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Abstract—The ability to accurately measure the surface colour
has enormous applications in the quality control of a wide range
of manufacturing processes. Currently, the industry still relies
on traditional colourimeters to implement these tasks.

In this work, we compare the behaviour of two types of snap-
shot cameras (RGB and hyperspectral) in the frame of accurate
colour measuring. We use two approaches for colour and spectral
reconstruction, one based on linear modelling and another novel
one based on Multilayer Perceptron (MLP). Experiments use
charts with a large number of different colours (165 for training
and 165 for testing). The results showed promising properties of
neural networks in this task. We reach an average 1.6 CIEDE
2000 colour difference between estimations and ground truth.

Index Terms—colorimetry, hyperspectral imaging, snapshot
cameras, neural networks

I. INTRODUCTION

The ease with which we perceive colours contrasts with
the difficulty to explain its nature [1]. In general terms, we
can say that colour is the representation of a specific light
spectrum in the mind. During the last decades, colour scientists
have put enormous efforts to model how humans perceive
colours. Apart from the unequivocal theoretical interest, these
efforts have been also driven for the enormous applications
of accurate colour representations for quality control in the
industry (e.g. textiles [2], foods [3]–[5], woodworking [6],
automotive [7], etc.).

Currently, the most reliable solution to systematically mea-
sure the colour of a surface is to rely on colourimeters
[8]. Nevertheless, its contrasted accuracy comes with some
limitations like issues relating to measure non-flat surfaces
or the inability to measure many colours at the same time
[9]. Alternatively, camera-based approaches appear as a so-
lution to this problems [8], [10]. The setup used by most of
these approaches generally requires a controlled illumination
environment. Therefore, RGB cameras are usually used in
combination with light cabinets [11]. Nevertheless, the accurcy
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Fig. 1: Spectral sensitivity of the sensors present in the
hyperespectral and the regular RGB cameras used during the
experiments.

of these setups still suffer a non-neglectable degradation with
respect to colourimeters.

One possible option for closing this gap is to substitute
RGB cameras with hyperspectral ones. Hyperspectral images
(HSI) generalise this tri-sensor architecture of traditional RGB
cameras in terms of both number and types, bringing an
entirely new dimension into the imaging acquisition and spec-
tral reconstruction task. This way, the hybrid nature between
regular imaging and spectroscopy [12] makes the use of HSI



especially interesting for colour and spectral reconstruction.
For instance, a set of sensors with a very narrow wavelength
response could densely sample the original spectra and so
potentially improve the accuracy of the reconstruction of both
spectrum and colour (see Fig. 1).

There is a wide variety of imaging techniques for HSI
cameras. Nevertheless, for colourimeter-alike real-time colour
measuring, snapshot cameras are the more appropriate [13].
The strategy followed by these cameras generalise the tradi-
tional 2 × 2 RGB Bayer Filter Array tile to an n × n tile
to acquire the hypersepectral image at once. Notwithstanding
their benefits in terms of usability or quickness come with
new challenges like the demosaicing artefacts or sensor non-
uniformity issues [13].

In regards to the methods which are often used to per-
form this colour reconstruction, most of them rely on either
linear, quadratic models [8], or one layer neural networks
[14]. Recently, a Multilayer Perceptron (MLP) have been
successfully proposed for colour reconstruction in an HSI-
alike setup [15] and in simulated scenarios with RGB [16]. Up
to our knowledge, there is an absence of works which analyse
the performance of MLP in colour reconstruction tasks with
real-world images of both RGB and HSI cameras.

In this setting, this paper makes the following contributions:
• A method based on artificial neural networks to boost

colour fidelity.
• The study of the viability of state-of-the-art snapshot

hyperspectral cameras in comparison with traditional
RGB cameras for colorimetric purposes with real-world
images.

The rest of the paper is organised as follows. Firstly, we
will explain and formulate the problem we are going to
tackle (Sec. II). After that, we will move on to describe
the experimental setup (Sec. III). Finally, we will show the
achieved results (Sec. IV) and the conclusions which can be
extracted from the work (Sec. V).

II. PROBLEM FORMULATION

For clarity purposes, the scope of the work is restricted to
the reflective case. Thus, an imaging process can be modelled
as a function, f(·), dependent on the raw spectral reflectance
of the surface (i.e. surface colour). This function would also be
dependent on the type of illumination and the type of sensor
of the imaging system. Nevertheless, since the objective is to
infer the spectral reflectance, the last two variables are usually
fixed in the experiments. This way, the pixel value will only
be dependent on the spectral reflectance:

p = f (r)

where p are n-dimensional vectors (n types of sensor)
with the sensor responses (i.e. pixel values) and r are m-
dimensional vectors containing the spectral reflectance (m
refers to the discretisation of the spectrum or the number of
colour coordinates).

TABLE I: Number of nodes per layer of the MLP used for
colour and spectral reconstructions.

Layer Colour Spectrum Activation
RGB HSI RGB HSI Function

Input Layer 3 16 3 16
1st Layer 128 128 ReLu
2nd Layer 64 64 ReLu
Output Layer 3 43 Linear

Here, on one hand, n = 3 for the RGB camera and
n = 16 for the HSI one. On the other hand, m = 43 for the
spectral reconstruction task (43 bins of 10 nm between 360
and 780 nm) and m = 3 colour coordinates for the colour
reconstruction task.

Aiming to infer the actual spectral reflectance based on p,
we need to compute the inverse of the function f , such as:

r = f−1 (p) = g (p) (1)

In practice, instead of working with raw spectra, it is
common to work with colours. For this purpose, the CIE XYZ
colour system is defined, which transforms the spectra into tri-
stimuli values using a linear transformation C (a 3×m matrix)
[17]:

C · r = C · g (p) ⇒

rXY Z = gXY Z (p) (2)

where rXY Z is 3-dimensional. The quality of the function g
or gXY Z will measure the spectral or colourimetric accuracy
of the camera, respectively.

We will use two methods to estimate g: using a lin-
ear estimation (Sec. II-A) or with an Multilayer Perceptron
(Sec. II-B).

A. Linear Estimation

The assumption of g to be a linear function is something
common in previous works [8] and is justified by physical
models [18]. This way, (1) and (2) expressions become:

r = M · p

rXY Z = MXYZ · p

where M is a m× n matrix and MXY Z is a 3× n.
Therefore, having k pairs of sensors responses for known

spectral reflectances, we can estimate the M using the pseudo-
inverse [18]:

M = rT · p ·
(
pT · p

)−1

An analogous procedure can be performed to instead of
reconstruction spectra, reconstruct the CIE XYZ colour coor-
dinates (with rXY Z and MXY Z).
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Fig. 2: Front and lateral views of the acquisition equipment.
The light cabin is illuminated using the standard D65 lights (a).
The camera (b) is located in the middle of the top part outside
the cabin, providing for a field of view (c) of approximately
20×15 cm.

B. Multilayer Perceptron

Artificial Neural Networks (ANN) allow the estimation
of the function g without any assumption on its nature.
Inspired by [15], we chose to use a 2-layer Multilayer Per-
ceptron (MLP) to fit the pairs of sensor responses and known
colour/spectral reflectance in a regression fashion. The number
of nodes in each layer (Tab. I) was determined experimentally.

We selected the Mean Squared Error (MSE) as loss func-
tion:

L =
1

m

m∑
i=1

(ri − gi (p))
2

Here, ri is the ith-component of the pixel ground truth and
gi is the ith-component of the estimation. Finally, m will be
3 for colour estimations and 43 for spectral estimations.

Nevertheless, since we do not need to make assumptions
about g, we opted to use the CIELAB or L*a*b* colour system
[19] in colour reconstructions due to its preferable properties in
terms of colour uniformity with respect to human perception.
Besides, this way the MSE loss function would be similar to
the CIE76 colour difference convention. All of this means that
the optimisation process will minimise differences in colour
in a similar way as they are perceived by humans. We have
used the Adam optimiser during the training process.

III. EXPERIMENTAL SETUP

The experimental setup consists of three main elements.
First, the RGB and HSI cameras acquire the image information
for colour reconstruction. Second, a light cabinet with a
controlled illumination environment. Finally, an object with
known colour coordinates and spectral reflectances to fit and
test our estimation models.

In the following subsections, we will be providing a detailed
explanation of each element jointly with the pre-processing
procedures and metrics we have utilised.

A. Cameras and illumination

The experiments have been performed using two different
snapshot cameras taken from the machine vision scope:

• The RGB camera is a Teledyne Dalsa Genie Nano C2420
Color. This camera possesses a Sony IMX264 sensor with

the traditional Bayer Colour Filter Array, a resolution
of 2 448 × 2 048 and capable of reaching 23.80 fps.
Sensitivity over the visible spectrum of each of the three
different sensors can be seen in Fig. 1a.

• The snapshot hyperspectral camera is a Photon Focus
MV1-D2048x1088-HS03-96-G2. The sensor is an IMEC
CMV2K-SSM4X4-VIS, with a resolution of 2048×1088
pixels. This sensor has the particularity of having an array
of filters which allows capturing the hyperspectral data.
Filters are disposed in 4×4 tiles (i.e. a total of 16 different
bands), with each element of the tile focused in a different
region of the spectra between 470 nm and 620 nm (see
Fig. 1b). This design allows for a quick acquisition time
of up to 42 fps, something hard to achieve with other
hyperspectral architectures.

In regards to the lens setup, we opted to use a 35 mm
lens with both cameras. This way we maximise the field of
view without having vignetting problems. This is something
especially relevant since we are developing pixel-level colour
estimation models (Sec. II) without taking into account any
spatial information. Therefore, it is important to have a re-
sponse as uniform as possible over the frame.

Finally, in regards to the illumination, we wanted to have
fixed and controlled illumination environment to be able to
not take into account the influence of the illumination spectra
in the colour estimation model (see Sec. II). In this sense, the
experiments were performed in a light cabin with a controlled
standard D65 illumination. This type of light cabin is widely
used in colourimetric applications. The camera was located
out of the cabin to avoid any glare. Fig. 2 shows a scheme of
the whole setup.

B. Dataset Generation

For both the generation of the colour calibration models of
Sec. II and for testing purposes, we need some physical objects
with known spectral reflectance and colour coordinates under
a certain illumination. For this purpose, we were inspired by
[15] to use a printed version ECI 2002 CYMK chart [20].
Since it is difficult to control how these colours will exactly
be printed, we decided to use a colourimeter (the Xrite Ci64-
XR) to measure the reflectance spectrum and L*a*b* colour
coordinates of each patch, generating the ground truth. We
assume that the colour of each patch is uniform.

The ECI 2002 CYMK contains 1485 patches of colours
and is widely used as a target for printers’ colour calibration.
Given the large number of colour patches available, we opted
to print just two random sub-samplings of the complete set
(taking 2 out 9 colours of the set) to create the so-called Chart
A and Chart B (see Fig. 3), each of them with 165 colours
and no common ones between them. This way we increase
the surface available of each patch to make them readable by
the colourimeter and, at the same time, we keep the size of
the chart small enough to fit it in the camera’s field of view.
We have made publicly available both the HSI and RGB raw
images and the colourimeter data [21].



(a) Original ECI2002 target.

(b) Effective colours of the first
printed subset (Chart A)

(c) Effective colours of the second
printed subset (Chart b)

Fig. 3: The original ECI2002 target, and the two different
subsets (of 15x11 colours) used during the experiments. (a)
shows the original digital color values of the chart, (b) and
(c) show the effective colour after printing, measured by the
colorimeter.

The idea is to use one of the charts to fit our models (Chart
A) and the other for evaluation purposes (Chart B). To do
so, we have extracted pixels containing about 70-80% of the
patches surface as probes.

C. Pre-processing

During the image acquisition phase, we performed three
(four with MLP) main procedures to pre-process raw camera
data:

1) Demosaicing. Since this work is centred around snapshot
cameras, each pixel of the array will only measure
information with one sensor. Therefore, it is necessary
to infer the value of the other sensors. Here, we opted
to use the common weighted bi-linear estimation [22].

2) Denoising. The pixel-level estimation of this work forces
us to optimise the responses’ uniformity along with the
sensor array. For this reason, each image acquisition is
an average of 10 images to reduce pixel noise.

3) White-dark normalisation. For the same uniformity rea-
sons as above, we have taken images of both black
(Idark

ij ), and white (Iwhite
ij ) surfaces. Then, we perform

this transformation to the original image:

Îij =
Iij − Idark

ij

Iwhite
ij

TABLE II: Median and average values of ∆E00 between
the estimation and ground truth for each tested method.
MLP methods are averaged over multiple runs to address the
randomness of the training process.

Method Min Median Average Max

RGB+LT 0.0070 2.260 2.627 21.030
HSI+LT 0.0155 2.103 2.530 19.517
RGB+MLP 0.0074 1.249 1.572 19.834
HSI+MLP 0.0130 1.454 1.700 19.813

This way, we minimise the effect of the different dy-
namic ranges of each sensor type.

4) Standardisation. This pre-processing will only be per-
formed for the MLP fitting. It consist of normalising data
to align it with a normal distribution. This transformation
has proven to help in the numerical convergence of the
neural networks training phase [23].

D. Metrics

Performance evaluation of the colour estimations in com-
parison to the ground truth will be assessed using CIEDE
2000 colour difference (∆E00) [24]. This is the most advanced
colour difference metric convention in relation to how humans
perceive colours.

In regards to the spectral reflectance reconstruction, we
will use the standard Mean Squared Error (MSE) between
estimations and ground truth:

MSE =
1

m

m∑
i=1

(ri − gi)
2

where ri is the ith-component of the pixel ground truth and
gi is the ith-component of the estimation. Finally, m will be
3 for colour estimations and 43 for spectral estimations.

Finally, it is important to notice that MLP evaluation metrics
will be averaged over 10 different runs. The stochastic nature
of the training of neural networks provokes some variability
in the specific results.

IV. RESULTS

This section presents the results achieved for colour (Sec.
IV-A) and spectral reflectance (Sec. IV-B) estimations.

A. Colour coordinate estimation

The average, median, minimum and maximum colour dif-
ferences respect to the evaluation chart (Chart B) can be seen
in Tab. II. Besides, the distribution of ∆E00 values can be
also observed on the Violin plot in Fig. 4. The first thing we
extract from the results is the evident push in the performance
of MLP estimation. There is almost a ∆E00 of 1 between both
types of estimations. These lower ∆E00 can also be observed
in the reconstructions presented on Fig. 5.

Comparing now Hyperspectral Imaging (HSI) respect to
regular RGB images, the results shows better behaviour of HSI
with the linear estimation. Nevertheless, this advantage do not
translate to the MLP estimation, meaning that the combination



RGB+LT HSI+LT RGB+MLP HSI+MLP
Method

0

5

10

15

20

∆E
00

Fig. 4: Violin plot of the distribution of ∆E00 between
prediction and ground truth, for one of the runs. The white dot
represent the median, the wider line represent the interquartile
range, and the slimer centre line represent 1.5 times the
interquartile range.

TABLE III: Average absolute differences of each L*a*b*
coordinate between the estimation and the ground truth. MLP
methods are averaged over multiple runs to address the ran-
domness of the training process.

Method ∆L* ∆a* ∆b*

RGB+LT 0.640 3.228 1.662
HSI+LT 1.102 1.419 3.296
RGB+MLP 0.506 1.343 1.363
HSI+MLP 0.612 0.953 1.582

of RGB+MLP is the one which is able to achieve the best
colour reconstruction.

Tab. III shows a bit more insight into the reasons for
this behaviour. This table contains the differences in each
L*a*b* coordinate with respect to the ground truth. Taking
into account the meaning of each of the coordinates (L* =
lightness, a* = green-red, b* = blue-yellow), we can extract
some valuable information. While RGB cameras present the
largest differences a* coordinate, HSI tends to do so with b*.
Looking at the previous Fig. 1, we see that the HSI camera
leaves out a great part of the blue spectrum, while in the red
region only the darker part is missing. Therefore, the greater
values of ∆a* for HSI are explained by the fact that the camera
is not sensitive to this part of the spectrum.

B. Spectral reflectance reconstruction

The end of the previous section suggests that the quality of
the spectral reflectance reconstruction depends on the region
of the spectra. Therefore, this section serves to perform further
analysis of this hypothesis. We fitted both models (linear and
MLP) to the spectral data acquired with the colourimeter to
see if there are regions which are being reconstructed better
than others. Our main interest is to compare the quality of the
reconstructions (MSE with respect to the ground truth) in the
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(b) RGB+LT: Patchwise ∆E00.

(c) HSI+LT: Reconstruction.
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(d) HSI+LT: Patchwise ∆E00.

(e) RGB+MLP: Reconstruction.
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(f) RGB+MLP: Patchwise ∆E00.

(g) HSI+MLP: Reconstruction

0

1

2

3

4

5

6

7

8

(h) HSI+MLP: Patchwise ∆E00.

Fig. 5: Colour reconstruction with each tested method along
with the correspondent ∆E00 in each patch.

TABLE IV: MSE between estimated and ground truth inside
(between 470 and 620 nm) and outside (the rest of the
spectrum) the HSI sensitive region. MLP methods are averaged
over multiple runs to address the randomness of the training
process.

Method Inside Outside Full

RGB+LT 7.913 4.498 5.768
HSI+LT 1.984 5.586 4.246
RGB+MLP 1.036 1.621 1.404
HSI+MLP 0.949 1.762 1.462

region inside the sensitive region of the hyperspectral camera,
and outside it. The results are presented in Tab. IV.

As expected, the hyperspectral camera performs a better
reconstruction in comparison to the RGB camera inside the
region between 470 nm and 620 nm. The opposite occurs for
the rest of the spectra.

On the other hand, like the previous experiment, we can



also observe the better performance of MLP in comparison to
the linear estimation.

V. CONCLUSIONS

This work has studied the potential applications of both
RGB and snapshot HSI cameras for colourimetric applications
with real-world images. We compare the behaviour of two
different approaches to perform the colour and spectral recon-
struction, the simple linear model widely used in the literature
and a novel method based on neural networks.

The experiments clearly showed the benefits which MLP
provides (about 1 unit improvement of ∆E00) in the estimation
of the colour coordinates of the object surfaces. The best
performance was achieved by traditional RGB cameras and
MLP reconstruction method. The analysis of the spectral
reconstruction showed that the snapshot HSI camera is still
penalised by the fact that it does not cover the complete
visible spectrum. Nevertheless, this analysis also suggests that
widening the coverage could effectively transform snapshot
HSI cameras into a real-time 2D colourimeter.

Finally, this work also show that there still is a gap in
the colourmetric accuracy between cameras and colourimeters.
Nevertheless, cameras provide in exchange more spatial reso-
lution and the ability to measure larger regions of the space.
Therefore, they appear as a viable and interesting solution to
automate quality control in manufacturing processes.
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