

CURE System Design
Deliverable D4.2

DATE
31 December 2021

ISSUE
2.0

GRANT AGREEMENT
no 870337

DISSEMINATION LEVEL
PU

PROJECT WEB-SITE
http://cure-copernicus.eu/

AUTHORS
Mario Dohr (GeoVille)
Samuel Carraro (GeoVille)
Johannes Schmid (GeoVille)
Michal Opletal (GISAT)

Ref. Ares(2022)172392 - 11/01/2022

http://cure-copernicus.eu/

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 1 of 17

LIST OF FIGURES
Figure 1: CURE SYSTEM architecture ... 4
Figure 2: Activity diagram for the creation of a customer .. 5
Figure 3: Activity diagram for the authentication process and a service call 6
Figure 4: Component based workflow diagram for a service call .. 7
Figure 5: Graph of an example DAG ... 10
Figure 6: WEkEO Dataset .. 14

LIST OF TABLES
Table 1: CURE SYSTEM components .. 3

LIST OF ACRONYMS
App Application
API Application Programming Interface
CPU Central Processing Unit
CCSI Copernicus Core Service Interface
DB Database
DIAS Data and Information Access Services
DAG Directed Acyclic Graphs
RAM Random-Access memory
Regex Regular expression
REST Representational State Transfer
WP Work Package

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 2 of 17

1 INTRODUCTION

1.1 Purpose of the document
Deliverable 4.2 is the final delivery of Task 4.2 Preparation of CURE System Design in (WP) 4
Cure System Development.

CURE Prototype System Design will describe the architectural design of the CURE Prototype in
detail based on the usage of DIAS as a Service. That comprises the set-up of hardware
components like processing units and storage as well as the software design including the
interaction between those components. The System Design also includes the evaluation of the
most suiting DIAS based on the given requirements from D4.1.

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 3 of 17

2 SYSTEM DESIGN INFRASTRUCTURE

2.1 CURE SYSTEM Architecture

The CURE SYSTEM is based on a loose microservice architecture. Table 1 lists the main system
components (microservices) of the CURE SYSTEM infrastructure.

Table 1: CURE SYSTEM components

Component Technology

Authentication & Authorization OAuth2 Server
API Gateway Python FLASK, Gunicorn and nginx
Interface description language Swagger
Databases PostgreSQL
Message queue RabbitMQ
Job scheduling system Apache Airflow / Celery (Flower)
Status manager Python module
Container virtualization Docker
Logging Python module
Storage WEkEO S3-Bucket
Monitoring & Tests Grafana, API Integration tests

Figure 1 shows the CURE SYSTEM architecture and depicts how the different components are
related to each other.

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 4 of 17

Figure 1: CURE SYSTEM architecture

2.2 CURE SYSTEM Service Submission Workflow
The aim of this section is to get a first rough overview of the CURE SYSTEM infrastructure and
the workflow of a service order. In order to use a CURE SYSTEM service a user must perform
the following steps:

Registration: Create a user (see Figure 2)

Authentication: Get access to the CURE SYSTEM infrastructure (see Figure 3)

Service Submission: Submit a new service order (see Figure 3)

Service Monitoring: Get the order status of the submitted service

Retrieve Results: Download the result of the service order

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 5 of 17

A more detailed workflow of a typical service submission is shown in Figure 3 and Figure 4.
Figure 2 shows the activity diagram for the authentication process and the submission of a
service. Figure 3 highlights the service call workflow from a component-related viewpoint.

Figure 2: Activity diagram for the creation of a customer

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 6 of 17

Figure 3: Activity diagram for the authentication process and a service call

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 7 of 17

Figure 4: Component based workflow diagram for a service call

2.2.1 Authentication
As a first step, a user must get access to the CURE SYSTEM infrastructure. Therefore, a user can
apply the authentication API endpoint.

• Endpoint for frontend logins: https://services.geoville.com/cure/v1/auth/login
• Endpoint for registration:

https://services.geoville.com/cure/v1/auth/get_bearer_token
• Endpoint for access token:

https://services.geoville.com/cure/v1/crm/customers/create
• Required information: User information (name etc.), email and password
• Response: Access token, client-id and client-secret

2.2.2 Service Submission
After getting access to the infrastructure, a user can submit a new service order (e.g. app 1).

• Endpoint: https://services.geoville.com/cure/v1/app1
• Required information:

o Access token if the API is directly used (using the LOG-IN Endpoint in an UI will
obtain the Access Token automatically)

o service specific parameters (region of interest, date, etc.)
• Response: Order-id

https://services.geoville.com/cure/v1/auth/login
https://services.geoville.com/cure/v1/auth/get_bearer_token
https://services.geoville.com/cure/v1/crm/customers/create
https://services.geoville.com/cure/v1/app1r

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 8 of 17

2.2.3 Service Monitoring
After successfully submitting a new order, a user can monitor the status of the service.
Therefore, the CURE SYSTEM API provides the oder_status endpoint.

• Endpoint: https://services.geoville.com/cure/v1/services/order_status
• Required information:

o Access token if the API is directly used (using the LOG-IN Endpoint in an UI will
obtain the Access Token automatically)

o Order-id of the individual service order
• Response: Order status and a link to the final result file if the process is successful

The endpoint supports multiple order states which are listed below:

• FAILED: An unexpected error occurred during the execution of the service
• SUCCESS: Service calculation was successful
• QUEUED: Submitted request is in a waiting position (waiting list)
• RECEIVED: API received the service request and created an order-id
• RUNNING – Service is currently running
• INVALID – Indicates missing satellite data for the requested date or tile

2.2.4 Retrieve Results
After receiving a successful state from the oder_status endpoint, a user can access the service
result by using the download link provided by the endpoint - typically a HTTP download link.
The link to the result or an error notification will be also sent to the user via email.

https://services.geoville.com/cure/v1/services/order_status

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 9 of 17

3 CURE SYSTEM COMPONENTS
This section describes the individual system components in detail and provides useful
information to use and extend the CURE SYSTEM - typically a HTTP download link.

3.1 Authentication & Authorization
The CURE SYSTEM user authentication and user management is based on the OAuth2 standard.
Therefore, the CURE SYSTEM provides an OAuth server and a database for managing users,
clients, access rights and access tokens. The CURE SYSTEM API provides a set of endpoints
which are required to perform common authentication and authorization operations. Among
others, this includes for example:

• Creating OAuth clients
• Client login
• Access token generation
• Token validation
• Resetting passwords
• Setting scopes

To ensure appropriate authorization standard, the CURE SYSTEM supports user scopes. These
scopes are used to grant access to individual CURE SYSTEM services.

3.2 API Gateway
The API Gateway is the entry point to the CURE SYSTEM infrastructure. The RESTful API
provides all endpoints which are required to interact with the system. The endpoints are
divided into scopes (e.g.: geo-services, custom-relation-management services, etc.)

3.3 Interface Description Language
The CURE SYSTEM API is documented with the Swagger software. Moreover, the Swagger UI
supports a straightforward workflow to run, debug and test all CURE SYSTEM API endpoints.
Please visit the Swagger UI for more details (https://services.geoville.com/cure/v1/).

3.4 Databases
The CURE SYSTEM infrastructure uses object-relational PostgreSQL databases. Moreover, in
order to support geo-related issues, the PostGIS extension is used.

PostGIS is a spatial database extension for the PostgreSQL DBMS. The extension adds support
for spatial operations and geometries such as points, lines, polygons, multi-polygons and
geometry collections.

https://services.geoville.com/cure/v1/

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 10 of 17

3.5 Message Queue
As already mentioned, the CURE SYSTEM infrastructure is based on a loose microservice
architecture. The communication between these microservices is implemented using a
message broker software. In particular, the CURE SYSTEM architecture uses the open-source
message brokers RabbitMQ.

To exchange messages between the microservices, CURE SYSTEM provides a Python module
which supports the two main applications of messaging – publishing messages and receiving
messages.

• Publisher: Sends messages to a RabbitMQ queue
• Receiver: Reads messages from a RabbitMQ queue

3.6 Job Scheduler
The scheduling system is one of the most important components of the CURE SYSTEM
infrastructure. It allows the execution of multiple parallel workflows and tasks. The CURE
SYSTEM scheduler is based on the Apache Airflow workflow management platform.

The following sub-sections address some of the most important Apace Airflow components.

3.6.1 DAG
Apache Airflow supports the creation of workflows. A workflow is formulated as Directed
Acyclic Graphs (DAG). Usually, such a DAG is a collection of tasks whereas each DAG is
represented as a Python script.

In Figure 5 an example DAG is visually presented. Each rectangle represents a task which can
be either a Python function, a Bash command or a Docker container. Therefore, before the
main Docker container of a specific app runs, previous tasks can take care of obtaining the
paths to the input data using GISAT’s Open Search API (CCSI), preprocessing, data formatting,
etc. In the end, the result can be uploaded to a WEkEO S3-Bucket and potential interim data
can be deleted to save space.

Figure 5: Graph of an example DAG

3.6.2 Operator
A DAG consists of several tasks which are also called operators. Airflow supports various types
of operators. Common operators which are used in the current CURE SYSTEM installation are
listed below:

Python Operator: Executes Python callable and commands.

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 11 of 17

Bash operator: Executes commands in a Bash shell.

Docker operator: Executes a command inside a docker container.

3.6.3 Worker
One advantage of Apache Airflow is the support of distributed system architectures. Therefore,
so called workers are running on worker nodes. Jobs can be transformed from the main Airflow
application to worker instances by using message protocols. To put it simply, each CURE app
can run on a separate virtual machine and gets managed by the airflow scheduler machine.

3.6.4 Parallelism
Apache Airflow provides powerful tools and configuration options to run workflows and even
DAGs in parallel. This helps to manage huge workloads.

3.6.5 Monitoring
Airflow provides a powerful monitoring tool, which helps to monitor, start, delete and debug
workflows and DAGs.

3.7 Status Manager
The status manager is a Python based module which listens to events that affect the status of
a service order. It updates the order status in a database accordingly. For specific status
updates, additional actions are triggered (e.g.: e-mail notifications).

3.8 Container virtualization
For OS-level virtualization the CURE system uses Docker. As already mentioned, Apache
Airflow provides an operator for efficiently running Docker containers. Docker images can be
stored on a Docker image hub (registry.cure.geoville.com). Therefore, it is important to use
correct tags.

Please consider the following recommendations:

• Small images are desirable
• In general, each piece of code should also be checked regarding the recommendations

listed below:
o Use the provided logging module (Python) or the logging API
o Make use of only one programming language
o Follow Coding standards (e.g. PEP8 for Python)
o Include sufficient error handling
o Documentation with comments
o Avoid the creation of temporary data if possible and do not forget the final

deletion of it
o Create tests cases

https://www.gnu.org/software/bash/

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 12 of 17

o All parameters which should be able to get set by the user need to have a
respective command-line argument

3.9 Logging
The CURE system supports two different techniques for logging:

• Python based module which provides a command for logging.
• API endpoint: A REST endpoint which allows logging by applying HTTP requests.

Generally, both logging mechanisms send messages to a queue. A standalone program
(GeoVille_MS_Logging_Saver) reads the log data from this queue and stores the messages in
a database.

In order to support traceability and debugging, the logging module provides different log-
levels:

• INFO: Confirmation that things are working as expected.
• WARNING: Indicates that something unexpected happened. The software is still

working as expected
• ERROR: Indicates a serious problem. The software has not been able to perform some

function.

3.10 Storage
The CURE system must be able to handle large amounts of geo-data. This data should be
accessible (read, write) by using standard technologies (e.g.: boto3). Therefore, the CURE
system uses an object storage which is easy to use and location independent (WEkEO S3
Buckets).

3.11 Monitoring & Tests
For monitoring and obtaining OS level statistics, the CURE system uses numerous Grafana
dashboards. These are helpful to detect defects at an early stage. Moreover, integration tests
for various stages are scheduled to continuously check the system health.

3.12 Copernicus core service interface
Copernicus Core Service Interface is a python-based service module responsible for searching
input data paths across the DIAS. CCSI provides a unified OpenSearch interface across multiple
collections and provides harmonized output. CCSI is intended to provide access to the products
generated by the CURE system and stored on WEkEO.

https://bitbucket.org/geoville/geoville_ms_logging_saver

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 13 of 17

3.13 Cure Portal
Cure portal is a web-based application that allows the user to interact with CURE products. The
application will be based on the concept of storyline. Each storyline will represent a cure
application or their combination to underline added value of the CURE products. The set of
interactive maps, graphs, charts, tables, and other elements will be used to demonstrate the
product’s values and their benefits for the user. Storylines will be developed around the
demonstration products generated for frontrunners cities. Part of the Portal will be user
registrations and limited access for registered users to generate their own products by using
certain CURE applications.

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 14 of 17

4 DIAS SELECTION
Smart decisions in a complex and strongly linked world need to be based on high value
information extracted from multiple datasets by well suited data preparation steps. To derive
all the insights two technical components are essential:

• scalable and reliable IT infrastructure and
• fast accessible, heterogeneous big datasets

For this purpose, in the context of Copernicus the EU has initiated data platforms called DIAS
(Data and Information Access Services). These platforms are meant to offer All-in-One Access
to satellite imagery and high values Services called Copernicus Services.

After a careful platform selection process, the consortium decided to implement its work horse
for processing chains on WEkEO. WEkEO is the EU's Copernicus DIAS reference service for
environmental data, virtual environments for data processing and skilled user support.

As highlighted in Figure 6, WEkEO offers a large range of pre-processed Sentinel satellite fleet
data, data from Copernicus Services, and additional in-situ data. In total 235 open datasets are
available ranging over many thematic and geographic areas.

Figure 6: WEkEO Dataset

Besides the data availability, WEkEO offers additional computation infrastructure in terms of
typical cloud virtualized engines. They are arranged along various virtual processing
environments, suitable to serve the distributed processing system of CURE.

CURE’s backend system is based on fully virtualized containers offering:

• API based system interaction for job execution as well as data access

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 15 of 17

• central storage access components
• central job execution components
• central monitoring and logging
• user authentication
• high degree of scalability through central container orchestration

Additionally, in many projects undertaken by CURE’s consortium members WEkEO has proven
service maturity, excellent stability and fast support. Therefore, WEkEO is an ideal partner for
a project such as CURE.

Copernicus for Urban Resilience in Europe

CURE System Design

Deliverable D4.2
 Page 16 of 17

5 CONCLUSION
This document presents the current version of the CURE System Design and its components
and functionalities. This first version of the System will be further developed, improved, and
adjusted in accordance with initial specification and planned project schedule and according
to specific needs of CURE applications. As a next step the development of the CURE prototype,
based on User-Requirements and System design, will be done, following an agile software
development approach by iteratively build a system with step-by-step adding of functionalities
(components and services). Necessary changes will be will in close iteration with the work
conducted in the frame of WP3 and WP2.

	1 Introduction
	1.1 Purpose of the document

	2 System Design Infrastructure
	2.1 CURE SYSTEM Architecture
	2.2 CURE SYSTEM Service Submission Workflow
	2.2.1 Authentication
	2.2.2 Service Submission
	2.2.3 Service Monitoring
	2.2.4 Retrieve Results

	3 CURE SYSTEM Components
	3.1 Authentication & Authorization
	3.2 API Gateway
	3.3 Interface Description Language
	3.4 Databases
	3.5 Message Queue
	3.6 Job Scheduler
	3.6.1 DAG
	3.6.2 Operator
	3.6.3 Worker
	3.6.4 Parallelism
	3.6.5 Monitoring

	3.7 Status Manager
	3.8 Container virtualization
	3.9 Logging
	3.10 Storage
	3.11 Monitoring & Tests
	3.12 Copernicus core service interface
	3.13 Cure Portal

	4 DiaS Selection
	5 Conclusion

