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Abstract  24 

Edible insects are an important source of proteins, fat, and chitin, which need to be extracted 25 

to develop tailored products with a controlled composition.  Pulsed electric fields (PEF) is a 26 

non-thermal technology that can  enhance  the extraction. This study explores the effect of 27 

PEF on the extraction of protein, fat and chitin from cricket flour, as well as the material’s 28 

functional properties. House crickets (Acheta domesticus) were treated with PEF at several 29 

conditions (4.9-49.1 kJ/kg). PEF treatment with 4.90 kJ/kg increased the extraction yields of 30 

protein (>18%) and fat >40%), while the treatment at 24.53 kJ/kg increased the oil binding and 31 

emulsifying capacity and antioxidant activity of the cricket flour by 28.10, 64.88 and 58.20%, 32 

respectively. Water binding capacity and foaming capacity were not affected by the PEF 33 

treatment. These results outline PEF as a suitable pretreatment for the valorization of house 34 

cricket biomass with possible industrial application. 35 
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Highlights  39 

 PEF treatment increased protein and fat yield by 18.62 %  and 41.75%, respectively 40 

 PEF enhanced techno-functional properties of the cricket flour  41 

 PEF did not affect chitin yield (10g/100g d.w.)   42 



1. Introduction 43 

Edible insects have been identified as a source of a variety of nutritional compounds suitable 44 

for human consumption including proteins, unsaturated fatty acids and chitin (Rumpold & 45 

Schlüter, 2013a). Furthermore, considering their suitability for mass production and the fact 46 

that their rearing can be environmentally friendly, edible insects are emerging as an important 47 

resource to feed the world population in the future (Rumpold & Schlüter, 2013b). There is a 48 

need to develop tailored insect-based products with a controlled composition, high nutritional 49 

value and stability (Purschke et al., 2018). Furthermore, in western countries, consumers 50 

culturaly resist to eating whole insects due to their appearance and image as pests (Chen, 51 

Feng, & Chen, 2009). Insects are more accepted by consumers as food ingredient, in a non-52 

directly visible form (Schösler, De Boer, & Boersema, 2012). Therefore, extracting their 53 

nutritional compounds or using in form of flour might make it easier to utilize them in the food 54 

sector. 55 

 A strong interest has been reported regarding the house cricket (Acheta domesticus), because 56 

it is relatively easy to raise (Caparros Megido, Haubruge, & Francis, 2017), has a good 57 

nutritional profile (Rumpold & Schlüter, 2013a) and has already been used as food for animals 58 

and humans in some European countries (Van Huis, 2013). The processing of insects is 59 

paramount for safe and high quality insect-based foods. In this regards, effects of conventional 60 

food processing techniques on house crickets have been investigated. Several drying methods 61 

and other heat treatments such as boiling and steaming have been reported to increase the 62 

microbial safety of house crickets (Nyangena et al., 2020)(Fröhling, Bußler, Durek, & Schlüter, 63 

2020; Klunder, Wolkers-Rooijackers, Korpela, & Nout, 2012). Furthermore, pulverization and 64 

storage temperature have been underlined as an important factor affecting the shelf life of the 65 

crickets (Kamau et al., 2018), while the nutritional quality of the crickets has been shown to be 66 

affected by different cooking methods (Manditsera, Luning, Fogliano, & Lakemond, 2019; 67 

Porusia, Rauf, & Haryani, 2020).  68 



House crickets have also been studied as a resource for protein extraction and fractionation 69 

(Laroche et al., 2019; Ndiritu, Kinyuru, Kenji, & Gichuhi, 2017; Udomsil, Imsoonthornruksa, 70 

Gosalawit, & Ketudat-Cairns, 2019; Yi et al., 2013), with a reported 20-40% protein yield in a 71 

liquid fraction  and an approximately 60-75% purity (Laroche et al., 2019; Ndiritu et al., 2017). 72 

Furthermore, they have been used as a starting material for fat extraction and isolation with 73 

several methods (Laroche et al., 2019; Tzompa-Sosa, Yi, van Valenberg, van Boekel, & 74 

Lakemond, 2014) and solvents (Ramos-Bueno, González-Fernández, Sánchez-Muros-75 

Lozano, García-Barroso, & Guil-Guerrero, 2016). The fat yield of the house crickets has been 76 

reported to reach 25% (Laroche et al., 2019). 77 

During the last decades, novel food processing technologies have emerged, which have been 78 

shown to improve the extraction yield of the intracellular compounds of a material. One of these 79 

technologies is pulsed electric fields (PEF), which involves the application of electric field at 80 

high intensity in the form pulses for a very short period (μs) on a sample that is placed between 81 

two electrodes. PEF processing leads to an increase of the transmembrane potential of the 82 

sample’s cells, creating pores on the cell membrane, a phenomenon known as electroporation. 83 

For electroporation to occur, the applied field intensity should surpass a critical value. 84 

Electroporation can be temporary or permanent, depending on the level of the applied field 85 

intensity in comparison to the critical value (Raso-Pueyo & Heinz, 2010). PEF has been applied 86 

as a means to improve protein extraction from olive pomace, microalgae and mushrooms 87 

(Varvara Andreou, Psarianos, Dimopoulos, Tsimogiannis, & Taoukis, 2020; Buchmann, 88 

Brändle, Haberkorn, Hiestand, & Mathys, 2019; Xue & Farid, 2015) and fat extraction from 89 

olives, microalgae and sunflower seeds (V Andreou et al., 2017; Lai, Parameswaran, Li, Baez, 90 

& Rittmann, 2014; Shorstkii, Mirshekarloo, & Koshevoi, 2017) . Regarding the application of 91 

PEF on insects, a bio-refinery study included the application of PEF and reported the 92 

enhancement of the drying process of Hermetia illucens larvae and the increase of amino acid 93 

content on the extracted fat from the larvae, even though the fat extraction yield was not 94 

affected (Alles et al., 2020). Optimization of PEF-assisted drying of Hermetia illucens larvae 95 

has reported enhancement of the drying process and a higher effect of temperature than PEF 96 



on the energy consumption of the process (Shorstkii et al., 2020). In another study intense 97 

PEF treatment led to a higher cell disintegration of Tenebrio molitor and enhanced the pressing 98 

extraction of lipids (Smetana, Mhemdi, Mezdour, & Heinz, 2020).  99 

Consequently, PEF can be considered a promising process for utilization of insects in the food 100 

sector. However, to the best of our knowledge, there is no study exploring the effect of PEF on 101 

house crickets. Therefore, the aim of this study was to implement PEF treatment in the 102 

production of house cricket flour, which can be used directly as a food ingredient or as a 103 

substrate for extraction of nutritional compounds. Consequently, the effect of PEF treatment 104 

was explored both on the functional properties of the flour and the extraction yield of proteins, 105 

fat and chitin.  106 

2. Materials and Methods  107 

2.1 Sample preparation 108 

Living house crickets (Acheta domesticus) were purchased at an adult age from Tropic-Shop 109 

(Nordhorn, Germany) and were stored for 2 h inside a cold room at 4oC to reduce their 110 

movement activity. Afterwards they were freeze inactivated at -20oC packed in plastic pouches. 111 

Before any treatment, the insects were washed with cold water to remove impurities and then 112 

ground fresh for 10 s with a Retsch Mill (Retsch Grindomix, Retsch GmbH, Germany).  113 

2.2 Pulsed electric fields (PEF) pretreatment and extraction 114 

Treatments were performed on the fresh, grinded insects without any addition of water, with 115 

the ELCRACK HVP-5 (DIL, Quackenbrück, Germany) PEF system inside a batch chamber 116 

with a 40-mm electrode gap width. During the treatments, the pulse was monitored with an 117 

oscilloscope (Tektronix TDS 1012, Beaverton, OR, USA) with two channels. One channel 118 

showed a positive pulse that corresponded to applied peak voltage and the other channel 119 

showed a negative pulse that corresponded to the current. The measured values were shown 120 

by the oscilloscope by the peak-to-peak readings. The pulse was bipolar and near rectangular. 121 

Treatments were carried out at 1.5 kV/cm. The nominal pulse width and the pulse frequency 122 

were kept constant at 15 µs and 20 Hz, respectively. The number of pulses applied ranged 123 



between 100-1000 (energy input between 4.9-49.1 kJ/kg). The temperature of the sample was 124 

measured before and after treatment with a digital thermometer (General Tools & Instruments, 125 

NJ). Before treatment, temperature was equal to 20°C and after treatment never exceeded 126 

32°C.  127 

The energy input was calculated via Equation 1 (Raso et al., 2016):  128 

W (kJ/kg) = n·
1

𝑚
·∫ 𝑉(𝑡) · 𝐼(𝑡)𝑑𝑡

∞

0
  (Equation 1) 129 

where, n is the number of pulses, m(kg) is the mass of the treated sample, and V(Volt) and 130 

I(Ampere) are the voltage and current at time t(s), respectively.  131 

After the PEF treatment, the samples were frozen at -20°C overnight and freeze-dried at -20°C 132 

for 48 h, using a Christ Alpha 1-4 LD Plus (Osterode, Germany) freeze dryer. Since the 133 

increase of temperature can affect negatively the functional properties of the material (Lucas-134 

González et al., 2019), a freeze-drying process was preferred. The water content of the crickets 135 

was 66.96±2.20%..  136 

All the chemicals were purchased from Carl Roth (Kalsruhe, Germany), unless stated 137 

otherwise. Figure 1 shows the flow process diagram of the treatments applied in the present 138 

study: 139 

2.3 Characterization of the material 140 

2.3.1 Composition analysis of the non-PEF-treated insect flour 141 

The approximate composition of the house crickets was determined with standard methods 142 

from literature. Moisture content was determined after placing the sample in an oven at 105°C 143 

for 48 h and calculating the weight difference.  Total ash was determined after burning the 144 

sample into an oven at 550°C for 8 h. Total protein content was measured with a ninydrin-145 

based assay (Starcher, 2001), after hydrolyzing the proteins with HCl 6 N for 24 h at 98°C. 146 

Total carbohydrates were measured with the phenol-sulfuric acid protocol (Dubois, Gilles, 147 

Hamilton, Rebers, & Smith, 1956), after hydrolyzing the carbohydrates with sulfuric acid 12 M, 148 

for 2 h at 98°C and diluting at 100 mL with sodium acetate buffer 0.2M, pH=5. Crude fat was 149 



determined with a Soxhlet apparatus operating for 6 h with n-hexane as solvent at 68o C. Chitin 150 

content was determined by measuring the content of glucosamine and N-Acetyl-Glucosamine 151 

(Zamani, Jeihanipour, Edebo, Niklasson, & Taherzadeh, 2008). Standard chitin was used for 152 

the calibration curve.  153 

2.3.2 Functional properties 154 

2.3.2.1 Water binding capacity (WBC) 155 

Half a gram of cricket powder was weighed into 15 mL centrifuge tubes and mixed with 2.5 mL 156 

of water, which was also weighed with the sample. Mixtures were vortexed for 60 s, and then 157 

centrifuged at 4000xg for 20 min. After discarding the supernatant, the pellet was weighed. 158 

Using the following equation, WBC is calculated and expressed as g water/g d.w. (Bußler, 159 

Steins, Ehlbeck, & Schlüter, 2015). 160 

WBC (g water/g dw) = (mf-m0)/m0,dw   (Equation 2) 161 

where, m0 is the initial weight of the sample, mf is the final weight of the wet sample and m0,dw 162 

is the initial weight of the sample based on dry matter 163 

2.3.2.2 Oil binding capacity (OBC) 164 

For determination of the OBC a similar procedure as for the WBC was followed. In summary, 165 

0.5 g of cricket powder was weighed and mixed with 2.5 mL of commercial rapeseed oil, which 166 

was also weighed. Mixtures were vortexed for 60 s, and then centrifuged at 4000xg for 20 min. 167 

After removing the supernatant, the pellet was weighed and OBC was calculated using Eq.2 168 

and expressed as g oil/g d.w. (Schwenke et al., 1981). 169 

2.3.2.3 Emulsifying capacity (EC) 170 

One gram of cricket powder was added to 50 mL H2O and afterwards 50 mL of commercial 171 

rapeseed oil was added. Then the mixture was homogenized for 15 min at 9500 rpm (T-25 172 

Ultra turrax, IKA, Staufen, Germany). The emulsion was centrifuged at 10000xg for 10 min in 173 

order to be broken. The height of the resulting emulsified layer (HEL) and the total height of 174 



solution (HS) were used to calculate the EC (%) based on the following equation (Yasumatsu 175 

et al., 1972): 176 

EC (%)= 
𝐻𝐸𝐿

𝐻𝑆
 ×100   (Equation 3) 177 

2.3.2.4 Antioxidant activity 178 

0.5 g of cricket powder was mixed with 5 mL of an 80% methanol solution and the mixture was 179 

vortexed thoroughly for 60 s. Afterwards, the mixture was centrifuged at 4°C, 3200xg for 10 180 

min and the supernatant was collected. The pellet was suspended in 5 mL of a 70% acetone 181 

solution and vortexed thoroughly for 1 min. The mixture was centrifuged at 4°C, 3200xg for 10 182 

min and the supernatant was collected and mixed with the one obtained from the previous 183 

centrifugation. The liquid was placed in a rotary evaporator (Buchi R-100, Flawil, Switzerland) 184 

connected with a vacuum pump (Buchi V-100) and an interface (Buchi I-100) set at 45°C. After 185 

the solvents were completely removed, the solids were suspended in 5 mL of methanol. The 186 

mixture was centrifuged at 4°C, 7000xg for 10 min and the supernatant was collected. 187 

Antioxidant activity was measured with the DPPH radical scavenging assay. (Lucas-González 188 

et al., 2019) Briefly, 0.1 mL of supernatant was mixed with 3.9 mL of a 6·10−5 M DPPH solution 189 

and incubated for 30 min in the dark at room temperature. Afterwards, the absorbance was 190 

measured at 515 nm. Methanol was used as a blank. Trolox was used for the calibration curve 191 

and the results were expressed as µg Troxol equivalents (µg TE/g d.w.).  192 

2.3.2.5 Foaming capacity (FC)  193 

Cricket powder was added to water to obtain a mixture of 1% w/v. The mixture was 194 

homogenized for 1 h at room temperature. Afterwards the mixture was whipped for 2 min using 195 

a disperser at 12000 rpm. The height of the foam was measured 0.5 min and 30 min after the 196 

dispersion. The foaming capacity was calculated using Equation 4:  197 

FC (%) = 
𝑉𝑡

𝑉0
· 100           (Equation 4) 198 

Where, Vt is the volume (mL) is the volume of the foam at time t after the dispersion and V0 is 199 

the volume (mL) of the initial liquid (Purschke et al., 2018).  200 



2.4 Isolation of the valuable compounds  201 

2.4.1 Fat extraction 202 

Five grams of insect powder were added to 200 mL n-hexane (>95%). The mixture was stirred 203 

for 45 min within capped glass containers to avoid evaporation of the solvent. After the 204 

extraction, the mixture was centrifuged at 3200xg, 10 min, 15°C and the supernatant was 205 

collected and moved to a rotary evaporator system, as described above, until the solvent was 206 

completely evaporated (Ravi et al., 2019). The extracted fat yield was expressed as g fat/100g 207 

d w.  208 

2.4.2 Protein extraction  209 

The powder was mixed with NaOH, 0.5 M at a solid/liquid ratio of 1:50 and stirred for 60 min 210 

at room temperature (Rausch, 1981). During the extraction, 2 mL of solid-liquid mixture were 211 

withdrawn at fixed time intervals of 15 min and centrifuged at 10000xg, 10 min, 20°C. The 212 

supernatant was isolated and stored at 4°C for further analysis. The extracts remained for a 213 

maximum of 24 h stored at 4°C before their protein content was determined.  214 

2.4.3 Chitin isolation  215 

The defatted samples were mixed with NaOH, 1M (s/l ratio=1:50) and incubated at 80°C for 216 

22 h, under agitation, in order to remove the proteins. The solvent was removed with 217 

centrifugation at 10000xg, 10 min, after the mixtures were cooled down to room temperature. 218 

The pellets were placed on filter paper and washed with hot water at 60°C (Kaya, Baran, et 219 

al., 2015; Mohammed, Williams, & Tverezovskaya, 2013; Percot, Viton, & Domard, 2003). 220 

Afterwards they were added to HCl, 1 M (s/l ratio 1:30) and further incubated for 2 h at 98°C 221 

under agitation, in order to remove the minerals (Mahmoud, Ghaly & Arab, 2007). The solvent 222 

was removed with centrifugation at 10000xg, 10 min. Finally, the pellet was washed with hot 223 

water (60 °C) and the samples were dried in a vacuum oven at 55°C. The obtained solid 224 

constitutes the extracted chitin. Results were expressed as g chitin/100g d.w. 225 



2.4.4 Determination of the protein content of the extracts 226 

The soluble protein content of the extracts was determined using the Bradford micro-assay  227 

(Bradford, 1976) as modified by Carl Roth (Kalsruhe, Germany), using the commercial 5-X 228 

Bradford reagent (Carl Roth, Kalsruhe, Germany). In summary, 800 µL of the diluted (1:400 or 229 

1:500) extracts were mixed with 200 µL of Bradford reagent and incubated for 15 min at 25°C. 230 

The absorbance of the mixtures were measured at 595 nm using a UV/Vis spectrometer 231 

(Spectronic Unicam UV1, Thermo Fisher Scientific, Waltham, MA, USA). The results were 232 

translated to protein concentration via a standard curve prepared with bovine serum albumin. 233 

The protein content was expressed as g protein/100g d.w. 234 

2.4.5 Scanning electron microscopy (SEM) analysis of chitin 235 

The morphology of chitin was studied with a scanning electron microscope (Quanta 200, FEI 236 

Oregon, USA/ voltage 12.5 kV, LFD detector, Spot size 4.5, magnification 12000Χ) with 11.34 237 

nm gold layer coating applied prior to SEM (SC7620 Mini Sputter Coater, Quorum 238 

Technologies, West Sussex, UK/ 90 sec, 18 mA, 1 KV), in order to make their surface reflect 239 

the electron beam.  240 

2.5 Statistical analysis  241 

All experiments were conducted at least in triplicate. Significant differences between data 242 

obtained from samples treated at different conditions and between the coefficients of the 243 

models were identified using a one-way analysis of variance (ANOVA). Duncan’s multiple 244 

range test was applied post-hoc to separate means with significant differences at a significance 245 

level of 0.05. Data that did not follow a normal distribution were normalized before being 246 

analyzed. The software used was IBM SPSS Statistics 23 (IBM Corp., Armonk, N.Y., USA). 247 

The error bars on each graph indicate the standard error of measurement of several repetitions 248 

of the same process and measurement.  249 



3. Results and discussion 250 

3.1 Characterization of the material 251 

The composition of the crickets was in agreement with previous studies reported in the 252 

literature. House crickets have been reported to contain a high portion of proteins that ranges 253 

between 64 and 70% on dry basis (Lucas-González et al., 2019; Rumpold & Schlüter, 2013a), 254 

but also a significant amount of fat that ranges between 18 and 22% on dry basis (Rumpold & 255 

Schlüter, 2013a; Williams, Williams, Kirabo, Chester, & Peterson, 2016). The ash content of 256 

the crickets that is reported by the present study is within the range reported in the literature, 257 

which is between 3.5 and 5% on dry basis (Rumpold & Schlüter, 2013a; Williams et al., 2016), 258 

but is still considered relatively low. However, their composition shows a high variation 259 

(Rumpold & Schlüter, 2013a), which can be attributed to the composition of their feed 260 

(Nakagaki & Defoliart, 1991).  261 

As shown in Figure 2a, PEF treatment had a significant effect (p<0.05) on the oil binding 262 

capacity. The OBC of the flour that was subjected to the most intense PEF treatment conditions 263 

was increased from 2.27 to 3.21 g oil/g d.m. (41.3% increase). However, no significant 264 

differences (p>0.05) were observed between the two samples treated at an energy input of 265 

24.53 and 49.10 kJ/kg. The water binding capacity and foaming capacity of the flours were not 266 

affected by PEF treatment, since no significant differences (p>0.05), between the samples 267 

treated with PEF and the untreated one, were observed. PEF induced cell permeabilization 268 

enhances transport phenomena between the intracellular and extracellular environment. 269 

However, since the cytoplasm of the eukaryotic cells consists mainly of water (Shepherd, 270 

2006), it is assumed that after disrupting cell membranes, water can only enter the cell more 271 

easily, but cannot be bound by the sample. The values of the OBC reported in the present 272 

study are similar to the one reported in the literature, while the WBC is lower than the one 273 

reported by the literature. Specifically, WBC and OBC of freeze-dried house cricket flour have 274 

been reported to be 3.82 and 2.86 g of water or oil per g of sample, respectively. Both 275 

properties have also been reported to decrease, when oven-drying at 60°C is used instead. 276 

The difference is attributed to alteration in protein structure and protein hydrophobicity (Lucas-277 



González et al., 2019). However, there was no thermal effect during the PEF processing during 278 

the present study to suggest a similar alteration of protein structure. Therefore, the differences 279 

of OBC are greatly attributed to electroporation. A similar trend has been reported for freeze-280 

dried cricket powder, after a high-pressure treatment at 500 MPa, where the WBC was not 281 

affected, but the OBC increased (Bolat, Ugur, Oztop, & Alpas, 2021).  282 

PEF treatment also had a significant effect (p<0.05) on the emulsifying capacity (Figure 2c). 283 

Even the least intense PEF treatment condition led to an increase of the EC by 22.1%, while 284 

the most intense treatment led to a 74.7% increase of the EC. There is a strong correlation 285 

between protein content of a material and EC (Bußler, Rumpold, Jander, Rawel, & Schlüter, 286 

2016). The sample was in contact with the water fraction, meaning that some proteins were 287 

exposed to it during that time. Therefore, the increase of emulsifying capacity could be 288 

explained due to the increased extractability of the proteins to the water fraction that could 289 

enhance hydrophobic interactions (Jung, Murphy, & Johnson, 2005), as well as by the 290 

enhanced oil binding capacity of the flours.  291 

The EC reported in the present study is lower than the one reported by the literature, after 292 

using similar emulsifying parameters. Specifically, the EC of house cricket flour has been 293 

reported to range between 39 and 59% (Kim, Setyabrata, Lee, Jones, & Kim, 2017; Lucas-294 

González et al., 2019) These differences are attributed to the different methods for preparing 295 

the emulsions. In specific, Lucas-González et al. (2019) homogenized the samples with water 296 

before they put the oil in the mixture, which could lead to a higher amount of proteins being 297 

extracted in the water fraction, leading to a higher EC. Furthermore,  Kim et al. (2017) used a 298 

higher amount of sample. In specific, they used 7 g of samples and 200 mL of water and oil, 299 

while in the present study 1 g of powder is mixted with 100 mL of oil and water. The different 300 

ratio could lead to a different EC. 301 

Further, PEF treatment led to a significant (p<0.05) increase of the antioxidant activity of the 302 

samples (Figure 2e). In specific, the sample treated at 24.53 kJ/kg showed a 58.20% higher 303 

antioxidant activity than the untreated sample. However, the sample treated with the most 304 

intense condition showed an increase of antioxidant activity of 29.57%, in comparison to the 305 



control, as shown in Figure 2e. It is important to note, that the antioxidant activity of the flour is 306 

measured from an extract obtained by the flour. PEF has been shown to increase the extraction 307 

yield of antioxidant compounds from food materials, leading to an enhanced antioxidant activity 308 

of the extract itself (Varvara Andreou et al., 2020). However, the antioxidant activity of some 309 

peptides has been reported to decrease, after a PEF treatment due to possible changes to the 310 

functional groups of the peptides (Liang, Cheng, & Wang, 2018). This could explain the slight 311 

decrease of antioxidant activity of the sample that was subjected to the most intense treatment.  312 

3.2 Effect of PEF pretreatment on the isolation of valuable compounds 313 

3.2.1 Fat extraction 314 

As shown in Figure 3, every PEF pretreatment led to a significant (p<0.05) increase of the 315 

isolated fat yield. The fat isolated from samples treated on different PEF conditions did not 316 

show any variation, making 4.90 kJ/kg the most appropriate treatment, since it is less energy 317 

consuming. Specifically, pretreating the fresh material with PEF at 4.90 kJ/kg led to a 41.75% 318 

increase of the fat yield. 319 

The results obtained by the present study differed from the study of Alles et al. (2020), who did 320 

not observe an increase on the oil yield after PEF treatment of freeze-dried biomass of 321 

Hermetia illucens. Specifically, they reported an approximately 30% oil yield from all samples, 322 

including the untreated one, after pressing the insect mass with a screw press. It is possible 323 

that their control extraction procedure was exhaustive enough to obtain the highest possible 324 

yield, since the screw press they used was preheated at 100°C. Additionally, the age of the 325 

crickets affects their fat body mass, lipid and protein content (Anand & Lorenz, 2008). The 326 

crickets used in the present study are adults, which were expected to contain less fat than 327 

crickets at lower instars, while the lipid content of the fat body of the adult house crickets is 328 

approximately 65% (Woodring, Clifford, & Beckman, 1979). Furthermore, the crude fat of black 329 

soldier fly larvae was, also dependent on the age of the insects, while showing the highest 330 

value (approximately 30%) at the later larval and pre-pupal stages (Liu et al., 2017). 331 

Additionally, the amount of fat body and fat accumulation of insects differs among species 332 



(Arrese & Soulages, 2010). It was considered that these differences among the species and 333 

age of the insects played a significant role in the difference of yield. However, PEF treatment 334 

has been successful in enhancing the lipid extraction yield from Tenebrio molitor, while 335 

increasing the yield of the insect juice obtained by pressing from 41 to 55%. PEF has been 336 

also shown to cause cell disruption to Tenebrio molitor larvae samples (Smetana et al., 2020).  337 

Apart from PEF, the fat extraction yield from house crickets has been reported to increase after 338 

an ultrasound treatment by direct sonication, reaching a yield of 24.85 g extract/100 g d.w . 339 

However, the yield was depended on the extraction medium as well (Otero, Gutierrez-Docio, 340 

Del Hierro, Reglero, & Martin, 2020). On the contrary, high pressure processing has been 341 

shown not to affect the fat extraction yield from house crickets (Ugur, Bolat, Oztop, & Alpas, 342 

2020), but it has been observed to enhance the extraction of phenolic compounds from house 343 

cricket powder (Bolat et al., 2021).   344 

The fat yield obtained from the control samples was similar to that obtained with extraction 345 

using hexane by Ramos-Bueno et al. (2016), although they obtained a higher yield using direct 346 

methylation. Additionally, the extracted fat from the control reported by the present study (14.52 347 

g/100 g dry weight or 4.79 g/100 fresh weight) was lower than one obtained from Acheta 348 

domesticus by Tzompa-Sosa et al.(2014) with a Folch lipid extraction (8% in fresh weight 349 

basis) and Soxhlet extraction (6% in fresh weight basis). This result could be attributed to the 350 

different extraction procedures, even though the yield was increased after PEF processing of 351 

the material. The fat yield from the untreated material that is reported by the present study was 352 

lower than the range reported by the literature, but the PEF pre-treatment offered the possibility 353 

of a yield increase. Furthermore, considering that most of the lipid content of insects is stored 354 

as body fat (Canavoso, Jouni, Karnas, Pennington, & Wells, 2001), and therefore easily 355 

extracted, a high fat yield was expected after applying fat isolation processes that were 356 

exhaustive for the material. 357 

3.2.2 Protein extraction 358 

 359 



It was observed that during the whole duration of the extraction, the different treatments 360 

resulted in a significant (p<0.05) increase of protein yield compared to the untreated one, but 361 

showed no significant differences (p>0.05) in comparison to each other. In specific, after 15 362 

min of extraction, the yield from the sample treated at 4.90 kJ/kg was 32.47% higher, while 363 

after 60 min of extraction the yield was 18.62% higher. Moreover, after 15 min of extraction, 364 

the yield increase between the control and the samples treated with 24.53 and 49.10 kJ/kg 365 

was 30.47 and 39.55%, respectively. The yield increase between the untreated sample and 366 

the samples treated with 24.53 and 49.10 kJ/kg, after 60 min of extraction, was 22.76 and 367 

16.55%, respectively. Therefore, it was concluded that 4.9 kJ/kg is an appropriate treatment 368 

condition, leading to an 18.62% increase of the protein yield after 60 min.  369 

Yi et al. (2013) performed aqueous protein extraction on N2-frozen house crickets, among other 370 

insect species, followed by a centrifugation step to separate the extract and pellet and reported 371 

an approximately 20% of the total protein in the supernatant, while measured crude protein 372 

content to be 21.5% of the fresh weight (70.8% of moisture) of the house crickets. Therefore, 373 

the protein content of the supernatant (liquid fraction) based on dry weight was calculated and 374 

was equal to 14,73%. Ndiritu et al. (2017) used the method of Yi et al. (2013) for protein 375 

fractionation and reported a 32% yield of the liquid fraction with a 66% protein content on dry 376 

basis, meaning they isolated 21.12% of the proteins on the aqueous fraction. Laroche et al. 377 

(2019) used mild alkaline extraction conditions (0.25 M NaOH) and heating at 40°C to obtain 378 

a 30% protein yield with an approximate of 75% purity on dry basis from defatted house cricket 379 

powder and Udomsil et al. (2019) performed a pH-dependent extraction with mild heating (up 380 

to 60°C) and reported a maximum protein yield of 25 mg/100 g. However, the combination of 381 

a PEF treatment with an increased pH has been shown to further enhance the protein 382 

extraction yield (Parniakov et al., 2015). 383 

Furthermore, Smetana et al. (2020) reported that PEF led to an increase of the oil yield in the 384 

pressed extract from Tenebrio molitor, when the protein content of the extract was low (~1 g/L) 385 

and not affected by PEF. Finally, according to Alles et al. (2020), PEF did not increase the oil 386 



yield after pressing, but did increase the amino acid content of the oils, indicating a slight effect 387 

of PEF on protein removal.  388 

The protein yield observed in the present study after 15 min of extraction from the untreated 389 

freeze-dried material was slightly higher (28.4 g/100 g d.w.) than the one reported by previous 390 

studies. This difference is attributed to the alkaline conditions of the extraction. The lack of 391 

effect of PEF on the protein extraction, as well as the low yield, reported by Smetana et al. 392 

(2020) differed from the results of the present study. However, the efficiency of an extraction 393 

is related to the ability of the solvent to fully penetrate the cells of the material (Mercer & 394 

Armenta, 2011). It is considered that the low efficiency of the protein extraction presented by 395 

Smetana et al. (2020) was due to the exclusion of solvents from the extraction. 396 

3.2.3 Chitin isolation 397 

The chitin isolation yield obtained from all different samples did not vary significantly (p>0.05) 398 

and it was equal to 10.10 ± 1.50 g chitin/100g d.w. Even though PEF was shown to increase 399 

protein and oil removal from the solid, this effect did not transfer to the protocol applied for 400 

chitin isolation. This protocol was on its own exhaustive, since chitin is not extracted from within 401 

the cells, but isolated through a procedure that aims to remove the rest of the compounds from 402 

the sample. The isolated chitin yield was higher than the one extracted by Hirsch et al. (2019), 403 

who reported a yield of 5.14 % in basis of dried weight (Hirsch, Cho, Kim, & Jones, 2019). 404 

Furthermore, the yield of the isolated material seemed to be higher than the chitin content of 405 

the material. This was an indication of remaining impurities on the isolated chitin. Although 406 

chitin yield was not affected by PEF (p>0.05), the morphology of chitin was influenced by PEF 407 

treatment (Figure 5).  408 

It was observed that the chitin obtained has pores with a various diameter, a smooth surface 409 

(Fig.5a,c) and with evident nanofibers (Fig.5a,b). A similar morphology of chitin has been 410 

observed for Brachytrupes portentosus (Ibitoye et al., 2018), Zophobas morio (Soon, Tee, Tan, 411 

Rosnita, & Khalina, 2018) and Argynnis Pandora (Kaya, Bitim, Mujtaba, & Koyuncu, 2015). 412 

Furthermore, it appears that the chitin obtained from insect flours that were subjected to the 413 



two most intense PEF treatments appear smoother. During the chitin isolation process with the 414 

sequential chemical treatments, the linkage of the N-acetyl-D-glucosamine monomers that are 415 

connected in a fibril network is distorted. This distortion is observed through the appearance 416 

of cracks on the surface of chitin, (Asif et al., 2019).  417 

It is important to note that the cuticle of insects consists of an outer layer called epicuticle that 418 

consists of mainly proteins and lipids and a thick procuticle that consists mainly of chitin linked 419 

to the functional groups of proteins(Andersen, Hojrup, & Roepstorff, 1995; Jonas-Levi & 420 

Martinez, 2017). Therefore, it was assumed that since PEF treatment is shown to enhance 421 

protein extraction, it can facilitate the deproteinization process. Consequently, PEF treatment 422 

can have a positive effect on the surface structure of the isolated chitin, since the easier 423 

removal of proteins can decrease the effect of the alkaline treatment on the chitin. However, 424 

further studies are needed to confirm this hypothesis.  425 

4. Conclusions  426 

The results obtained from the present study lead to the conclusion that PEF enhances the 427 

functional properties of house cricket flour as a food material and assists the fractionation of 428 

valuable compounds (protein, fat and chitin). PEF treatment at 4.90 kJ/kg increased the OBC, 429 

EC and antioxidant activity of the cricket flour by 19.53, 22.06 and 45.79%, respectively. PEF 430 

treatment also increased the extraction yields of protein and fat by over 18% and 40% 431 

respectively. Based on the summary of results, PEF treatment at 4.90 kJ/kg can be considered 432 

the most appropriate among the tested PEF treatment conditions. Further, technological 433 

advancement, economic viability and sustainability of PEF processing for insects should be 434 

considered for further studies. Additionally, the effect of PEF on the bioactivity and properties 435 

of the isolated fractions from the crickets should be evaluated since the present study focuses 436 

only on the effect of PEF treatment on the extraction yield of the crickets’ compounds. In 437 

conclusion, PEF can be applied to assist the utilization of house crickets as a food resource 438 

(whole flour and extracted fractions), while the sustainability and possible continuous use of 439 

PEF could offer a complete procedure for advancing this technology at industrial scale.  440 
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 661 

Figure 1: Processing lines of house crickets combined with a PEF treatment.  662 

Figure (2): Effect of PEF pretreatment on the functional properties of the cricket flour: (a) oil binding 663 

capacity (g oil/g d.m.), (b) water binding capacity (g water/ g d.m.), (c) emulsifying capacity (%), (d) foaming 664 

capacity (%), (e) antioxidant activity (µg TE/g d.w.). The error bars indicate the standard errors of 665 

measurements. Superscript letters (a,b,c…) indicate the significant differences (p<0.05) between the means 666 

of the functional properties of PEF-treated samples and the untreated sample (control). 667 

Figure (3): Effect of PEF pretreatment on the fat extraction yield (g fat/100 g d.w.). The error bars indicate 668 

the standard errors of measurements. Superscript letters (a,b,c…) indicate the significant differences 669 

(p<0.05) between the means of the functional properties of PEF-treated samples and the untreated sample 670 

(control). 671 

Figure (4): Effect of PEF pre-treatment on the protein extraction (duration of 15, 30, 45 and 60 min) yield 672 

from insect flour. The error bars indicate the standard errors of measurements. 673 

Figure (5): SEM pictures of isolated chitin from house crickets with an analysis magnification of 1000x. (a): 674 

Control, (b): 4.9kJ/kg, (c): 24.53kJ/kg, (d): 49.10kJ/kg 675 

Table 1: Composition (g/100 g dry weight) of the adult house cricket flour. 676 



 677 

 678 

 679 

Compounds g/100 g dry weight 

Moisture 10.97 ± 2.41 

Proteins 72.45 ± 1.30 

Crude fat 18.19 ± 0.63 

Ash 3.97 ± 0.96 

Carbohydrates 6.64 ± 0.15 

Chitin 7.34 ± 0.73 



Values are presented as mean ± SD. 680 
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