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Abstract—Cooperative, Connected and Automated Mobility
will enable the close coordination of actions between vehicles,
road users and traffic infrastructures, resulting in profound
socioeconomic impacts. In this context, location and yaw angle
of vehicles is considered vital for safe, secured and efficient
driving. Motivated by this fact, we formulated a multimodal sen-
sor fusion problem which provides more accurate localization
and yaw information than the original sources. Simultaneously
estimating location and yaw parameters of vehicles can be
treated as the task of cooperative odometry or awareness.
To do so, V2V communication as well as multimodal self
and inter-vehicular measurements from various sensors are
considered for the problem formulation. The solution strategy
is based on the maximum likelihood criterion as well as a novel
alternating gradient descent approach. To simulate realistic
traffic conditions, CARLA autonomous driving simulator has
been used. The detailed evaluation study has shown that each
vehicle, relying only on its neighborhood, is able to accurately
re-estimate both its own and neighboring states (comprised
of locations and yaws), effectively realising the vision of 360◦

awareness.
Index Terms—CCAM, Collaborating odometry, Multimodal

sensor fusion, Alternating gradient descent

I. INTRODUCTION

Cooperative Intelligent Transportation Systems [1] envi-
sion the integration of Cooperative, Connected and Auto-
mated Mobility (CCAM) technologies both in the public
transportation sector and the mobility-as-a-service platforms.
The goal is to introduce new mobility services for passengers
and goods, fostering benefits for the road users and the trans-
portation system as a whole. CCAM technology adoption
from governments and industry aims to create user-centred,
all-inclusive mobility, while increasing safety, reducing con-
gestion and contributing to energy savings. Key role in the
feasible operation of CCAM play the sensor rich Connected
and Automated Vehicles (or simply CAVs), which through
Vehicle-to-Vehicle (V2V) communication and sensor fusion
are able to coordinate and achieve their driving actions. CAVs
constantly broadcast cooperative awareness messages [2], [3]
which include position, yaw angle, velocity, etc., to other
vehicles with frequency 1 − 10Hz and range 300 − 1000m.
Especially position and yaw angle are considered vital for
efficient path and motion planning. Both parameters can be
extracted by sensors like Global Positioning System (GPS)
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and Inertial Measurement Unit (IMU) or odometry solutions
using raw visual and Light-Detection-and-Ranging (LIDAR)
data, though degraded by measurement noise. Therefore,
in this work collaborating multimodal fusion among the
involved CAVs, which extract, exchange and process mea-
surements of the surrounding environment using cameras,
LIDARs, GPS, IMU, etc., aims explicitly to improve location
and yaw angle estimation.

Distributed cooperative localization, in which the vehicle
estimates its state though peer-to-peer V2V cooperation has
attracted the attention of scientific community [4] due to
its scalability, robustness to central node malfunctioning,
communication and energy savings, etc. Different methods
can be distinguished to either optimization-based or track-
ing. Optimization or in particular convex optimization-based
ensure that the desired location will be attained in a ”few”
steps. Tracking, like the family of Kalman filters (KF),
integrates the state prediction step via the motion model in the
estimation approach. To improve ego vehicle position, local
and global filters are optimally fused using KF in [5]. Self
and relative measurements are considered by the ego vehicle.
A cooperative odometry estimation algorithm for a group of
robots is proposed in [6], which exploits raw visual and IMU
data in the context of covariance intersection. Cooperation is
realized through the transmission of visually detected fea-
tures. Once again, each vehicle estimates only its own state.
Localizing either vehicles or unmanned aerial vehicles in the
presence of position outliers caused by cyberattacks or GPS-
denied environments are discussed in [7] and [8]. The former
formulates a centralized convex optimization problem in
order to robustify position estimations, while the latter makes
use of the renowned multi-dimensional scaling algorithm for
centralized inter- and intra-cluster relative localization. Co-
operative odometry in underwater environments is discussed
in [9], where the state of autonomous underwater vehicle is
augmented, apart from 2D position, with the yaw parameter,
just like ours approach. To address the possible non-Gaussian
measurement noise of yaw in this harsh environment, a robust
two-stage Cubature KF is introduced.

To the best of our knowledge, the majority of localization
approaches focuses only on ego position estimation. No
published study has been found dealing with distributed
multi 3 degrees-of-freedom (DOF) (x, y position and yaw
angle) estimation. Our approach differentiates itself from
state-of-the-art odometry or SLAM solutions [10]–[12], in



which the vehicle tries to estimate its own 6 DOF (3D
rotation and translation) from raw visual or LIDAR data by
finding the correspondences between key points (3D and/or
pixels) of different keyframes. The state vector that needs
to be estimated by the individual vehicle in our approach
is comprised by the 2D positions and yaws of both ego
vehicle and its neighbors. The novelty lies on the fact that
the ego vehicle performs cooperative odometry estimation,
i.e., multiple 3D pose estimation in absolute coordinates
and over time horizon, so as to effectively be aware in a
distributed manner of surrounding environment and not only
of its own state. Our solution lends itself from our previous
contribution in local cooperative awareness [13] related only
to position estimation, as well as the cooperative gradient
descent algorithm [14] which is extended by multimodal
measurement models and unknown target parameters. The
main contributions of this work can be summarized as
follows:
• We formulate a cost function using maximum likelihood

criterion, which is minimized by the ego vehicle and
comprised of four multimodal measurement models and
the unknown 3 DOF parameters of itself and closest
neighbors.

• We derive a novel alternating gradient descent algorithm
for effectively performing cooperative odometry.

• We verify that by treating yaw angles as parameters to
be optimized, much more accurate localization can be
achieved in the case of both self position and awareness.

• The extensive evaluation study performed in the realistic
traffic conditions of CARLA simulator [15] has shown
very promising results in terms of the accuracy of self
and neighboring 3 DOF estimation.

Outline: Section II introduces the system model for the
cooperative odometry problem; Section III presents the target
cost function and a novel solution framework; Section IV is
dedicated to experimental setup and evaluation, while Section
V concludes our work.

II. SYSTEM MODEL AND PRELIMINARIES

The localization module deployed in smart vehicles pro-
vides noisy self position and yaw measurements fusing GPS,
IMU, Visual or LIDAR (frontend) odometry. Our framework
should be seen as the backend of this module (Fig. 1), on top
of the previous frontend solutions, aiming to provide much
more accurate position and awareness information to the
CAVs. For that reason, and instead of considering only ego
2D position and yaw, we define the state x̂

(t)
i of vehicle i as

the collection of positions and yaws
{
{x(t)

j }, {y(t)j }, {θ(t)j }
}

belonging to the connected neighbors j of i’s neighborhood
N (t)

i (including i). Therefore, x̂(t)
i ∈ R3|N (t)

i |. This formu-
lation enables i to be aware of itself as well as its nearby
vehicles in terms of position and yaw angle so as to optimize
its driving performance and enhance its safety.

Each vehicle utilizes a sensor-based perception system,
which provides a detailed analysis of the traffic scene by
detecting and classifying moving and static objects like vehi-
cles, pedestrians, cyclists, etc. For this task, sensors including

Fig. 1. Proposed backend architecture

(monocular or stereo) cameras, LIDARs, RADARs, etc., are
used to combine and fuse the visual data so as to increase
the quality of data analysis. Deep learning is nowadays a
straightforward approach for the traffic scene analysis and
understanding [16].

Assuming that the 2D ground truth position and yaw angle
of ego vehicle i at time instant t are x

(t)
i =

[
x
(t)
i y

(t)
i

]
∈

R2 and θ
(t)
i respectively, then its relative distance with respect

to nearby vehicle j is equal to: z
(t)
d,ij =

∥∥∥x(t)
i − x

(t)
j

∥∥∥.
Additionally, the relative angle between i and j as measured

by the former, is equal to: z(t)a,ij = arctan 2
y
(t)
j −y

(t)
i

x
(t)
j −x

(t)
i

+ θ
(t)
i ,

with ϕ
(t)
ij = arctan 2

y
(t)
j −y

(t)
i

x
(t)
j −x

(t)
i

. Apart from the relative

measurements with respect to other vehicles, ego vehicle
extracts also self-measurements regarding its position and
yaw. For these purposes, GPS, IMU or a low-cost odometry
solution can be adopted. In any case, the extracted position
information should be in the form of a common across the
vehicles reference system, so as to the different positions
correspond to the same map. Assuming that measurement
noise follows the Gaussian distribution [4], [17], the two self-
measurement models of vehicle i are defined as follows:
• Self position measurement model:

z̃
(t)
i = x

(t)
i + n(t)

p , n(t)
p ∼ G(0,Σp) (1)

• Self yaw measurement model:

θ̃
(t)
i = θ

(t)
i + n

(t)
θ , n

(t)
θ ∼ G(0, σ2

θ) (2)

Gaussian measurement noise is used for the two relative
measurement models (as [4] and [17] have adopted, too):
• Relative distance measurement model:

z̃
(t)
d,ij = z

(t)
d,ij + n

(t)
d , n

(t)
d ∼ G(0, σ2

d) (3)

• Relative angle measurement model:

z̃
(t)
a,ij = z

(t)
a,ij + n(t)

a , n(t)
a ∼ G(0, σ2

a) (4)

Notice that the yaw measurement model (2) is also integrated
in (4). Model (2) is actually truncated Gaussian, so as to
ensure that yaw is between [0, 2π].

We made the assumption that i knows which range and
angle measurement coming from LIDAR and camera cor-
respond to its V2V neighbor j. Although this knowledge
requires a data association pre-processing step, it is assumed
that optimal data association has already been performed.
Additionally, according to V2V communication standard of



[2], a communication range rc (much lower than 300m) indi-
cating V2V connection is assigned to each vehicle, imposing
that visually extracted measurements are discarded should
relative distance exceeds rc. In this way, computational load
can be reduced, without compromising the accuracy. Fur-
thermore, impact of communication delay can be considered
negligible exactly due to restricted rc and small amount of
transmitted measurements between vehicles (shown in next
Section), which are significantly lower than raw images or
point clouds. These two practical challenges and their impacts
on accuracy are of future investigation.

III. DISTRIBUTED MULTI 3 DOF ESTIMATION

This Section is dedicated to the derivation of the target
cost function. Initially, we define the state vector of each
ego vehicle i and formulate the optimization problem ac-
cording to maximum likelihood criterion and the available
multimodal measurements to i. Afterwards, a novel solution
framework is presented based on gradient descent algorithm
and alternating optimization. The state vector of ego vehicle
comprises of 3|N (t)

i |DOF, facilitating the awareness ability
of vehicle.

A. Cost function derivation via maximum likelihood

The state x̂
(t)
i ∈ R3|N (t)

i | of vehicle i is equal to: x̂(t)
i ={

{x(t)
j }, {y(t)j }, {θ(t)j }

}
,∀j ∈ N (t)

i . As a first step, we define
the following probability density functions (PDFs) for the
relative measurement models of i with itself and its neighbor
j treating the unknown parameters as deterministic variables:

P1 = P(z̃
(t)
i |x(t)

i ) = G(z(t)
i ,Σp)

P2 = P(θ̃
(t)
i |θ(t)i ) = G(θ(t)i , σ2

θ)

P3 = P(z̃
(t)
d,ij |x

(t)
i ,x

(t)
j ) = G(z(t)d,ij , σ

2
d)

P4 = P(z̃
(t)
a,ij |x

(k)
i ,x

(t)
j ) = G(z(t)a,ij , σ

2
a)

The likelihood function L is equal to the product of the PDFs:
L =

∏4
l=1 Pl. Maximum likelihood criterion states that to

estimate the target parameters of 2D positions and yaws given
the observed measurements, the likelihood function should
be maximized, or equivalently, minus likelihood function be
minimized. If in addition we take the natural logarithm of
−L, we end up to the target cost function that is assigned to
vehicle i:

argmin
x̂

(t)
i

f(x̂
(t)
i ), (5)

with

f(x̂
(t)
i ) =

∑
(k,j)∈N (t)

i

(z̃
(t)
d,kj − z

(t)
d,kj)

2

2σd
2

+
(z̃

(t)
a,kj − z

(t)
a,kj)

2

2σa
2

+

∑
j∈N (t)

i

(z̃
(x,t)
j − x

(t)
j )2

2σx
2

+
(z̃

(y,t)
j − y

(t)
j )2

2σy
2

+
(θ̃

(t)
j − θ

(t)
j )2

2σθ
2

(6)

According to the definition of (6), each neighbor j ∈ N (t)
i

should transmit to i its noisy 2D position z̃
(t)
j and yaw θ̃

(t)
j ,

as well as the range and angle measurements (z̃
(t)
d,ji, z̃

(t)
a,ji)

towards i. The latter, together with its own (self and rel-
ative) noisy measurements, formulates the target function,
minimizes it using the framework of the following section,
and re-estimates the positions and yaws of its neighborhood.
As a final remark, the second term of relative angle model
is reformulated so as to facilitate the solution:∑
(k,j)∈N (t)

i

(
tan (z̃

(t)
a,kj − θ

(t)
k )(x

(t)
j − x

(t)
k )− (y

(t)
j − y

(t)
k )

)2
2σa

2

A schematic diagram of the transmitted measurements to
vehicle i is shown in Fig. 2.

Fig. 2. Transmitted and available measurements to i

B. Alternating Gradient Descent as solution strategy
Vehicle i has to address the minimization of (6) so as to

be effectively aware of its surrounding environment. To do
so, cooperative gradient descent algorithm of [14], [13] can
be used. Directly minimizing (6) is non-beneficial due to the
tan(·) term which connects position and yaw angle. Alternat-
ing minimization will be helpful in decoupling the estimation
of 2D positions and yaws into two distinct optimization steps.
Collecting all the positions and yaws that need to be re-
estimated by i to vectors x̃(t)

i =
{
x
(t)
j

}
, x̃

(t)
i ∈ R2|N (t)

i | and

θ
(t)
i =

{
θ
(t)
j

}
,θ

(t)
i ∈ R|N

(t)
i |, the alternating minimization

problem can be casted as follows:

argmin
x̃

(t,l)
i

f(x̃
(t,l)
i , θ

(t,l−1)
i ) (7)

argmin
θ
(t,l)
i

f(x̃
(t,l)
i , θ

(t,l)
i ), (8)

for l = 1, . . . Lmax iterations. This formulation implies that
during the first optimization step the vector of yaws, as
determined in the previous iteration, is considered a known
parameter in order to estimate the vector of positions. At the
second step, where we are trying to re-estimate yaws, the
positions are set equal to those determined in the first step.
Gradient descent algorithm is used to minimize (7)-(8) by
using the negative gradient of f(·) in order to identify the
direction of steepest descent. More specifically, (7)-(8) can
be minimized as follows:

x̃
(t,l)
i = x̃

(t,l−1)
i − µ1

∂f(·)
∂x̃

(t,l)
i

∣∣∣∣∣
x̃

(t,l−1)
i

(9)

θ
(t,l)
i = θ

(t,l−1)
i − µ2

∂f(·)
∂θ

(t,l)
i

∣∣∣∣∣
θ
(t,l−1)
i

, (10)



with small scalars µ1, µ2 > 0. To ensure that global minimum
will be reached, we have to guarantee the convexity of f(·).
Due to the term tan (z̃

(t)
a,kj − θ

(t)
k )(x

(t)
j −x

(t)
k )−(y

(t)
j −y

(t)
k ),

the cost function of (10) is non-convex, since tanx is convex
in (0, π/2) and concave in (−π/2, 0). Therefore, it is prob-
able that the solution will be trapped in saddle points. Even
with these limitations, our collaborative odometry solution
achieves remarkable accuracy as indicated in Section IV.
Imposing the convexity of cost function as a constraint in the
framework of Alternating Direction Method of Multipliers is
of future research. The main steps of the proposed approach
Collaborative Odometry using Gradient Descent (CO-
GD) are shown in Algorithm 1.

Algorithm 1: CO-GD
Input: simulation horizon T , max iterations Lmax,

scalars µ1 = 10−3, µ2 = 10−6

Output: x̂(t)
i ∈ R3|N (t)

i |

1 for t = 1, 2, . . . T do
2 Vehicles transmit to neighbors their 2D position

and yaw, and the corresponding range and angle
measurements (see Fig. 2) ;

3 for each vehicle i do
4 Define cost function f(·) from (6) ;
5 for l = 1, . . . Lmax do

6 x̃
(t,l)
i = x̃

(t,l−1)
i − µ1

∂f(·)
∂x̃

(t,l)
i

∣∣∣∣
x̃

(t,l−1)
i

;

7 θ
(t,l)
i = θ

(t,l−1)
i − µ2

∂f(·)
∂θ

(t,l)
i

∣∣∣∣
θ
(t,l−1)
i

;

8 end
9 x̂

(t)
i =

{
x̃
(t,l)
i ,θ

(t,l)
i

}
;

10 end
11 end

IV. NUMERICAL RESULTS

In this section, we carry out simulations to verify the
convergence and localization performance of the proposed
scheme using Python and CARLA simulator. During the
experiments a PC Laptop with 8GB RAM and Intel Core
i7-1065G7 CPU @ 1.3 GHz was used.

A. Evaluation metrics

In practice, vehicle i measures its relative angle with
respect to j in the local reference system (lrs) of its LIDAR
or camera. To realistically simulate this measurement, we
have to notice that vehicle i has undergone both rotation and
translation in the global reference system of CARLA. A more
detailed illustration is provided in Fig. 3. As a matter of fact,
za,ij is actually equal to: za,ij = arctan 2

ylrs
j −y

lrs
i

xlrs
j −xlrs

i

, with
time index omitted. The 3× 3 homogeneous transformation
matrix T ∈ SE(2) describes the relationship between global
and local reference systems:

x
(t,lrs)
i = T

[
x
(t)
i 1

]T
, x

(t,lrs)
j = T

[
x
(t)
j 1

]T
(11)

Transformation matrix T comprises of the 2 × 2 rotation

matrix R =

[
cos θ

(t)
i − sin θ

(t)
i

sin θ
(t)
i cos θ

(t)
i

]
,R ∈ SO(2) and the

translation vector p ∈ R2: T =

[
R p
0 1

]
. Note that the

projection operation of (11) is only used for the purposes
of realistic simulation, since CARLA can provide both the
ground truth yaw and vector p, while the latter coincides
with the ground truth position determined by the simulator.
In practice, visual sensors will ”simply” return scalars z̃

(t)
d,ij ,

z̃
(t)
a,ij using the centroid of the detected bounding box of target

vehicle. In the same context, the estimated self yaw angle by
vehicle i is used to define estimated rotation matrix Rest.
According to [18], (unit-less) yaw estimation error is equal
to the following frobenius norm:

Y E
(t)
i = ∥Pest − P ∥F =

∥∥P−1Pest − I
∥∥
F
,

which denotes the distance of estimated and ground truth
rotation matrices.

For the case of yaw angle awareness of vehicle i, the root
mean square error (RMSE) is used at each time instant:

Y AE
(t)
i =

√√√√ 1

|N (t)
i |

∑
j∈N (t)

i

(Y E
(t)
j←i)

2,

where Y E
(t)
j←i is the yaw error of j as measured by i.

In terms of location evaluation, self localization error
LE

(t)
i is derived according to the euclidean distance between

the actual and the estimated position. Location awareness
error, LAE

(t)
i , is equal to:

LAE
(t)
i =

√√√√ 1

|N (t)
i |

∑
j∈N (t)

i

(LE
(t)
j←i)

2

For the overall evaluation of vehicle’s trajectory we mea-
sured the RMSE over simulation horizon for: i) rotation,
i.e., Yaw RMSE over time (Y-RMSET) and Yaw Awareness
RMSE over time (YA-RMSET) and ii) location, i.e., Loca-
tion RMSE over time (L-RMSET) and Location Awareness
RMSE over time (LA-RMSET).

Fig. 3. Definition of yaw and relative angle measurement

B. Simulation setup

CARLA simulator has been used to extract the trajectories
of 150 vehicles, for simulation horizon T = 448 time



instances and time interval dt = 0.4sec. Ground truth
positions and yaws have been degraded with noise variance
σx = 3.5m,σy = 2m and σθ = 10◦. Noise variances σd = 1
and σa = 4◦ have been used for the relative (range and angle)
measurements. The velocities of vehicles range between 0
(e.g. waiting at traffic lights) and 74km/h. To validate the
performance of the proposed collaborative odometry algo-
rithm in terms of location and yaw accuracy, we have used
the gradient descent based algorithm of [13] which doesn’t
consider yaw angle as a parameter to be estimated. We
named it CO without yaw using GD or (COWY-GD). The
evaluation study has considered a random ego vehicle, along
with its neighborhood of connected vehicles, demonstrating
how accurate and how quickly can estimate 2D positions
and yaws. Trajectory of vehicle in the CARLA environment
is shown in Fig. 5.

C. Evaluation study

1) Convergence ability: The convergence performance of
our algorithm is shown in Fig. 4, under three different choices
of communication range rc. The latter parameter dictates
the number of connected neighbors to each ego vehicle i.
More specifically, number of neighbors ranges between 1-
7, 1-9 and 1-11, for rc = 20m, 30m, 40m, respectively.
Fig. 4 presents the averaged over time horizon LAE (ALAE)
of vehicle i, so as to depict the convergence behavior in
the mean sense. For Lmax = 450 iterations, the proposed
CO-GD succeeds in reducing the location awareness error
at every iteration, reaching almost 3m at the end of opti-
mization. In all three cases, it is apparent that our scheme
successively minimizes location error due to the convexity of
(9). On the contrary, COWY-GD which doesn’t consider yaw
as an unknown parameter, behaves much more worse when
the number of neighbors grows larger. Actually, during the
optimization procedure the solution of COWY-GD gets away
from the minimum, especially in the third case. This is due to
the fact that the noise of angle measurement model caused by
noisy yaw and relative measurement, which isn’t addressed
by the algorithm, seriously impacts on the accumulation
of position estimation error. Therefore, we can conclude
that larger number of neighbors don’t influence negatively
our scheme (instead of COWY-GD) in terms of location
awareness, while it is expected to be more accurate should
the Lmax increases. Scalability to the size of neighborhood
is attained in the case of self position and yaw estimation, as
pointed out next.

2) Time complexity: Averaged (over Lmax and T ) timing
results for every iteration of both schemes are summarized in
TABLE I, for different communication ranges. Clearly, our
method is more time consuming than COWY-GD, reaching
2.6 msec when rc = 40, due to the two optimization
problems which have to be solved. Choice of Lmax in
practical considerations is related to these timing outcomes,
since optimization procedure has to be completed within the
time interval dt.

3) Position accuracy evaluation: Additionally, Table II
and III present the self L-RMSET and neighborhood’s LA-

(a) ALAE with rc = 20m

(b) ALAE with rc = 30m

(c) ALAE with rc = 40m

Fig. 4. Convergence with different communication ranges

TABLE I
AVERAGED TIME RESULTS FOR EVERY ITERATION

Comm. range CO-GD (msec) COWY-GD (msec)
rc = 20m 1.6 0.3
rc = 30m 2 0.5
rc = 40m 2.6 0.6

RMSET of ego vehicle. The second column of Table II
dictates the benefits of CO-GD in terms of scalability. This
fact means that as the number of neighbor increases, so
does the accuracy of self position estimation, since higher
amount of relative measurements fused by ego vehicle result
on reducing the noise of original position source. Our scheme
succeeds in reducing self position error with respect to noisy
source by 30%, 34% and 42%. As it was also pointed out
before, the performance of COWY-GD shown in the third
column, is significantly degraded when rc increases. In terms
of location awareness performance, we conclude from Table
III that our scheme once again outperforms COWY-GD,
achieving almost the same error of 3.1m, i.e., 20% reduction
of original source’s error. Therefore, in terms of 2D position,
the proposed backend module enabled ego vehicle to be more
aware of both itself and the surrounding environment than
the original position source. Furthermore, greater amount of
information with respect to nearby vehicles, seem to be more



beneficial for self position.

TABLE II
L-RMSET

Comm. range CO-GD (m) COWY-GD (m) Noisy source (m)
rc = 20m 2.76 2.85 3.92
rc = 30m 2.58 2.92 3.93
rc = 40m 2.33 3.07 3.99

TABLE III
LA-RMSET

Comm. range CO-GD (m) COWY-GD (m) Noisy source (m)
rc = 20m 3.13 3.18 3.89
rc = 30m 3.1 3.27 3.87
rc = 40m 3.15 3.47 3.93

4) Yaw angle accuracy evaluation: In terms of yaw angle
evaluation, Table IV imply performance analogous to the
previous case. More specifically, self yaw estimation becomes
more accurate when the number of neighbors increases. That
means that the property of scalability is also ensured for
the yaw angle, apart from position. The proposed CO-GD
reduced the noise of original yaw source by 13%, 30% and
40%. In terms of yaw awareness (two last columns of Table
IV ), our method achieved the same error of 0.2 in all three
cases. As a last remark, the estimated location and yaw error
of ego vehicle with respect to its trajectory using rc = 40m,
have been depicted in Fig. 5 in the form of a heatmap. The
”randomness” of error is due to the fact that measurement
noise has been modelled in a probabilistic manner through
the Gaussian distribution.

TABLE IV
Y-RMSET AND YA-RMSET

Comm. range Y-RMSET YA-RMSET
CO-GD Noisy source CO-GD Noisy source

rc = 20m 0.19 0.22 0.2 0.22
rc = 30m 0.14 0.20 0.2 0.22
rc = 40m 0.12 0.2 0.19 0.22

(a) Heatmap of LE (b) Heatmap of YE

Fig. 5. Heatmaps of self location and yaw angle error on top of trajectory

V. CONCLUSION

In this paper, a collaborative odometry estimation algo-
rithm has been developed, aiming to offer to the vehi-
cles increased awareness of the surrounding environment.

Each vehicle through V2V cooperation formulates the target
cost function via multimodal sensor fusion and maximum
likelihood criterion. Gradient descent is then applied so as
to minimize the cost function. Our approach succeeds in
reducing both the position and yaw angle error introduced by
a noisy original source, like GPS, Visual or LIDAR odometry.
We have verified that each vehicle is in place to accurately
re-estimate both self as well as neighboring 2D positions and
yaws in a distributed manner. Additionally, we have validated
that treating the noisy yaw as a parameter to be optimized,
positively affects the position estimation.
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