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ABSTRACT

In this paper, multiple evolutionary algorithms are applied to solve
an energy resource management problem in the day-ahead context
involving a risk-based analysis corresponding to the proposed 2022
competition on evolutionary computation. We test numerous evo-
lutionary algorithms for a risk-averse day-ahead operation to show
preliminary results for the competition. We use evolutionary com-
putation to follow the competition guidelines. Results show that the
HyDE algorithm obtains a better solution with lesser costs when
compared to the other tested algorithm due to the minimization of
worst-scenario impact.

CCS CONCEPTS

• Computing methodologies→ Search methodologies; • Applied
computing → Engineering.
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1 INTRODUCTION

The current goals set to decrease the carbon footprint, mainly in the
European Union, which are set to reduce emissions of at least 55% by
2030 [1], encourage the integration of distributed energy resource
(DER) in the smart grid paradigm. This high penetration increase
poses new challenges to the correct operation of the electricity
grid because of the uncertainty characteristic of these resources.
The energy resource management (ERM) problem considering un-
certainty is introduced here to achieve a proper operation of the
energy management system.

Considering the variability and uncertainty of the considered
technologies like renewable generation such as photovoltaic (PV)
and wind (weather dependent), EV travel behavior, load consump-
tion, and electricity market prices, we introduce the concept of
extreme event day-ahead operation problem. As the name indicates,
an extreme event is an occurrence that is of low probability be-
cause it is something improbable to occur, but that can cause a high
impact on the energy management system, making the obtained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9268-6/22/07. . . $15.00
https://doi.org/10.1145/3520304.3535080

solution volatile. The existence of these events creates a risk as-
sociated with the ERM problem. In this situation, we incorporate
two risk measuring tools: value-at-risk (VaR) and conditional VaR
(CVaR) to evaluate the risk associated with the day-ahead man-
agement solution for a given number of scenarios [2]. The CVaR
measuring tool is utilized in comparison to the mean-variance tool,
because the CVaR analysis is not limited to an elliptical probability
distribution as referenced in [3], and a gaussian distribution can be
used as we propose in this paper.

Traditional optimization algorithms have struggled to keep up
with the increasing complexity in several scientific disciplines. Al-
ternative methodologies, such as evolutionary computation (EC),
are a possible choice in this circumstance [4]. Due to the complexity
presented in most energy optimization problems, which involve
the ERM problem, EC is a powerful tool well suited to be applied
to solve this problem [5].

This paper is based on [6] which proposed a robust ERM includ-
ing CVaR risk analysis. The optimization problem is mixed-integer
linear programming (MILP) and was solved using evolutionary al-
gorithms (EAs) considering risk-neutral and risk-averse approaches.
This work focuses on the "Competition on Evolutionary Computa-
tion in the Energy Domain: Risk-based Energy Scheduling1," which
only considers a total risk aversion in the optimization, and fewer
scenarios are evaluated with fewer extreme events being created.
Different EAs are used from the one previously, including differen-
tial evolution (DE), hybrid-adaptive DE with decay function (HyDE-
DF) [7], vortex search (VS) [8], particle swarm optimization (PSO),
success-history based adaptive DE (SHADE) [9], and L-SHADE [10].
These algorithms are used, because the basis of the competition is
the application of EC in the energy domain. Numerous research
has demonstrated the efficacy of these algorithms in addressing
benchmark issues and real-world applications. The proposed ERM
framework for the competition can be seen in Figure 1.

2 RISK-BASED METHODOLOGY

Regarding the risk-based methodology, this section presents the
mathematical formulation for the ERM model present in the pro-
posed competition considering multiple EC optimization tech-
niques.

2.1 Risk formulation

The proposed day-ahead optimization problem consists in a cost
minimization given by:

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡 = 𝑧ExCost + CVaR𝛼 (1)

1http://www.gecad.isep.ipp.pt/ERM-competitions/2022-2/
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Figure 1: Considered ERM with risk evaluation.

where the expected cost (𝑧ExCost), and CVaR𝛼 are given by:

𝑧ExCost =

𝑁𝑠∑︁

𝑠

𝑧Cost𝑠 × 𝜌𝑠 (2)

CVaR𝛼 (𝑧
Cost
𝑠 ) = VaR𝛼 (𝑧

Cost
𝑠 ) +

1

1 − 𝛼

𝑁𝑠∑︁

𝑠=1

𝜌𝑠 × 𝜋𝑠 (3)

where:

VaR𝛼 (𝑧
Cost
𝑠 ) = 𝑧 − 𝑠𝑐𝑜𝑟𝑒 (𝛼) ∗ 𝑠𝑡𝑑 (𝑧Cost𝑠 ) (4)

where 𝑧Cost𝑠 are the costs associated with each scenario, 𝜌𝑠 rep-
resents the scenario probability, 𝛼 is the confidence level, and 𝜋𝑠
are the worst scenario costs. That is the costs of the scenarios that
exceed the confidence level. 𝑧 − 𝑠𝑐𝑜𝑟𝑒 (𝛼) computes the cumulative

distribution function. The formulation for 𝑧Cost𝑠 can be expressed
as:

𝑧Cost𝑠 = 𝑧OC𝑠 − 𝑧MT
𝑠 + 𝐵𝑉𝑠 (5)

where 𝑧OC𝑠 are the operational costs of each scenario, 𝑧MT
𝑠 are the

revenues from market transactions, and 𝐵𝑉𝑠 is the bound violation
penalty.

The remaining formulations for the operational costs, market
transactions and problem constraints can be seen in [6].

A risk-averse approach analyzes the risk associated with the
considered technologies’ (renewables, load, market prices, etc) un-
certainty. In (1-𝛼) of the scenarios with the highest costs that exceed
the confidence level, the additional cost of CVaR𝛼 is added in Eq. 1.

2.2 Metaheuristic optimization

To tackle the complex energy problem that is the ERM, multiple
CI optimization methods were used. Each metaheuristic randomly
generates an initial solution between variables’ upper and lower
bounds. For each of the 24 periods, each solution is comprised of a
series of sequentially repeated variables.

The risk-based scheduling methodology’s optimization proce-
dure aims to reduce the costs in Eq.1 by minimizing the impact of
extreme events. The fitness function represented in Figure 2 be-
gins by importing the initial metaheuristic solution, the case study
comprising all created scenarios (a total of 15 scenarios), where
some contain extreme occurrences such as market price increase,
load increase, and renewable generation reduction due to weather
variability. In the proposed methodology, we considered a total risk
aversion, so there is no need to set up a risk aversion variable that
can vary from 0 to 100% as shown in [6]. The following step is the
fitness evaluation that calculates all the scenario costs regarding
the proposed day-ahead ERM problem formulations. After that, the
function calculates all the risk measuring parameters as presented
in section 2.1.

The output of this function is the fitness value which is the cost
to be minimized by each metaheuristic.

The ERM under consideration includes 13,680 variables per indi-
vidual, distributed across 570 variables per period, with 21 variables
forming the generators’ active power and 21 binary variables indi-
cating the generators’ status. A total of 500 EVs were integrated,
with 25 different load types, two energy storage systems, and one
wholesale electricity market.
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Figure 2: Fitness function framework.

3 RESULTS

This section presents the case study and obtained results regarding
the risk-based results in terms of aggregator’s costs and algorithm
performance of each EA for the proposed methodology.

3.1 Case Study

This case study was conducted on a distribution network of a smart
grid located in the BISITE laboratory at the University of Sala-
manca, Spain [11], where an external supplier (30MVA substation)
is situated at bus 1. A 27% renewable generation was considered
with a 24% wind and 3% PV penetration. This network includes
25 different loads in terms of consumption, including residential
and office buildings, as well as some service buildings such as an
hospital, fire station, and shopping mall.

High integration of electric vehicles (EVs) was considered with
a total of 500 EVs, where EV uncertainty was modeled using an EV
travel behavior simulator tool proposed in [12]. Multiple classes of
vehicles were employed, with two types of EVs: battery EVs and
plug-in hybrid EVs, each with its own set of features, as described
in [13].

A total of 5000 scenarios were initially generated using theMonte
Carlo Simulation, but were reduced to 15 scenarios to reduce com-
putation time and effort. The risk scenarios generated by the ag-
gregator’s variable inputs exhibit much variation. In this setting,
variations in load demand and renewable generation can be ob-
served. Figure 3 shows the total variation in electricity market, and
external supplier prices. Due to the multiple extreme scenarios that
consider an increase in market costs, there is a significant variation
in market prices. Period 12 has a maximum value of 104.61 m.u.,
with a lowest value of 43.36 m.u., indicating a significant rise of
61.25 m.u. External supplier costs have only two values fixed at 50
m.u. during off-peak hours (lower energy costs) and 90 m.u. during
peak hours (higher energy costs).

The aggregator’s total load demand and renewable generation
are represented in Figure 4. From the extreme events generated, sig-
nificant variance in load can be seen from periods 16 to 22, with the
highest value of 16.20 MW in period 16. Since some extreme events
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Figure 3: Wholesale electricity market and external supplier

prices variation curves.

generated involve a reduction in renewable generation, mainly PV,
the variations are modest in some periods, while a higher fluctua-
tion may be seen in periods 13 to 18, where still PV generation is
the highest.
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Figure 4: Load consumption and renewable generation varia-

tion curves.

Numerous metaheuristics were applied to solve the proposed
ERM model considering risk analysis, and Table 1 illustrates the
parameters used for each considering the competition rules of a total
of 5,000 function evaluations (FEs). Therefore, we set the maximum
generation (GEN) number and population size (NP) to 500 and
10, respectively. For the PSO algorithm, multiple parameters are
needed as the personal cognitive coefficient (c1), the global cognitive
coefficient (c2), minimum and maximum inertia weights (Wmin
and Wmax), and particle velocity factor (V) to establish velocity
limits. The scaling factor (F) and crossover probability (Cr) are set
for the algorithms based on DE.

3.2 Risk-based results

The average results obtained by the applied EAs for the ERM prob-
lem considering CVaR risk measuring are described in Table 2 for
a total of 20 trials. The table shows the average fitness values ob-
tained for each EA, which in this case corresponds to the objective
function costs, where HyDE presents the lowest values compared to
the other algorithms because of the worst scenario and penalty cost
reduction. HyDE was able to reduce 30.30% of worst scenario costs
compared to the next best algorithm (HyDE-DF), corresponding to

1814



GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA José Almeida et al.

Table 1: Parameter of each EA.

EA GEN NP c1 c2 Wmin Wmax V F Cr

PSO

500 10

1.5 2 0.4 0.9 0.1 - -
DE

-

0.3 0.5HyDE

HyDE-DF

VS - -
SHADE

0.5 0.5
L-SHADE

a 28.73% in costs/fitness reduction. PSO was the fastest algorithm
regarding the optimization time, followed by DE.

For a total of 15 scenarios generated for the case study Table 3
shows the average and standard deviation scenario costs, demon-
strating the discrepancy between all the scenarios. Since HyDE
obtained the best fitness value due to the worst scenario cost reduc-
tion, it was expected that this algorithm also obtained the lowest
scenario costs, as the table shows. When it comes to the average
scenario costs HyDE reduced 3,547 m.u. compared to HyDE-DF,
which was the following algorithm with the lowest costs.

The average risk measuring costs given by the CVaR variable
are presented in Figure 5. It can be seen that HyDE, HyDE-DF,
and VS are the only algorithms that offer a lesser value than the
average CVaR, with the remaining showing greater values. That
is, the remaining algorithms give a more volatile solution with the
costs associated with the worst scenarios being elevated (Table 2)
due to the extreme events. This situation means that these EAs
fail to minimize these events’ impact on the ERM solution. For
example, HyDE reduced 81.59% of CVaR costs compared to the
average value, and SHADE presented 37.59% of higher CVaR costs
from the average value.
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Figure 5: CVaR costs achieved by each tested EA.

3.3 Algorithm Performance

For the proposed optimization model, the EAs’ performance was
assessed for a total of 20 runs. The convergence of each algorithm
is shown in Figure 6. From all the tested algorithms, it can be seen
that HyDE presents the best performance achieving the lowest

fitness value, with HyDE-DF and VS following. PSO, SHADE, and
L-SHADE present similar convergences, with SHADE presenting
the worst fitness values and are most likely stuck in local minima
due to the fast convergence.
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Figure 6: Convergence of the tested EAs.

A Wilcoxon test was performed on the risk-based results ob-
tained with a significance level of 5%. As HyDE presented the best
cost results, the statistical test was conducted using HyDE as the
base algorithm for comparison, as Table 4 shows. The table shows
four results: R+, R-, p-value, and L-sign. The R+ and R- to the total
of positive and negative ranks that show the base algorithm’s per-
formance compared to the other algorithms. As expected, HyDE
consistently outperformed the compared algorithms. The p-value
demonstrates how significant the difference is, as the obtained p-
values are more than the 5%. Finally, the L-sign is the sign (+, -,=)
representing the statistical performance attained, where HyDE for
the proposed problem obtained the best statistical performance.

HyDE, provides exceptional outcomes because of the self-
adaptive processes like jDE [14]. It also makes use of perturbations
inspired by EPSO [15], which have been shown to increase the
algorithms’ convergence while tackling optimization problems in
the energy domain.

4 CONCLUSIONS

In this paper, we verified the application of multiple EAs to the
proposed risk-based ERM competition. The risk associated with
extreme events was evaluated through the CVaR mechanism for a
100% risk-averse formulation.
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Table 2: Average costs, expected costs, worst scenario, penalties, and computational time obtained by each EA (random).

EA Cost/fitness (m.u.) 𝑧ExCost (m.u.) Worst scenario (m.u.) penalties (m.u.) time (min)

PSO 173,369 20,526 208,462 6,875 5.23
DE 116,007 17,779 138,517 4,565 5.27
HyDE 43,881 12,966 49,654 1,850 6.10
HyDE-DF 61,571 15,564 71,235 3,272 6.14
VS 64,959 16,776 75,004 4,260 6.11
SHADE 175,956 18,482 212,184 7,087 5.29
L-SHADE 173,071 18,711 208,582 6,955 5.31

Table 3: Average and standard deviation scenario costs for

each EA.

EA Avg. Scenario Costs (m.u.) Std. Scenario Costs (m.u.)

PSO 28,006 50,252
DE 22,708 32,348
HyDE 15,256 11,002
HyDE-DF 18,803 16,205
VS 20,170 17,009
SHADE 25,786 51,570
L-SHADE 25,856 50,667

Table 4: Wilcoxon signed rank test.

HyDE vs. R+ R- p-value L-sign

PSO 210 0 1.91E-06 +
DE 210 0 1.91E-06 +
HyDE-DF 207 3 9.54E-06 +
VS 208 2 5.72E-06 +
SHADE 210 0 1.91E-06 +
L-SHADE 210 0 1.91E-06 +

The preliminary results for the 2022 competition show that the
HyDE algorithm achieved both the lowest CVaR and total day-
ahead costs compared to the other algorithms, even an improved
version such as HyDE-DF. Because HyDE could reduce the worst
scenario costs majorly. This was further proved by the implemented
Wilcoxon signed rank test. Different DE algorithms SHADE and L-
SHADE together with PSO showed similar, but poor performances
for this problem, achieving the highest aggregated day-ahead costs.
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