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Abstract: The current trend of developing highly distributed, context aware, heterogeneous com-
puting intense and data-sensitive applications is changing the boundaries of cloud computing.
Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem
of a combination of resources, ranging from high density compute and storage to very lightweight
embedded computers running on batteries or solar power, is available for DevOps teams from what is
known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled
operations and resources monitoring for handling anomalies. Unfortunately, the operation and
management of such heterogeneous computing environments (including edge, cloud and network
services) is complex and operators face challenges such as the continuous optimization and au-
tonomous (re-)deployment of context-aware stateless and stateful applications where, however, they
must ensure service continuity while anticipating potential failures in the underlying infrastructure.
In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline),
proposing techniques and methods for applications’ operators to fully embrace the possibilities of the
Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud
Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of
the CloudOps.

Keywords: DevOps; cloud continuum; deployment; multi-cloud; hybrid-cloud; self-healing

1. Introduction

Cloud Computing evolution in the last decade and its transformation into a service
utility has promoted a wide adoption by the industry for applications in general to store
and process data. With the expansion of the IoT paradigm [1], the need for computational
and storage services is expected to grow in the next few years, as well as the amount of
data generated at the edge of the network. While cloud computing has been an effective
way of acquiring computation and storage as a service to many applications, it may not be
suitable to handle the endless data from IoT devices and fulfil the largely heterogeneous
application requirements [2]. To this extent, some of the limitations of the traditional Cloud
Paradigm particularly applies to applications that need a real time response, low latencies
or those giving support to critical infrastructures. The centralized nature of traditional
cloud services poses some limitations implying communication and data transfers to
traverse multiple hops, which introduces delays and consumes network bandwidth of
edge and core networks [3]. Computing capacity at the edge increased with the hardware
evolution of personal devices and, as a result, proposed the utilization of edge devices to
run applications and store data, bringing a new player: Edge Computing.

As a result, new approaches that effectively leverage distributed computational and
storage infrastructure and services are necessary. These approaches must seamlessly
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combine resources and services at the edge (edge computing), in the core (cloud computing)
and along the data path (fog computing) as needed, through the Cloud Continuum.

Thus, for application developers and operators to fully embrace this new paradigm,
specific and in-depth knowledge on the plethora of underlying techniques and technologies
is needed. Furthermore, the operation of such heterogeneous computing environments
poses complex tasks for the operators of the applications as they must configure, plan,
prepare and execute them, facing new challenges in all stages of the operation phase of
the application:

• Optimization in resource allocation, which becomes more challenging as the number
of variables (e.g., heterogeneous resources) increase as well as their dynamics (e.g.,
these variables change more often over time). The composition of the infrastruc-
tural services in the Cloud Continuum brings new variables as the heterogeneity of
services and applications’ components reach ground-breaking levels. This dynamic
nature of the system, along with high levels of heterogeneity, creates a demand for
dynamic, multi-criteria resource allocation strategies that can cope with the constantly
changing environment;

• Microservices management throughout the Cloud Continuum stack presents chal-
lenges associated to the movement of services among the different levels (sensors, edge
and cloud computing). The automatic adaptation of the execution of microservices
must consider deployment location and context, but should also not neglect resource
constraints that may exist at each level of the Cloud Continuum. To achieve this
automatic and transparent adaptation, services’ reconfiguration that considers quality
of service requirements should be considered;

• The heterogeneity of networks across the Cloud Continuum ecosystem in regard
to microservices’ deployment and reconfiguration is also challenging. Standalone
services can have network requirements of the data sources, which can be achieved
through network technologies such as network virtualization and software defined
networks (SDN). In this case, the need for a reconfiguration of services includes a
reconfiguration of the network in order to ensure requirements’ consistency. On
the other hand, the composition of services with different requirements can also be
enacted vertically in the hierarchy (from the network to the cloud through the edge),
where a reconfiguration of services (and network, if necessary) is even more complex
due to the heterogeneity of services in terms of computing needs and requirements
(e.g., latency). Network topology is expected to constantly change along with device
mobility and variable application requirements, introducing a more dynamic behavior
in the system;

• Data management and portability at run time involves the design and deployment
of policies, architectures and procedures, allowing the accurate management of the
full data lifecycle, including strategies for placement and accessing it (e.g., measuring
and quantifying the trade-off between placing data and services at the cloud or edge
level, etc.) as well as performing the appropriate actions when data need to be ported
to assure service continuity. Even if containers-based technologies can support and
ease the portability of stateless components, complexity rises when addressing stateful
components, where integrity needs to be maintained during the porting process while,
at the same time, ensuring business continuity;

• Applying federation concepts in the Cloud and in the Edge: The pervasiveness of
the technologies introduces a need to manage shared resources in a more intelligent,
comprehensive manner that is less ad hoc. This has given rise to the concept of
federation [4]. The Cloud Continuum will ultimately need some type of federation
to manage how different sets of data producers (e.g., sensors, edge nodes) and data
consumers (e.g., application components running on traditional cloud resources) can
collaborate and share data. This will also imply the federation of the resources where
these different elements are running;
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• Deployment and governance properties will take on additional dimensions when
considering heterogeneous distributed environments. While sensors and IoT devices
will typically not have any extra capacity for hosting the federation properties, edge
nodes could host these functions, depending on their actual capacity and the number
of sensors associated with them. Scalability is an issue as an edge node will have a
finite capacity that will define how many IoT devices it can manage, and how it can
manage the sharing of data with external data consumers;

• Security Assurance in Cloud/Edge/IoT: Security Teams and Operators in the Cloud
Continuum are challenged today with the task of providing and consuming services
in a secure way, but often lack the proper tools to quickly identify, choose and com-
pose the most suitable set of technologies and platforms that offer the ideal trade-off
between functionality and security or privacy guarantees. Additionally, they are in
a scenario where data or services might be migrated between IoT, Edge and Cloud
when security implications (security, privacy, physical tampering or legal policies) are
relevant and need to be addressed. Due to the peculiar features of edge computing
architectures (i.e., heterogeneity, distributed architecture, massive data processing,
location-awareness and volatility), the traditional data security and privacy-preserving
mechanisms in cloud computing are no longer suitable. In particular, data security
and privacy-preserving in edge computing have to be lightweight, fine-grained and
distributed [5].

Key Takeaway: Application developers and operators in the Cloud Continuum (CloudOps)
face today the challenge of embracing the new paradigm but often lack the proper tools and mech-
anisms to configure, plan, prepare and execute these heterogeneous computational environments.
Moreover, they are faced with the tasks of continuous optimization and autonomous (re-)deployment
of complex context-aware stateless and stateful applications and data in a federated environment
(including edge, cloud and network services) assuring service continuity and anticipating potential
failures in the underlying infrastructure, especially in critical systems that must be resilient and
whose response time becomes vital.

The rest of the paper is structured in four main sections. Section 2 is dedicated to pre-
senting the requirements and challenges in the operationalization of complex applications
in the Cloud Continuum through the analysis of the related work and, in particular, in
the fields that are most relevant for the article: benchmarking of infrastructural resources
and application classification and profiling; deployment orchestration and optimization;
self-learning through monitoring in hybrid environments and self-healing mechanisms
for corrective actions and data portability strategies. Section 3 describes the CloudOps
concept and workflow and presents the CloudOps reference framework. The main compo-
nents of the proposed solution are defined, namely, application components classification
and infrastructural requirements specification, resource discovery, optimized deployment
configuration, deployment and self-healing, continuous monitoring and self-learning. An
overview of how each of them works is provided. Section 4 describes the applicability of
the solution and relates the advantages brought to specific application domains. Finally,
Section 5 provides the conclusions, a general overview of the research and future work.

2. Requirements and Challenges in the Operationalization of the Cloud Continuum

Delivering innovative software faster gives companies a competitive advantage. Soft-
ware delivery will continue increasing in the upcoming years, led by the giants such as Ama-
zon who allegedly deploy new code every 11.7 s [6]. Microservices applications, containers,
cloud infrastructure and edge computing, DevOps (Continuous Integration/Continuous
Development), artificial intelligence driven software development and cloud agnosticism
and cybersecurity have been identified among the trends in the current years [7–10]. Achiev-
ing excellence in continuous delivery and continuous deployment is one of the main reasons
for software companies when putting in place a DevOps strategy. DevOps requires agile
work processes and automated workflows which can only be achieved through the assur-
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ance of readily available IT infrastructure which is needed to continuously run and deploy
the developed code. This can only happen within an automated workflow.

Among the challenges (Figure 1) reported when deploying edge applications, the
following stand out [11,12]: (1) management of a large number of endpoints, that can be
solved with an automated approach at operation time; (2) lack of skills or knowledge to
perform said automation; (3) deployment strategy: deciding which components go on the
edge and which ones go in the centralized node, usually, the cloud, to have an optimized
application in terms of the non-functional requirements (e.g., latency, performance) and
how the deployment is actually made, which needs to be simpler; (4) recovery when there is
a failure should also be easier and more straightforward; (5) monitoring resource utilization
across all nodes simultaneously to understand the overall Quality of Service (QoS) of
the application; (6) orchestration tools that manage and coordinate many edge sites and
workloads, eventually developing into a self-managed edge application; (7) tools to manage
cloud and edge application life cycles, including: “the definition of advanced placement
constraints in order to cope with latency requirements of application components, the
provisioning/scheduling of applications in order to satisfy placement requirements (initial
placement), and data and workload relocations according to internal/external events
(mobility use-cases, failures, performance considerations, and so forth)”.
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The analysis of the related work in the topics relevant to the main challenges (Table 1)
presented is detailed next.

2.1. Benchmark of Resources and Application Classification

Given the heterogeneity of the cloud resources and the types and complexity of the
applications it is not trivial to select the optimal resources (or combination of resources)
for each application (or application component) in order to maximize its performance [13],
or to choose the best performance/cost trade-off [14]. That is why benchmarking is a
widely used technique in cloud computing. Moreover, when shifting from the cloud to
the edge computing, benchmarking techniques are seen as even more valuable because
of the high diversity and variability of edge nodes in terms of hardware, software stacks,
energy consumption or connectivity capabilities. A common practice used in the cloud [15]
is to rely on specialized benchmarking tools [16–18] to simulate how an application would
behave when deployed on different cloud options. The extension of these techniques to
the edge, however, still poses some new challenges [19] such as the limited capabilities of
edge nodes needing more lightweight benchmarking tools, specific workloads running
in the edge (e.g., virtual reality, image processing) being different from the workloads in
the cloud (e.g., data analysis, searching, video streaming), and benchmarking composition
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(cloud + edge nodes) in order to provide information on complex deployment options.
These challenges are currently being tackled by different initiatives through different ongo-
ing works: characterization of the most common edge use cases and their workloads [20],
selection of metrics to define their performance [21] and the implementation of new suites
of benchmarking tools designed to run in the edge for different use cases such as speech
decoding and face recognition [22], surveillance cameras and autonomous vehicles [23], etc.
A big challenge today in existing service catalogues is that, in particular, the information
about security attributes, such as certificates or compliance to standards, is not available.
In [24], a solution is proposed that allows the discovery and monitoring of security-related
aspects on what it is called the Legal Level. This Legal Level assesses the regulation and
legislation supported by the different Cloud Services through the verification against evi-
dences included in CSPs contract forms. Nevertheless, new metrics and aspects related to
privacy and security and other infrastructural elements (i.e., edge nodes, IoT agents) need
to be addressed.

Table 1. Current unsolved challenges in the Operationalization of applications in the Cloud Continuum.

Topic Current Challenges

(Dev)Ops

• Partial automation of the DevOps cycle especially in heterogenous
environments

• Context (cloud, edge, network) specific tools
• Specific skills needed, especially for “combined” environments,

with cloud services, edge nodes and network elements

Monitoring

• Inefficiencies mainly due to lack of dynamicity of the distributed
proposed models

• Lack of holistic approaches covering not only the monitoring of
traditional cloud resources but also the integrated monitoring of
edge nodes and network communications

• Communication channels between application elements (e.g.,
microservices) are usually considered at device level but not at
software components level (even inside the same device)

• Lacks the precision or speed needed for high performance
architectures as existing solutions for forecasting methods are based
on basic offline algorithms such as linear regression or nearest
neighbors adapted to online environments

Benchmarking

• Benchmarking of edge resources is incipient and existing solutions
are platform or scenario specific

• Existing tools usually involve inefficient or ineffective tests as the
complete benchmarking process is not automated

• Current approaches for application classification are usually
focused on specific applications types (e.g., data streaming
applications) and not suitable for other types

• The characterization and benchmarking of networking and
communication have been barely addressed

Self-learning,
self-healing

• Few available solutions tackle the automatic self-healing of
applications based on failure prediction

• Existing self-healing works do not consider stateful components’
needs (e.g., data portability issues)

• Current approaches focus on certain aspects of the self-healing
process, usually the re-deployment of the application, but do not
offer integrated frameworks covering previous or subsequent tasks
such as failure prediction, new resources contracting or “old”
devices and services shut down
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Table 1. Cont.

Topic Current Challenges

Cloud Continuum • Few to no available approaches supporting the Cloud Continuum at
pre-deployment and operation time

Security Assurance
in Cloud/Edge/IoT

• Services and tools to implement SecDevOps as a whole in a Cloud
Continuum are missing

• Security and privacy assurance in Cloud/Edge/IoT
• Active Data Protection in the Cloud Continuum

Besides, application and application components need to be classified (e.g., stateful,
stateless) and profiled (e.g., computation, data, serverless) in an agnostic manner, without
requiring a priori knowledge about the application internals so that the deployment needs
can be inferred and deduced. However, most of the available applications profiles are
platform- and scenario-dependent and hardly reusable in other contexts. The NAMB project
has started to work in the direction of a generic approach that is context and platform
agnostic [25,26]. Moreover, benchmarking of the whole stack, including the network
resources, in particular the paths that interconnect the physical or virtual machines hosting
application components, has not yet been deeply addressed. In that respect, the profiling of
the paths within the cloud and the edge will provide relevant information which can impact
on the decision on the selection of the best combination of resources for the deployment.
The understanding of these paths is not trivial because public cloud service providers such
as Amazon Web Services and Microsoft Azure provide links that interconnect data centers
with high performance [27] opposite to typical best-effort Internet links [28]. However,
those links present complex traffic engineering techniques, which require careful design and
tuning of monitoring tools in order to avoid biased measurements. Additionally, the paths
that extend from the cloud up to the edge expectedly offer less predictable performance
than cloud links [29].

Osmotic computing [30] is another approach which “aims to decompose applications
into microservices without degradation of QoS and perform dynamic tailoring of microser-
vices in smart environments exploiting resources in edge and cloud infrastructures”.

Unfortunately, decomposition of applications into microservices is not always pos-
sible. Therefore, stateless and stateful components will coexist in the Cloud Continuum.
The benchmark of stateful applications is based on latency, scalability and elasticity, and
developers on the cloud try to incorporate these parameters into their designs [31]. On the
other hand, stateless applications are assessed in terms related to the modularity of the
application, such as control and flexibility.

2.2. Deployment Orchestration and Optimization

The Cloud Continuum concept encompasses the idea of processing each application
and/or application component with the most appropriate resource, from cloud computing
systems to IoT devices, depending on different factors: the need for resources, proximity,
etc. In this complex scenario, the selection of the optimized deployment configuration is still
a challenge to be solved. The selection of the best combination of resources can be treated
as an optimization problem which can be solved through different types of techniques
from the three main categories: exact methods [32]; heuristics [33] and metaheuristics [34],
the last ones enjoying greater popularity because of their adaptability and efficiency [35].
The literature is scarce in studies centered on the optimal deployment of microservice over
heterogeneous cloud services. In [36], a NSGA-II algorithm was used to match the specific
requirements of a certain Big Data application to the capabilities provided by an IaaS
infrastructure and the Big Data platform deployed therein against three design aspects for
the infrastructure of the Big Data application: cost, reliability and net computing capacity.
Similarly, in [37], two main objectives were considered for optimization: (1) fulfilment
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of the microservices’ Non-Functional-Requirements (NFRs) (location, availability, cost,
performance and legal level), and (2) meeting of the characteristics set by the developers
of these microservices (classification, public IP, disk space, RAM and number of cores).
The optimization process described above can be enriched by having information about
the behavior of the execution environment and the underlying resources at run-time, so
that the optimization function can also consider this information as another dimension of
incoming data.

The deployment of applications in general has benefitted in the last decade from
the Infrastructure-as-Code (IaC) [7] concept which aims to automate the provisioning,
configuration and deployment of infrastructure resources following a machine-readable file
approach. Tools for IaC process configuration files developed by Ops teams for different
purposes include: Provisioning; Configuration; Deployment and Orchestration of the
resources. However, there are several open issues that still need to be solved, especially
when talking about automatic deployment and orchestration in the Cloud Continuum:

• Tools [38–41] for virtual and physical resources provisioning are platform dependent
lacking interoperability and portability and mainly focused on cloud resources and do
not consider edge nodes;

• Some Continuous Delivery and Continuous Deployment supporting tools are specific
for deploying containers-based applications (Rancher [42]) while others are more
generic (e.g., Apache Brooklyn, Spinnaker [43], Alien4Cloud [44], Cloudify [45]) and
can deploy both traditional and container-based applications;

• Kubernetes [46], the leading, most used and advanced orchestration platform today
has been used for the orchestration of traditional cloud resources. When it comes
to the edge though, new features such as low network latency [47] and self-healing
need to be considered due to the edge’s higher proneness to failures that impact on
maintenance costs. Emerging Kubernetes on the edge open source solutions such
as K3S, MicroK8S and KubeEdge are getting huge interest by the Kubernetes’ edge
community and aim to leverage on the existing ecosystem through official Cloud
Native Computing Foundation certification, while at the same time are light enough
to run on low-cost boards;

• The management of IoT devices, especially those with high constraints (i.e., not
always connected, lack of containerization support), needs to be addressed so that
the deployment can be done supporting key edge characteristics, such as mobility,
heterogeneity and volatility [48].

2.3. Cloud Resources Monitoring and Self Learning in Hybrid Environments

Cloud resources’ monitoring is a challenging task when applied to hybrid environ-
ments. Cloud providers claim to support extensive monitoring mechanisms to aid in
controlling application performance and working conditions but they barely offer trans-
parent access to actual law level metrics (e.g., Mean Time To Recover (MTTR), Mean Time
Between Failures (MTBF), real time CPU consumption, etc.) nor provide common or stan-
dardized metrics that can be compared among different cloud resources types or providers.
In [49], the authors identified the QoS and Service Level Agreement (SLA) assessment in
complex hybrid scenarios as one of the four clear gaps of the cloud computing management,
due to the lack of mechanisms to address the particularities of large-scale cloud setups with
more complex environments in terms of resource heterogeneity and distribution, such as
hybrid and multi-cloud scenarios. In [50], the authors proposed an approach to adapt the
planning in Complex Service-Based Systems, should an SLA violation occur. However, in
this dissertation the authors assumed that a violation occurs but do not support the actual
monitoring nor go in depth into how the NFRs are monitored or calculated so that the
violation can be identified.

In [37] monitoring of cloud resources was identified as one of the missing functionali-
ties in current solutions and approaches. This conclusion was extracted from an analysis
of different multi-cloud abstraction solutions, as cloud brokers, cloud intermediators or
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cloud marketplaces which automate the assembly of complex applications, its deployment
and operation on one or multiple cloud infrastructures. This approach proposes using a
combination of push and pull monitoring [51] for relevant NFRs such as performance, cost,
availability of location and supporting the ISO 19086.

In [52] a cloud monitoring stack is proposed for different Cloud Services (virtual
machines, databases as a service, etc.) from different providers (Amazon, Azure, ARSYS).
Furthermore, it focuses the monitoring of the resources on the lower level, considering
Fowler’s [53] definition. Nevertheless, it doesn’t tackle the communication layer, which
in some specific scenarios can pose relevant challenges [54]. The approach proposed in
this paper tries to extend it to support the monitoring of distributed and heterogeneous
(different nature) infrastructural elements. These metrics will be provided both to the
self-learning and self-healing algorithms as extra input data to enhance their results.

Monitoring and preventing QoS violations are a critical aspect of the design and
planning of infrastructural services, hence for the operationalization of applications, in
which predictive models play an essential role. Initial post-mortem analysis techniques [55]
applied to the management of these violations have made way for new approaches focused
on the anticipation of the failures, first as an offline process [56] and more recently at run
time [57,58]. More recently, and due to the nature of heterogeneous distributed services
especially in highly demanding environments, the Internet of Things (IoT) has become
one of the main applications of stream learning [59], since it is composed of sensors and
actuators connected by networks to computing systems, which manage the health and
actions of connected objects or machines in real-time. One of the main problems of the
Cloud Continuum paradigm referring to the prediction of QoS failures is that they are
subject to configuration drifts, unauthorized changes, missing dependencies or any invisible
or not monitorable environment variations that have arisen in the services. However,
techniques such as concept drift [60,61] or anomalies detection [62,63], that could provide
relevant benefits, have not attracted much attention yet in the research community.

2.4. Self-Healing and Data Portability

The application of self-healing, refers to the autonomous and responsible behavior
of the applications to changes in the execution environment, and has been a challenge
since the cloud and distributed computing paradigms appeared on the software operation
gameboard. Several solutions have been proposed for specific scenarios such as IoT [64,65]
or traditional cloud environments [66]. Other solutions are focused on specific steps in
the self-healing, self-configuration process [67], or in the resolution of specific problems
such as scalability [68] or trust enforcement [69]. The cross/multi-layer and the networking
aspects are challenges that have not yet been addressed, nor has the face of the problem in a
generic way, covering the whole self-healing process from the discovery and configuration
of the resources to the network preparation and deployment of all software layers.

Self-healing mechanisms can include several actions, going from the starting up of the
failing resource with a new one, to the re-configuration of the network or the orchestration
of portability workflows so that business continuity is ensured. Several approaches have
been applied to automatically create computational resources (usually virtual machines)
but few initiatives can be found when addressing heterogeneous environments of different
natures (edge and cloud) and networking set ups. In such a complex environment, self-
healing actions may need dynamic orchestration of the services used for re-deployment
following the proper workflow, as well as network resources’ re-allocation and setting up.

This process becomes even more complex when addressing not only the portability of
the computational components (stateless components) but also the portability of data, or
stateful components. One of the enablers for such portability can be adopted from the appli-
cation point of view, through the adoption of containers-based technologies, such as Docker.
However, containerization per se does not solve the portability problem. When porting
components between two cloud providers, data need to be moved and kept synchronized
(at three different levels—blocks, files or transactions) and most container-based platforms
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don’t handle this. Some containers’ orchestration systems, such as Kubernetes, provide
convenient abstractions for application resource requirements and endpoints, namely per-
sistent volumes, ingress rules and ingress controllers [70]. However, manual configuration
is still needed, and stateless components are decoupled from the data that have to be
stored in a database or other type of storage. Another important concept to be considered
when porting data components from one resource to another is the “data gravity”, a term
coined by Dave McCrory [71], who explained that, because of network bandwidth limits,
latency, costs and other considerations, data “want” to be near the applications analyzing,
transforming or otherwise working on it. Consequently, data portability introduces new
requirements added to the already time consuming, error prone and mainly manual activity
of porting application components over different infrastructural elements [72], such as:
(1) Establishing the right networking conditions, so that data can be accessed from the
required microservice with the required (network) conditions; (2) Handling persistent data
storage, during a redeployment; (3) Data Base automatic configuration so that it can be
re-deployed without manual intervention. Security is also to be addressed when selecting
a porting strategy. Mechanisms for automatic execution of secure data portability in the
Cloud Continuum, preserving data integrity and assuring that the data are not being
corrupted need to be considered.

3. CloudOps: Concepts and a Reference Framework
3.1. CloudOps Concept

The current IT market is more and more dominated by the “Cloud Continuum”. In-
creasing ubiquity and the pervasiveness of compute capabilities and data availability have
resulted in the proliferation of complex applications which effectively process data from
heterogenous digital sources in a timely manner [73]. As the types and volumes of available
data grow, new applications are implemented that seamlessly combine real-time data with
complex models and data analytics to monitor and manage systems of interest. The data
have to be processed promptly to extract insights that can drive decision making. Tradi-
tional approaches that rely on moving data to remote data centers for processing are no
longer feasible. Instead, new approaches that effectively leverage distributed computational
infrastructure and services are necessary. Specifically, these approaches must seamlessly
combine resources and services at the edge (edge computing), in the core (cloud computing)
and along the data path (fog computing) as needed, through the Cloud Continuum. At
runtime, applications can choose to execute parts of their logic on different infrastructures
that constitute the continuum, with the goal of minimizing latency, energy consumption
and maximizing availability or performance [74]. This requires novel techniques and meth-
ods for federating infrastructure, programming applications and services and composing
dynamic workflows, which are capable of reacting in real-time to unpredictable data sizes,
availability, locations and rates [75].

The heterogeneity of the “computing continuum” is broad and multistage. In the
“traditional” cloud, computing resources are typically provided through virtualization and
containerization [74], with “infinite” resource availability thanks to horizontal scaling. In
contrast, in edge computing, computational resources are scarce and must be managed
very efficiently due to battery constraints or other limitations [76].

The combination of such technologies implies that the DevOps teams need to have
a deep knowledge of the underlying techniques and technologies and need to be able to
work with several of them, seamlessly integrated. These kinds of heterogeneous com-
puting environments pose complex tasks for the operationalization of the applications
by the DevOps teams as they must configure, plan, prepare and execute them. When
applying it to dynamic, changeable execution environments where the applications need
to be reconfigured under real time tight requirements, this process needs to be short, re-
peatable and (semi-)automatic. Application operators need to: (1) have real time updated
information on the network conditions, computing resources available and data infrastruc-
tures and services requirements and (2) be able to seamlessly and transparently adapt the
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deployment configurations of the applications to respond to the execution environment
situation. In effect, applications’ operators need to seamlessly select, combine, configure
and adapt computation resources all along the data path and support the complete service
lifecycle, covering: (1) distributed application deployment over heterogenous computing
resources; (2) monitoring of execution platforms in real-time; (3) application deployment
and adaptation while optimizing the execution and (4) application of self-healing to avoid
compromising situations that may lead to an unexpected failure.

In Figure 2, the proposed CloudOps workflow is presented. It includes the extension
and customization of the Ops cycle with activities and supporting techniques addressing
the specific needs and challenges of the applications in the Cloud Continuum:

• Complexity in the discovery, selection and configuration of diverse and heterogeneous
IT infrastructural components (cloud, edge and fog computing) to select the optimal
deployment configuration in terms of availability, rates or other;

• Implementation of consolidated architectures and automatic deployment mechanisms
for both the edge deployment targets, as well as traditional cloud computing services;

• Operation and proactive monitoring of the dynamic and heterogenous Cloud Con-
tinuum to be aware of new available resources, bottlenecks situations or network
reconfiguration needs;

• Failure prediction based on historic data supporting the automatic reconfiguration of
the applications that need to respond intelligently to changes, avoiding compromis-
ing situations;

• Self-healing mechanisms for applications to be capable of being re-deployed given the
new environmental conditions;

• Seamless components’ portability, without affecting the service continuity and ad-
dressing special needs for data and stateful components’ migration over different
service providers.
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The traditional Operation workflow is extended and customized with new activities
supporting the specific needs of applications sunning in the Cloud Continuum (gray boxes
in Figure 2). These activities are detailed along with the supporting proposed techniques in
Section 3.2.

3.2. CloudOps: A Reference Framework for Operationalization in the Cloud Continuum

This section presents the CloudOps reference framework. The main goal of the
CloudOps reference framework is to support the operation of complex applications in
heterogenous execution environments. To achieve this, several practices and techniques are
suggested: increase the optimization, adaptability and portability of services to different
resources and usage contexts while ensuring business continuity; provision of self-healing
mechanisms to anticipate failures and violations and self-learning from the conditions that
triggered such re-adaptations.

As illustrated in Figure 3, the proposed referenced framework is composed of six func-
tional blocks to support the operation lifecycle of the applications in the Cloud Continuum.
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1. Application Components classification and infrastructural requirements specifica-
tion This component will support the specification of both the application components’
characteristics which needs to be considered for their correct operation in the Cloud
Continuum avoiding incompatibilities and the definition of the qualitative and quanti-
tative infrastructural components needed to configure the heterogeneous (cloud, edge,
network) execution environment. In the same way, the operators of the application
need to identify the infrastructural and communications’ requirements. Among other
things, they identify the need for provisioning certain services, for configuring certain
network functions, security requirements, network latency values or performance
objectives for the infrastructural environment. Semantic techniques will be consid-
ered to enable the classification (e.g., stateful, stateless), profiling (e.g., computation,
data, serverless) and categorization (e.g., nature, underlying technology, security
constraints) of the components of the applications to be deployed. The usage of a
taxonomy and the corresponding ontology can support the automatization of this
with tools to automatically make an initial identification and classification of the
components and application architecture, considering various sources such as deploy-
ment scripts (e.g., Kubernetes YAML files, Dockerfiles) and annotations in the source
code. The user will then have to refine and further detail the application classification
and to express other deployment requirements that will be input for the deployment
orchestrator to improve the deployment configuration. The user will also have the
option to exploit the application classification to generate mock-applications which
can be deployed and monitored (through the benchmarking process) to have a good
estimate of the performance of a set of resources. This approach will enable the user
to assess the suitability of a set of candidate resources (e.g., a specific combination of
cloud and edge devices) on which its final application could be deployed, without
having to fully specify the application.
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2. The Resource discovery component will assist the operators in the discovery and
benchmarking of the available infrastructural resources, services and network ele-
ments. To do so it will provide: (1) support for infrastructural and network bench-
marking with respect to relevant non-functional characteristics, such as performance,
location, availability or others and the network, so that the different available network
elements can be measured against established Service Level Objectives (e.g., network
performance, availability, latency); (2) a catalogue of classified and categorized avail-
able benchmarked infrastructural elements, networks, services and resources. These
elements will conform to a heterogeneous federated execution environment covering
all the paths from the distributed edge nodes to the central cloud computing infras-
tructures, including the network elements which interconnect the other execution
resources. The volatility of the resources, especially the IoT agents, needs to be also
considered by this component. The catalogue of available benchmarked infrastruc-
tural elements, networks, services and resources requires updated information of the
status of the catalogue and its available resources to accommodate the deployment to
resource volatility and real-time service demands. Therefore, specific mechanisms to
manage the huge, heterogeneous, volatile and dynamic set of resources from the edge
up to the cloud need to be incorporated [49].

3. The Optimized deployment configuration component will gather information com-
ing from both the “Application Components classification and infrastructural re-
quirements” for the components’ classification and the “Resource discovery” for the
benchmarked catalogue of resources and services, to provide the best combination of
those infrastructural and networking elements. The obtained optimized deployment
configuration schema, based on the needs expressed by the operators both for the
application components and for the infrastructural elements, will then be applied in
the Execution Environment. Using optimization algorithms, it will seek an optimized
deployment configuration of the application on heterogeneous resources that best
meet the predefined constraints (e.g., types of infrastructural elements, NFRs, classifi-
cation of the components of the application). The application of machine learning and
swarm intelligence, such as multi-objective meta-heuristics algorithms (e.g., NGSA-
II, MOCell or SMPSO), can support the operators in the automatic identification
of the optimized configuration in any of these two situations: (1) Whenever a first
deployment configuration of the Cloud Continuum is required; (2) Once the potential
situation of risk in relation to an SLA violation is detected. To this end it must be
able to run in a dynamic-definition environment where the optimization parameters
(resources to be configured), parameters’ vocabulary (resource configuration candi-
dates) and the fitness/objective function to optimize (measuring predetermined NFRs’
accomplishment as well as solution robustness with regard to real-time monitoring
metrics) are likely to mutate as a result of each use case specificity.

4. Deployment of the self-healing component seeks to automate the configuration
and orchestration of the different elements conforming to the selected infrastructure,
as well as the deployment of the software elements needed for the application to
run and deployment of the components themselves. It will support the operators
in automating the orchestration of the main tasks of the Execution Environment,
creating a deployment plan composed of a set of tasks and distributing these tasks
among the different subsystems in charge of the actual provisioning of the resources
(e.g., creation of the virtual machines using proper IaaS connectors, installation of
specific software packages or configuration of network nodes). It will distribute
applications among the continuum of devices (IoT devices, on-premises devices and
on cloud resources) in order to perform as required. The proposed approach should
take into account the heterogeneous hardware capabilities of the hardware devices
present in the Edge and Cloud Continuum, e.g., by exploiting GPU capacities in those
devices which have it present. In addition, an execution environment is needed to
reproduce any kind of production environment by creating arbitrary infrastructures
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and deploying any kind of software over it. Containerization will allow applications
to be executed and moved throughout the Cloud Continuum. This component will
also support the automatic re-deployment of the components into a new Execution
Environment to ensure that the infrastructural and network elements are always
conforming to the SLAs committed with the end-user, even if the environmental
situation changes. The self-healing process will include the selection of the different
and most adequate strategies to (re-)deploy the different components based on their
nature. Special focus will be put on the provision of a set of strategies and techniques
to ensure the integrity of stateful application components when porting data from
one resource to another. The Deployment and Self-Healing component will support
the operators in the implementation of these strategies so the actual portability of the
application components from the running resources to the new optimized deployment
configuration is successfully completed.

5. Run-time monitoring component has as main goal to continuously monitor the func-
tioning conditions of the federated resources from Service Level Objective (SLO)
and NFR accomplishment perspective. Once all the components are running in the
different resources the it will log the working conditions of the execution environ-
ment at different levels, including all the underlying computational and network
elements, (e.g., network access of virtual and physical machines, and continuous
micro-service level response monitoring). The Run-time monitoring component will
gather metadata and metrics about the selected Non-functional/QoS properties (la-
tency, performance, location, availability, etc.), so that the business continuity of the
application in the Cloud Continuum is always guaranteed. This system will ensure
not only that the conditions are always met but will also be able to provide all the run-
time monitoring information to the self-learning component so that it can exploit this
data to predict potential failures. Different monitoring strategies shall be combined as
the monitoring requirements may vary according to the exact objective, which might
be either to monitor the performance of the hosting components of a micro-service
(VMs, pods, containers) or a micro-service itself. The network level also needs to be
considered gathering either measurements out of the micro-services traffic itself are
derived or measurement probes on the network. The actual choice depends on the
allowed level of intrusiveness and/or the monitoring budget, which will be a function
of the location of the component, edge or cloud. This shall involve techniques for
monitoring data aspects (e.g., new data sources, throughput changes of incoming data,
etc.) and data operations (e.g., distributed query processing time, generated outputs
of different application components, etc.) that might trigger runtime adaptations of
the infrastructure. Events processing functionality can help coping with heterogenous
and dispersed monitoring data that highlight health-status and the performance as-
pects of applications, data and hosting infrastructure. The event processing needs
to be context-sensitive by dynamically engaging different monitoring probes and
processing functions according to the applications’ classification aspects (e.g., stateful
vs. stateless applications, data stream processing vs. batch processing etc.) and
deployed in a distributed manner (e.g., region, availability zone, VM and/or edge
group level) for avoiding the aggregation of all the monitoring data in a centralized
manner. With this approach, event processing will result in decision making and
event propagation and persistence in time-series database containing only the most
valuable monitoring information.

6. The self-learning component, based on the processed monitoring information, will
be able to detect if a failure or non-compliance of the NFRs is likely to occur, thus
enhancing the platform’s failure detection functionalities. This enhancement refers
to the fact that it is unrealistic for a DevOps team to predefine, at the design phase,
all the possible latent factors that may lead to SQO or SLO violations. The Ops team
will be then informed, and a redeployment will be automatically triggered. The
prediction process will leverage on advanced learning strategies such as Concept
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Drift and Incremental Learning to detect that a failure, or non-compliance, is about to
occur based on the analysis of application health-status events. Such alerts, along with
other monitoring data and prediction probabilities, will be visualized accordingly,
to empower DevOps teams with final decisions on configuration and prevalence of
predictions that may bypass or reconfigure in real-time the automatic decisions of
the system.

Figures 4–6 present an overview of how these six functional blocks work together and
depicts their main interactions through the CloudOps workflows.
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4. Scope and Applicability

The presented CloudOps approach along with the CloudOps reference framework
will assist (Dev)Ops teams in the operation of new cloud-based services, able to exploit
the advantages of multiple and heterogeneous clouds and execution environments. This
CloudOps framework leads to provision of a set of advantages for the end users that are
summarized in Table 2.

Table 2. Expected benefits for the end users of the CloudOps reference framework.

Expected Benefits for the End Users of the CloudOps Reference Framework

Decrease the time needed to select the most appropriate resources and services in respect to the
application needs. Have a catalogue where services can be compared with respect to certain
non-functional characteristics through benchmarking.

Understand better the characteristics of the application and the computational and storage needs
that it might have, as well as its condition (stateful or stateless), needed to define data
portability strategies.

Be able to select the optimized deployment configuration out of a predefined set of constraints,
using optimization algorithms.

Be able to optimally execute, orchestrate and deploy complex Cloud Continuum compliant
applications, planning, provisioning and preparing both the infrastructure and the application in
an automatic way.

Gather and process metrics that are able to predict anomalies and detect failures before they
happen, so as to ensure the business continuity of the application.

Improve the quality of service of the Cloud Continuum compliant applications through the
provisioning of self-learning mechanisms that, by the gathering of metrics, are able to predict
anomalies, detect failures and trigger self-healing strategies that will allow the reconfiguration
and re-deployment, wholly or partially, of the application in an improved configuration.

Maintain, preserve and port automatically the data of a stateful component once a redeployment
activity is launched.

Improve the operation of Cloud Continuum compliant applications, ensuring business continuity,
QoS and integrity of the ported data.

The application of the CloudOps approach and the supporting reference framework
will bring benefits to the software industry operating in complex Cloud-edge environments.
Nevertheless, some of the limitations of the traditional centralized Cloud paradigm applies
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in particular to applications that need real time, low latency or those giving support to
critical infrastructures.

In particular, the presented CloudOps approach can be of special relevance when
tackling critical infrastructures or business-critical applications where the response time
becomes vital and the system must be resilient and able to operate in different scenarios,
including lack of connectivity that can be replaced by alternative communication tech-
nologies (e.g., new edge nodes). Critical infrastructure is the body of systems, networks
and assets that are so essential that their continued operation is required to ensure the
security of a given city or region, its economy and the public’s health and/or safety. Those
critical infrastructures must have a very high availability rate, even higher than five nines.
Following on from that, how the operation of critical infrastructures-based systems can
benefit from the approach and the reference framework proposed in this article is explained
through two specific examples.

4.1. Critical Infrastructures for Safety and Security

The advent of smart cities is fostering the deployment of different types of infrastruc-
tures to complement and provide public security services with data to detect threatening
situations. Systems such as smart street lighting infrastructures supporting the security
and safety of citizens and goods in public spaces are gaining momentum. However, these
systems need to manage the large quantity of data generated, e.g., by surveillance cameras,
therefore, AI-based systems are required to automatically analyze and filter such data to
report only on potentially threatening situations. The large variety of possible situations
and the large quantity of data generated implies an obligation for the systems to be able to
adapt to these continuously changing situations, which may also be completely different
depending on the city neighborhood, seasons of the year or specific events., Machine
learning technologies will be required to take advantage of algorithms that may need to
be adapted and redeployed depending on the detected situations. In the case of smart
lighting infrastructures, the CloudOps reference framework can provide support to the
optimization of the deployment configuration in an environment with continuously chang-
ing requirements and a limited processing capacity. Additionally, the algorithms that
analyze the data may suddenly need high computational capacity in specific locations and
times, and permanently providing such computational capacity up to the edge would be
neither affordable nor sustainable, so there is also the need of flexibility to take advantage
of the computational power of other edge nodes or the cloud. To achieve this, runtime
monitoring and self-healing mechanisms can support the operators in the operation of
such complex environments, providing them with the flexibility to execute code at any
time in the most convenient computing resource, the capacity to update and to re-deploy
algorithms whenever required and keeping investment and operational costs affordable.

4.2. Critical Infrastructures for Emergency Management

The management of public events and crowd control is a typical example of mission
critical services; a service downtime could undermine citizen security and create problems
in the service continuity leading to very serious issues. This type of system collects data
from people using in-place nodes, e.g., Wi-Fi/Bluetooth. With this information the system
is able to estimate the number of people in a specific area and, taking advantage of the
bandwidth and low latency features offered by 5G connectivity, send these data to the
edge nodes so that they are able to determine if a critical condition is going to happen, for
example, if the flow of people is coherent with the data collected on the buses or in other
public transportation systems. In this situation, if an edge node goes down, fault-tolerance
mechanisms need to be put in place. However, while in many other cases it is possible to
use fault-tolerance features of many of the most common orchestrators (such as Kubernetes)
this is not possible for stateful services. In this respect, the CloudOps self-healing approach,
including automatic data portability techniques, can provide support to the Operators
of the system. Similarly, instead of managing the service continuity by having two edge
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nodes, it could be possible to move computation across the continuum moving from the
edge to the cloud. In both cases, using stateful objects, the self-healing mechanisms will
ensure that in the event of a fault, operations continue without interruption by providing
data on the movement of the crowd.

4.3. Business Critical Applications: Initial Results

The proposed CloudOps workflow and framework have been partially validated
through an implementation of an MVP (Minimum Viable Product) in an e-health scenario.
In this case, an initial version of the proposed CloudOps framework was used to deploy
and operate a multi-cloud e-health .NET application. The solution implemented included
all the described functional components from Figure 3, with limited features (i.e., only
cloud infrastructural elements were considered, a limited set of NFRs were monitored
and stateless components were not supported). The different components from Figure 3
have been inserted into the actual framework and the main sub-components for each of
the functional blocks are represented in Figure 7. Figure 7 depicts the architecture of the
initial MVP of the proposed CloudOps framework validated in the e-health scenario. It
also shows how the additional activities proposed in the CloudOps concept in Figure 2 (i.e.,
pre-deployment and self-healing) are supported by specific tools in this test case. To this
end, the pre-deployment phase is materialized in two new tool supported activities:
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1. Available cloud resources discovery through the “Infrastructural elements catalogue”
(Resource discovery functional block in Figure 3): This catalogue provides a unique
registry for all the infrastructural elements available along with their relevant charac-
teristics. In this concrete test case, cloud services from Amazon, Azure and Arsys were
included. The operators of the tested e-health application were able to discover and
filter the different resources to their own convenience. As reported by the operators,
this supposed a great advantage and relevant time savings as they did not need to dig
into the web pages of each of the cloud providers looking for the best combination of
cloud resources. The catalogue has been developed with the JHipster [77] frontend
and backend generator;

2. “Optimized deployment configuration” provisioning (the Optimized Deployment
Configuration building block in Figure 3): This component gathers the informa-
tion from the application (available in the application description file shown in
Figures 8 and 9) and collects the required information from the Infrastructural el-
ements’ catalogue (through a REST API). From this, it creates the best combination of
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available infrastructural elements fulfilling the application components types’ needs
(i.e., computing capabilities, storage capabilities, etc.) and the SLOs (i.e., location,
performance and availability). It uses the NSGA-II Genetic Algorithm [78] imple-
mented in MOEA Framework [79], an open source Java library. These components
provide the application operator team with a tool to perform several tests before the
application is deployed. Furthermore, it eases the selection of the services against the
selected NFRs, in a multi-objective optimization problem.
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As explained, the microservices-based e-health application’s main characteristics
were maintained in the “Application Description” JSON file which was used by the
different components to gather and exchange relevant information. Consequently, the
infrastructural requirements and application components’ description (Figure 3) are
collected in the application description file as presented in Figure 7.
The operation phase is also enriched with a set of new tool-supported activities
specially for the self-healing;

3. Automatic deployment of the application occurs through the “Infrastructure gen-
eration” and the “Application Deployment” sub-modules (Deployment and Self-
Healing in Figure 3). They create the needed infrastructural resources and deploy
the application through Terraform and Ansible templates. Besides the deployment
of the application, they also deploy a set of monitoring agents (Telegraf-based [80])
in the infrastructure to gather the corresponding runtime metrics aligned with the
selected NFRs;

4. “Automatic run-time monitoring” of all the infrastructural elements (Figure 3): It gath-
ers in a single place all the monitored metrics from the different providers’ resources.
It comprises a full monitoring stack, based on Telegraf agents, the InfluxDB [81] time-
series database as the persistence layer and Grafana dashboards [82] for the graphical
interface. In this component, the “Monitoring controller” is also in charge of detecting
SLO violations in the infrastructural elements and informing both the Operator of
the application (through an email) and the “Deployment and Self-Healing” module
(through a REST API) about these violations;

5. Finally, the “Porting strategies selector” sub-module (as part of the Self-learning
building block in Figure 3) receives the requests from the “Monitoring controller”
once a violation occurs and re-deploys the application, if needed. If this is the case, the
“Optimized deployment configuration” is called and the cycle starts again with the
optimization of the deployment configuration. It is to be noted that the “Infrastructural
Elements catalogue” is also updated with the information of the violations that have
occurred on the used infrastructural elements. As a result, when the next set of
available resources are requested the information of the violations is also considered
so that the opinionated selection of infrastructural elements can be provided by the
“Optimized deployment configuration”.

As anticipated, the test case only covered some of the main functionalities for the
CloudOps framework. Nevertheless, it showed positive impacts and improvements of
the Operationalization of the referenced application both qualitative, presented in the
description of the Figure 7 components, and quantitative, presented in Table 3. Table 3
shows the quantitative improvements in the form of comparative costs (measured in effort,
PM-Person Month and PH-Person Hour) between using the CloudOps framework and not
using it. These figures have been reported by the operators of the e-health application. The
different phases of the CloudOps workflow were implemented by the operators manually
when using the CloudOps framework.

Assuming a cost of 40 euros/h (calculated by the e-health application operators, based
on the costs of a typical project in their company) a total of 7280€ euros was saved. If
we assume four health projects of a similar scale per year, then we anticipate a saving of
approximately 29,000 Euros, or around 2400 Euros per month (approx. 1

2 a Person Month.)
The operators of the e-health application also reported qualitative improvements. The

most relevant ones were as follows:

1. The pre-deployment phase and the related tools (“Infrastructural elements cata-
logue”, “Optimized deployment configuration”) provide efficiency for evaluating a
user’s potential NFR options for each of the service classifications and provide an
instant response to illustrate matching based on the user’s specified values of each
of their NFRs to help evaluate the most effective options when selecting a service
solution. This efficiency exists, as without this tool the user would have to search each
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CSP individually to identify matches and reach a decision about the best solution on
the information that was discovered manually;

2. The operation and self-healing phase enhances the fulfilment of the application’s
Service Level Agreement (SLA). As the SLA, and the underlying SLAs of the running
cloud services, can continuously be monitored and the violations are automatically
detected, so the application’s SLA is hardly broken

Based on these initial results we can envision greater impacts in future implementa-
tions of the proposed CloudOps framework, in the two proposed test cases in Sections 4.1
and 4.2. Especially when we will incorporate into the validation process new infrastructural
elements (such as edge or IoT agents) and the complete functionality described.

Table 3. Estimation of the savings provided by the Cloud Ops framework in the e-health scenario.

CloudOps
Phase

Effort
Manual

Implementation

Effort
CloudOps

Framework
Savings

Resources discovery and optimization 0.7 PM 0 PM 0.7 PM

Deployment 0.1 PM 025 PH 0.1 PM

Monitoring (annual projected) 0.25 PM 0.25 PH 0.25 PM

Re-adaptation and self-healing 0.25 PM 0.01 PM 0.24 PM

TOTAL 1.3 PM 0.01 PM 1.3 PM

5. Conclusions

Ecosystems for digitalization require the development of applications (SaaS) often
running on heterogeneous resources encompassing infrastructure elements (e.g., sensors),
cloud and edge resources and network characteristics. This article has presented research
that studies the operationalization of applications in the Cloud Continuum and the cor-
responding requirements and needs. We have outlined the main challenges through
an analysis of the related works, which has served as the basis for the definition of the
CloudOps workflow. We have introduced the CloudOps concept and the supporting
reference framework which customizes the traditional Ops cycle with activities and sup-
porting techniques addressing the specific needs and challenges of the applications in the
Cloud Continuum.

The novel concept of the CloudOps workflow and reference framework are key
findings of the work. They focus on facilitating and speeding up deployment and operation
of such ecosystems when they exploit heterogeneous cloud resources. To this end, our
proposal provides Ops teams with applications under the Cloud Continuum paradigm with
a CloudOps reference framework that allows them to deploy in an optimized configuration
environment while simplifying its operation. We also incorporated the concept of self-
healing and data portability in the Cloud Continuum with special focus on the portability
of stateful components, which is an unsolved issue up to date. We have also explained
the main benefits of the solution for the target users and especially for the operators of
critical infrastructures-based systems. We included the initial results captured with a first
implementation of the MVP (minimum viable product) of the presented framework. This
will be extended, including a complete structural and behavioral architectural description
of the CloudOps’ components described in the paper, and also with the development of the
corresponding complete POCs (proof of concepts) that will serve to exhaustively validate
the presented approach.

The next steps will also include the full validation and verification of the applicability
of this novel approach in relevant industrial use cases. As we have already advanced,
envisioned candidates for testing the solution are mainly applications to manage critical
infrastructures (e.g., safety and security, emergency management).
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