 − x)3, if x ∈ [xm+1, xm+2]
0, otherwise.

(2.1)
Approximate solution U(x, t) is given by an expansion of the cubic B-splines as:

u (x, t) ≈ U (x, t) =
N+1∑
m=−1

Bm (x)ϕm (t) , (2.2)

ϕm (t) are time dependent parameters determined by the least squares method. Approximation
over subelements [xm, xm+1], m = 0, . . . , N − 1 has following form:

U e = Bm−2 (x)ϕm−2 (t) +Bm−1 (x)ϕm−1 (t) +Bm (x)ϕm (t) +Bm+1 (x)ϕm+1 (t) (2.3)

where quantities ϕj (t) , j = m − 2,m − 1,m,m + 1 are element parameters and Bj (x) , j =
m− 2,m− 1,m,m+ 1 are element shape functions. Introducing the change of variable

ξ = (x− xm)/∆x, 0 ≤ ξ ≤ 1 (2.4)

yields B-spline shape functions:

Bm−2 (ξ) = (1− ξ)3,
Bm−1 (ξ) = 1 + 3(1− ξ) + 3(1− ξ)2 − 3(1− ξ)3,
Bm (ξ) = 1 + 3ξ + 3ξ2 − 3ξ3,
Bm+1 (ξ) = ξ3.
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The approximate solution and its �rst two derivatives at the grid points can be computed from
the cubic B-spline functions as:

Um = U(xm, t) = ϕm−1 + 4ϕm + ϕm+1,
U ′
m = U ′(xm, t) =

1
h
(−3ϕm−1 + 3ϕm+1),

U ′′
m = U ′′(xm, t) =

6
h2 (ϕm−1 − 2ϕm + ϕm+1).

(2.5)

Discretization of the ADE in time using the Crank-Nicolson method yields:

2(Un+1 − Un) + β(Un+1
ξ + Un

ξ )− θ(Un+1
ξξ + Un

ξξ) = 0

where β = ϵ
∆t

∆x
, θ = γ

∆t

∆x2
.

Applying least squares technique to Eq. (1.1) and transformation de�ned above (2.4) yields the
integral equation:

1∫
0

[2(Un+1 − Un) + β(Un+1
ξ + Un

ξ )− θ(Un+1
ξξ + Un

ξξ)]
2dξ = 0. (2.6)

Substitution of the approximation (2.2) and its derivatives in Eq. (2.6) leads to

m+1∑
j=m−2

1∫
0

[2
(
Qj(ξ)ϕ

n+1
j −Qj(ξ)ϕ

n
j ) + β(Q′

j(ξ)ϕ
n+1
j +Q′

j(ξ)ϕ
n
j )− θ(Q′′

j (ξ)ϕ
n+1
j +Q′′

j (ξ)ϕ
n
j )
)
]2dξ = 0.

(2.7)
Taking partial derivatives of the Eq. (2.7) with respect to time variable ϕn+1

i , and integration
lead to a system of equations:

[4Ae + 2β((Be)T +Be)− 2θ((Ce)T + Ce) + β2De − βθ((Ee)T + Ee) + θ2F e](ϕe)n+1

= [4Ae + 2β((Be)T +Be)− 2θ((Ce)T − Ce)− β2De + βθ((Ee)T + Ee+)− θ2F e](ϕe)n
(2.8)

where ϕe = (ϕm−2, ϕm−1, ϕm, ϕm+1) are element parameters and the element matrices are given
by the following integrals:

Ae =
1∫
0

QiQjdξ, Be =
1∫
0

QiQ
′
jdξ, Ce =

1∫
0

QiQ
′′
jdξ,

De =
1∫
0

Q′
iQ

′
jdξ, Ee =

1∫
0

Q′
iQ

′′
jdξ, F e =

1∫
0

Q′′
iQ

′′
jdξ

where i, j take only the values m− 2,m− 1,m,m+ 1 for the element [xm, xm+1].
Assembling all contributions from all elements yields the global system of equations:

[4A+ 2β(BT +B)− 2θ(CT + C) + β2D − βθ(ET + E) + θ2F ]ϕn+1

= [4A+ 2β(BT −B)− 2θ(CT − C)− β2D + βθ(ET + E)− θ2F e]ϕn,
(2.9)

where a vector of all nodal parameters is ϕ = (ϕ−1, ϕ0, . . . , ϕN , ϕN+1)
T . A, B, BT , C, CT , D,

E, ET and F are derived from the element matrices Ae, Be, (Be)T , Ce, (Ce)T , De, Ee, (Ee)T

and F e, respectively.
After �nding the parameters ϕn+1, approximate solution over the elements can be found with
expression (2.3). Solution and its derivatives at the grid points can be directly computed with
expression (2.5). Initial parameters ϕ0

m must be calculated using BCs and IC given in Eqs.
(1.2)-(1.3) to give the algebraic equations below:

U(x0, 0) = ϕ0
−1 + 4ϕ0

0 + ϕ0
1 = 0,

U(xm, 0) = ϕ0
m−1 + 4ϕ0

m + ϕ0
m+1 = f(x), m = 0, . . . , N ,

U(xN , 0) = ϕ0
N−1 + 4ϕ0

N + ϕ0
N+1 = 0,

(2.10)

from which we obtain initial parameters and use to start recursive formula to calculate approx-
imate solution at required times tn.
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Table 1. Error norm for the Problem 1 at t = 9600

h = ∆t LSM [6] [7] [8] [6]
50 1.89× 10−1 1.90× 10−1 1.98× 10−1 3.73× 10−1 1.17× 10−4

10 7.50× 10−3 7.50× 10−3 7.51× 10−3 − 1.88× 10−7

5 1.87× 10−3 1.88× 10−3 − − 1.17× 10−8

2 3.00× 10−4 3.00× 10−4 − − 3.01× 10−10

1 7.50× 10−5 7.50× 10−5 7.50× 10−5 3.79× 10−1 2.21× 10−11

3. Numerical Simulations

L∞ error norm
∥u− U∥∞ = max

j
|uj − Uj| (3.1)

will be computed to measure the accuracy of the numerical scheme. Both pure advection and
di�usion dominated problems are worked out to demonstrate the e�ciency of the method.

3.1. Problem 1. Analytical solution of the pure advection problem, when γ = 0, is given by

u(x, t) = 10 exp(−(x− x0 − ϵt)2

2ρ2
). (3.2)

Boundary conditions u(0, t) = u(9000, t) = 0 and initial condition u(x, 0) are used together with
parameters ρ = 264m and x0 = 2000. Run is carried out in spatial domain [0, 900] until time
t = 9600. L∞ error norm of the presented method is tabulated together with some previous
results in Table 1. When Crank-Nicolson approach is employed for the time discretization, all
methods have produced the same accuracy seen in Table 1. Numerical solution at some times
and its absolute error variation at time t = 9600 are graphed in Figure 1 (a)-(b) for space/time
combination h = ∆t = 10 respectively. Initial pro�le with constant height 10 advances to the
right along x-axis.
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Figure 1. Numerical solutions at di�erent times (left) and absolute error at
t = 9600 (right)

3.2. Problem 2. The di�usion dominated solution of ADE is

u(x, t) =
1√

4t+ 1
exp(−(x− x0 − ϵt)2

γ(4t+ 1)
). (3.3)

This solution represents fading of initial bell shaped pro�le. Initial wave pro�le of magnitude
1√
4t+1

is centered at x0 in the problem domain [a, b] and propagates with decreasing magnitude.
Program is run up to terminating time t = 5 with the velocity coe�cient ϵ = 0.8 m/s, the
di�usion coe�cient γ = 0.005 m2/s, boundary conditions u(0, t) = u(9, t) = 0 in 0 ≤ x ≤ 9.
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Table 2. Error norm for the Problem 2 at t = 5

h = ∆t LSM [6]
0.1 5.23× 10−2 5.36× 10−2

0.05 1.24× 10−2 1.41× 10−2

0.02 1.03× 10−3 2.17× 10−3

0.01 1.40× 10−3 5.38× 10−4

0.005 1.78× 10−3 1.34× 10−4

Numerical results are written in Table 2 for various time-step increments. Numerical solutions at
some times are visualized in Fig. 2 and absolute error at t = 5 are depicted for h = ∆t = 0.005.
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Figure 2. Numerical solutions at di�erent times (left) and absolute error at
t = 5 (right)

4. Conclusion

An numerical method is proposed for solving the ADE. The least squares approach turns into
the Galerkin method in which trial functions are made up of the combination of the cubic
B-splines. Thus, ADE is discretized by the suggested least squares method in spatial space
and the Crank-Nicolson scheme in time to obtain a system of algebraic equations. The pure
advection and the di�usion dominated problems are studied to show the achievement of the
proposed scheme. The presented algorithm provides the same accuracy with results of the cubic
B-spline Galerkin method and extended B-spline collocation method when the Crank-Nicolson
technique is employed for time discretization of the ADE. If the high order time discretization
is applied, the accuracy of the suggested method can also be increased. This case is shown in
the study of M. Z. Gorgulu and D. Irk. Fourth order time discretization together with the cubic
Galerkin method provides very accurate results seen in Table 1 of the their study [6]. Thus
the suggested algorithm can be used as an alternative method for solving partial di�erential
equations reliably.
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