
Towards a symbolic implementation of
Active Inference for Lego robots
Jean-François Cloutier, SmartRent
Last updated: July 19, 2022

Abstract
I program autonomous Lego robots to explore concepts of cognition and make these
concepts tangible. My goal is for robots to conform to the principles of Active Inference
and learn as much as possible on their own. As a software developer and not a
neuroscientist, I take an unorthodox approach. Instead of encoding the mathematics of
the Free Energy Principle, I implement models of cognition as collections of concurrent
processes that carry out "symbolic" computations and communicate via events,
something akin to Marvin Minsky’s "societies of mind". I make use of the Elixir
programming language for its support for the Actor Model, and, more recently, an
augmented Prolog to automate logical inferencing and constraint satisfaction. My efforts
began before I became aware of Active Inference. The first iteration is based on an ad
hoc model of cognition that makes no provision for learning. The second iteration is
influenced by the “predictive brain”. In this implementation, a society of actors make
predictions, raise prediction errors, update beliefs and carry out action policies. Though it
works, the model is conceptually muddled and learning is restricted to improving action
policy selection. Furthermore, the implementation is riddled with “bottleneck” cognition
actors. The third iteration takes a unified approach, with cognitive functions distributed
over a society of generative model actors. This model of cognition is fully decentralized
and aligns with the ontology of Active Inference. Learning, however, is still limited to
policy selection. The current and fourth implementation, a work in progress, expands on
this model and aims at significantly extending the scope of learning. Instead of a robot
being given a fixed set of predefined generative models, it will grow and evolve them
from experience and without human supervision. This will be attempted by dynamically
instantiating generative models and having them use an "apperception engine" to
induce, from their past perceptions1 and actions, the logic programs that predict
incoming perceptions, interpret perceptions into beliefs, and determine consequent
action policies. These self-taught generative models will also abduce latent objects
suspected of causing perceptions, and develop a shared vocabulary of predicates with
which to express beliefs and predictions.

1 In this paper, perception is synonymous with observation/sensation, with beliefs being derived from
perceptions.

1. Roadmap
I am a software developer, not a neuroscientist. I am keenly interested in cognition, natural and
artificial. Programming toy robots is my tool of choice to explore models of cognition and make
otherwise abstract concepts tangible.

This paper describes an ongoing project to implement a succession of cognition process models
on autonomous Lego rover robots. My ultimate goal is to program robots that conform2 to the
principles of Active Inference and learn as much as possible without human supervision.

Three models have been successfully implemented and a fourth one is just now entering
development.

Version 1 predates my being aware of Active Inference and implements an ad hoc model of
cognition as an instance of Minsky’s Society of Mind[1] concept. Version 2 is the result of
encountering the “predictive brain” theory and implements a “predictive society of mind”. Version
3 is a more mature take, with generative models playing a central and unifying role in the robot’s
society of mind.

Learning is central to cognition. While each version led to reasonably competent robots, they all
lacked meaningful autonomous learning capabilities, version 1 being essentially devoid of any.

Version 4 expands on version 3 and aims at endowing robots with greatly expanded learning
capabilities, namely the ability to grow generative models and evolve their capabilities, without
human supervision, from interactions with their environment. It is hoped that, if this effort is
successful, an Active Inference analysis of the robots behaviors would demonstrate that they
tend over time to minimize their Free Energy3. This is clearly ambitious. My expectations are
that, short of success, interesting problems will be explored and intriguing questions raised.

2. Model v1 - A Society of Mind for Lego EV3 robots

In 2017 when I became aware that Lego EV3 robots could be programmed in Elixir4, a
high-level language that implements the Actor Model[2]. In the Actor Model, software is written
as a collection of concurrent processes that manage their own data and communicate strictly via
messages.

4 The Lego EV3 robotics toolkit allows Linux to run on its “computing brick”. The ev3dev Linux distribution
adds drivers that give read/write, file-based access to the EV3 sensors and actuators. This makes it easy
to program an EV3 robot using any programming language Linux supports.

3 How this would be conducted is to be determined.

2 By conforming, I mean found to minimize Free Energy when data collected from robot runs is subjected
to analysis.

https://www.lego.com/en-us/product/lego-mindstorms-ev3-31313
https://elixir-lang.org/
https://arxiv.org/abs/1008.1459

Fig. 1 - Actor Model

I had long been intrigued by a core hypothesis behind Marvin Minsky’s Society of Mind, namely
that seemingly intelligent behaviors could emerge from many simple, specialized processes
interacting in simple ways.

Elixir processes are lightweight, allowing a large number of them to run fairly efficiently on the
underpowered5 Lego EV3’s “computing brick”. The EV3 brick connects to and controls a variety
of sensors and actuators. Elixir running on the Lego EV3 looked like an excellent opportunity to
test the Society of Mind hypothesis.

Fig 2. Elixir implementation

5 Single core 300MHz processor with 64M of RAM.

http://www.acad.bg/ebook/ml/Society%20of%20Mind.pdf

Fig. 3 Lego EV3 rover robots with EV3 brick

I improvised a model of cognition and implemented it as a collection of different kinds of
“cognition actors'' that exchange messages by publishing events that other actors subscribe to.

Fig. 4 Event publish and subscribe

In this initial model, detector actors periodically poll their associated sensors and publish
“percept events''. Perceptor actors listen to percepts of interest and integrate them into higher
level percepts they then publish for other preceptors to process, and so on.

Motivator actors, each representing a different need of the robot (hunger, safety etc.), listen to
percepts and publish “motive events”. Motives from higher-priority motivators silence motivators
of lesser priority (safety > hunger).

Fig 5. Cognition model v1

The motives that prevail trigger behavior actors. Behaviors are state machines that, once
triggered, emit “intent events” whenever they transition from state to state . State transitions are
caused by receiving new motives or percepts.

Some behaviors, labeled “reflexes”, are always active (they are not triggered by motives).
Obstacle avoidance is realized by reflex behaviors.

Fig. 6 Behavior state machine, cognition model v1

The intent events published by behaviors are listened to by actuator actors whose responsibility
it is to translate intents into commands executed by the robot’s motors.

Actors publish events to a “Central Nervous System” (a message bus) which then broadcasts
them to subscribing actors. The CNS also communicates all events to a single Memory actor
who keeps a timestamped record of them and makes them available for querying to actors
(perceptors, motivators, behaviors) who might want to integrate past events in their
decision-making.

The v1 model is successful inasmuch as robots do exhibit competent behaviors; they can avoid
obstacles, get unstuck, seek food (color paper in front of an IR beacon simulating scent), and
run around somewhat randomly when otherwise not preoccupied by hunger or their own safety.

Fig 7. EV3 robot approaching food

However, the constant flood of percepts, motives and intents quickly overwhelms the limited
processing capacity of the EV3 brick, with actors dealing with increasingly stale percepts,
motives and intents. As a result, the robot finds itself reacting increasingly late to current events.
The solution adopted is to detect when the robot is falling behind and to put it to sleep (disable
actuators and detectors) and wait a few seconds6 for events to “flush through the system” before
waking up the robot. Clearly something to do with focus or attention is missing from this initial
model.

Another issue is the absence of any learning capability. All preceptors, motivators and behaviors
are predefined and their logic does not change as the robot interacts with its environment. All
that changes is the flow of events, which motivators are inhibited, and which behaviors are
triggered, and which intents are produced from the state transitions of active behaviors.

3. Model v2 - A predictive society of mind
Three issues from model v1 needed to be addressed:

1. The EV3 brick (the robot’s CPU) is underpowered,
2. The lack of focus/attention causes a flood of percepts, most of which are not relevant at

any given point in time,
3. Learning is absent.

The CPU problem is easily resolved by replacing the EV3 brick by a Raspberry PI 37 connected
to a Dexter industries BrickPi3 board.

7 Quad core 1.2 GHz CPU, 1 GIG RAM
6 This required the introduction of an “internal clock actor” generating “time tick events”.

https://www.dexterindustries.com/

Fig.8 BrickPi3 board

The BrickPi3 provides the interface between the Pi3 and Lego sensors and actuators, affording
greatly increased computing power to Lego EV3 robots.

One downside is that the BrickPi3 requires its own batteries, separate from the Raspberry Pi3’s
battery power source. This imposes significant bulk and weight requirements.

Fig. 9 Lego robot with Raspberry Pi3 and BrickPi3

The other issues (lack of focus, absence of learning) could not be addressed by tweaking the
initial model. A model of cognition version 2 was called for. In 2018, I came across Andy Clark’s
book Surfing Uncertainty[3] about Predictive Processing. It offered an account of cognition that
encompassed both focus/attention and had learning as a core function.

The Society of Mind model of v1 was overhauled into v2 by removing predictors, motivators,
behaviors and replacing them with actors that implement predictive processing.

In this model v2, a robot given a profile that defines conjectures (the kinds of beliefs it can hold),
predictions it can make to verify such beliefs, and fulfillment options for making predictions come
true.

https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780190217013.001.0001/acprof-9780190217013

Fig 10. Profile concepts of cognition model v2

A prediction here is either an assertion about a belief being held, current perceptions or prior
actuations. A fulfillment defines options for fulfilling a prediction. Options can be either alternate
sequences of actions, or another conjecture to believe in.

For each conjecture in a robot’s profile, a “believer actor” is instantiated whose sole purpose is
to verify the conjectured belief. It does so by instantiating “validator actors” for each prediction
by which the belief is verified. The validator executes logic to check if its assigned prediction is
valid and, if not, raises prediction errors and attempts to fulfill it. Successful prediction fulfillment
raises a ”fulfillment event”.

A unique “experience actor” processes prediction error and fulfillment events and keeps track of
which fulfillment options correlate to success. It uses this information to recommend fulfillment
options to validators on demand.

Focus and attention is realized by two eponymous actors. The focus actor enables and disables
validators to ensure that only beliefs in the more important conjectures are the ones being
“worked on” at any given time.

The attention actor is responsible for starting/stopping detectors so that only those of interest to
the active validators are in play.

Fig. 11 Cognition model v2

Robots competently seek food, avoid obstacles and roam around under a regime of predictions,
beliefs and prediction errors. They become noticeably better over time at selecting sequences of
actions to fulfill predictions.

Yet the model is unsatisfactory, especially the interplay of beliefs, predictions and prediction
errors which, on closer reading, does not quite align with the theory. Learning is also limited to
action policy selection and the process model contains many singleton actors (experience,
focus, attention, memory) with the attendant and unwanted computing bottlenecks.

4. Model v3 - A society of generative models
From a closer reading of Predictive Processing, I noted the central role generative models play
in predictive processing and revised the domain model to make generative model actors the
core components of a redesigned process model.

4.1 Domain model
An effort was also made to decouple at the implementation level the physical configuration of a
robot (the platform) and its assigned generative models (the profile).

Fig. 12 Concepts map for cognition model v3

A platform describes the physical configuration of the agent, namely, its sensors and actuators.
An agent (robot) is assigned a profile and a platform, from an inventory of predefined profiles
and platforms.

The platform maps intents (e.g. going forward, turning left etc.) to coded functions that activate
actuators to fulfill these intents given a specific morphology (e.g. to move forward, activate both
wheels with positive polarity).

A profile lists generative model definitions (GM def). For each definition, a generative model
(GM) is instantiated. A profile organizes these GMs into parent-child relationships.

Fig. 13 Implemented hierarchy of generative models

Two robots could share the same profile but have different morphologies thus different
platforms. Conversely, two robots could be physically identical (same platform) but have
different profiles, and thus each interact differently with their environment.

A detector is instantiated for each of the platform's sensors. A detector is akin to a trivial
generative model whose beliefs are exactly the sensor's inputs. A detector receives predictions
from GMs but does not produce any. A detector raises prediction errors when its inputs
contradicts predictions it receives. Detectors sit implicitly at the bottom of the GM hierarchy.

Fig. 14 Exchanges of predictions and prediction errors

A GM definition establishes a set of conjectures for a GM.

A conjecture names a belief (categorized as a goal or opinion), sets how to update it from
perceptions, and how to raise predictions should the belief be held. The logic is defined as
parameterized software functions.

A GM's conjecture is activated (conjecture activation executes) when the GM receives a
prediction from another GM about the conjecture’s belief.

4.2 The lifecycle of a generative model actor
A GM operates in a sequence of rounds, one round at a time. A round is time-boxed.

During a round, a GM may receive predictions from other GMs about its own beliefs. This
activates related conjectures which, in turn, raises predictions about child GM beliefs.
Within a round, the GM's perceptions consists of the list of prediction errors it has received, plus
the predictions it has raised for which no prediction errors were received with the round.

Fig. 15 Lifecycle of a generative model actor

During the execution of the round, the GM may receive prediction errors from child GMs,
integrate them into its perceptions, update its own beliefs, and possibly raise prediction errors if
these beliefs contradict the predictions it received during the round.

Fig. 16 Interactions between generative model actors

A GM updates its beliefs (using functions contained in its conjectures) at the end of a round
from its current perceptions.

After having updated its beliefs, a GM determines courses of action most likely to achieve each
goal belief, or to validate opinion beliefs it currently holds.

A course of action is a sequence of intents. The GM favors courses of actions that correlate with
high efficacy. However the GM will also sometimes attempt new courses of action or prior, less
optimal ones to avoid getting stuck in a local minimum.

Computed "efficacies" make up the learned policy know-how of the agent. They are
remembered across runs of the agent.

The goal beliefs of a GM are carried over from round to round until they are achieved, or until
the GM stops receiving predictions about these goal beliefs, signaling loss of attention.

A GM keeps a memory of recent rounds. For each past round, it remembers perceptions,
predictions produced, prediction errors raised, beliefs held, courses of action taken. This
memory provides a temporal context to the current round to compute the latest beliefs and
predictions.

4.3 Building a simple theory of mind
A 360 degree modulated infrared beacon and wide-angle IR detector were added to each
robot’s platform (body) so that one robot could detect another robot’s relative position via its
infrared signature.

Fig. 17 Lego robots with identifying infrared beacons and IR sensors

This ability of a robot to perceive and remember the relative positions of another robot makes it
possible to add generative models whose concern is to infer the intents of another robot. This
initial attempt at constructing a “theory of mind” is limited to detecting properties of another
robot’s recent trajectory and inferring intent from it.

Fig. 18 Theory of mind generative models

If a robot perceives another to be “taking a bee line”, it infers that the other robot is tracking a
food source and may follow the other robot.

Fig. 19 Inferring feeding intent

If the other robot is perceived as moving chaotically, then it is inferred to be “in a panic” (the
“danger” generative model produces random sequences of action) and the witnessing robot
reacts by also believing itself in danger8.

Fig. 20 Inferring panic intent

Debugging software can be difficult in the best of circumstances. Debugging a highly
concurrent, actor-based process model running a rich hierarchy of generative models on a robot
in real time is especially difficult.

4.4 Simulating robots
To accelerate debugging and testing, virtual robots can run in a simulation environment.
Changes in the internal states of virtual robots can be observed, slowed down, paused and
replayed.

8 Provisions are made in the belief updating logic of the danger GM to avoid a vicious cycle of
panics.

Fig. 21 - Simulation environment

The simulation environment puts virtual robots in a grid world with obstacles (the sides of the
grid and blue squares), food (the green squares) and more or less dark areas (black and gray
squares). The robots are represented by the first letter of their names.

When in simulation mode, the implementation runs on a personal computer instead of on a
robot. Detector actors get their perceptions from the virtual robot’s sensors. Actuator actors
translate intents into commands to virtual motors, moving the virtual robot in the grid world and
changing what it perceives.

Fig. 22 - Simulation environment grid world

A robot’s generative model can be selected and observed as the robot goes through its paces.
One can see the predictions being received, conjectures being activated and beliefs updated,
prediction errors raised and received, and actions being intended and taken.

Fig. 23 Generative model dashboard

The current position and orientation of each robot is displayed, as well and the current state of
its actuators.

Fig. 24 Robot state dashboard

4.5 Model evaluation
The generative model-centric model (v3) conforms quite well with the ontology of Active
Inference[4] and thus can arguably be described as a “symbolic implementation of Active
Inference”, though an incomplete one.

It is incomplete mostly in that learning is still limited. Model v3, just like model v2, restricts
learning to policy selection (by correlating actions to successful belief updating). However,
model v3, by integrating all predictive processing functions into generative models, sets the
stage for a new model that greatly expands the learning capabilities of the robots.

5. Model v4 - Active inferencing
The latest version is in early development. Its scope is ambitious: A robot is to discover and
evolve (i.e. learn) its generative models from interactions with its environment without human
supervision.

5.1 Prior capabilities
The implementation will provide a robot with a minimum of prior capabilities, such as the generic
machinery of generative models (a GM framework) but not their idiosyncratic logic; this will be
synthesized by the apperception engine.

A robot will aso “start life” with all the detectors and actuators needed to interface with the
robot’s sensors, motors etc. It will possess a fully-defined “metacognition generative model”
responsible for seeding new generative models and weeding out dysfunctional ones9.

Finally the implementation will include an “apperception engine” to generate logic programs a
generative model uses to carry out its predictions, belief updating and policy selection.

From Richard Evans et al.’s Making sense of sensory input[5]:

This paper makes two main contributions. The first is a formalization of what it means to
“make sense” of the stream of sensory data. According to our definition, making sense of a
sensory sequence involves positing a symbolic causal theory – a set of objects, a set of
concepts, a set of initial conditions, a set of rules, and a set of constraints – that together
satisfy two conditions. First, the theory must explain the sensory readings it is given. Second,
the theory must satisfy a particular type of unity. Our definition of unity involves four
conditions. (i) Spatial unity: all objects must be unified in space via a chain of binary
relations. (ii) Conceptual unity: all concepts must be unified via constraints. (iii) Static unity:
all propositions that are true at the same time must jointly satisfy the set of constraints. (iv)
Temporal unity: all the states must be unified into a sequence by causal rules. Our second
contribution is a description of a particular computer system, the Apperception Engine , that
was designed to satisfy the conditions described above.

Fig. 25 Structure learning

9 Meta-learning is out of scope.

https://arxiv.org/pdf/1910.02227.pdf

5.2 The apperception engine
Once a generative model is instantiated, it employs the apperception engine to determine or
adjust its scope, i.e what its predictions and beliefs can be about, and to generate the logic by
which it makes predictions, updates its beliefs, and formulates action policies.

The apperception engine searches a space of candidate logic programs, informed by a GM’s
past rounds and the scopes of other GMs it builds upon and build upon it. The search is subject
to semantic and time constraints.

The task of the apperception engine is to efficiently generate competent code from past
experience. To synthesize prediction-making logic, i.e. the GM’s predictor program, the
apperception engine takes the perceptions from the GM’s past rounds and searches for a logic
program (deduction rules) that, given the perceptions of a given round, deduces the perceptions
of the subsequent round (possibly a superset of them).

A predictor needs a defined scope that constrains what objects the predictions are about (self,
food, obstacles, etc.) and what predicates can be used to express these predictions
(distance-of, touches, orientation-of, etc.)

The scope of a GM mostly borrows from the scopes of other GMs and of detectors. After all, a
GM makes predictions about the beliefs of other GMs and/or detectors. A GM might decide to
abduce (imagine) other objects not contained in the scopes of others. The scope of a GM
determines if the GM is more or less abstract than another. A GM that expands the scope of
another is considered “higher level” or more abstract.

There are three kinds of synthetic logic rules of a predictor:

1. Static rules that, together, constrain the perceptions in a round (mutual exclusion rules)
and that infer implied perceptions.

2. Causal rules that determine perceptions in a round given the known and implied
perceptions in the previous round.

3. Unity (semantic) rules that constrain all predicates and objects used in the above rules to
be conceptually connected: An object referenced by a rule must be connected via rules
to every other referenced object. Every predicate must be universally quantified or
related via mutual exclusion to other predicates.

The space of all possible such logic programs is extremely large. Constraints must be applied to
restrict the search space so that an acceptable candidate can be found within a reasonable
amount of time.

The perceptions in the sequence of rounds a GM remembers constrain the search for a
predictor. Valid predictors must infer (a superset of the) perceptions in round N+1 given those in
round N. Unity rules further restrict the set of valid predictor programs.

Heuristics also come into play to further restrict the search space and maximize the chances of
finding an acceptable candidate in a limited amount of time, heuristics such as:

● Start search from small scopes
● A GM’s scope must always be identical to, or a strict superset of, the scope of another

GM
● Predictors with the fewer and least complex rules are preferred.

Fig. 26 Generating predictors with an apperception engine

Similar constraints apply to the synthesis of belief updating and policy selection logic programs.

5.2 Homeostasis and feelings
There needs to be a “value function” to guide the process of growing and evolving a “society of
generative models”. Homeostasis plays this role. The GMs evolve in the right direction if the
robot’s homeostasis is generally less at risk over time.

The “homeostatic score” of a robot is an aggregate value derived from the emotional valence of
all beliefs currently held by the robot’s GMs. A belief has emotional valence if it is derived,
directly or indirectly, from perceptions of positive or negative “feelings”.

Feelings are interoceptive sensations generated by predefined code functions that evaluate
deviation from homeostasis.

Feelings have a valence that is either negative, neutral or positive.

The robot can feel:

● Hunger - negative if internal energy is depleted due to action and computation
● Pain - from bumping into things etc.
● Ennui - negative if it has not been learning for an extended period of time

Each kind of Feeling has an assigned charge that multiplies its valence, allowing a Feeling to
dominate another. Emotional charges can vary over the life of an agent, for example
downplaying pain and hunger in favor of dispelling ennui.

Maximizing the emotional valence of beliefs held will prioritize action policies selected by GMs
over others if they address more emotionally charged beliefs, Variations in Feelings over time
will be used to evaluate the fitness of learned capabilities.

A capable agent will be one that, through its actions, ends up “feeling good” more often than
not.

Metacognition
Guiding a society of generative models up an “homeostatic gradient” (or keeping it from
backsliding) is the responsibility of the Metacognition GM.

The Metacognition GM sees the GMs as “cognition sensors”.

Each GM produces a stream of "cognitive sensations" consumed by the Metacognition GM,
namely:

● A predictive success measure (Are most of my predictions contradicted?)
● A learning measure (Am I finding better predictors etc.?)
● An emotional measure (Am I feeling mostly good or bad?)
● An effectiveness measure (Are my policies effective?)

The Metacognition GM perceives the cognitive sensations of GMs and the Feelings of the robot.
It combines these perceptions into beliefs about the individual and joint capabilities of the GMs.
It may then decide to carry out policies that add and cull GMs so as to improve the agent's
overall capabilities.

5.3 Implementation
A common thread unites the implementation of all four models, the Society of Mind concept
whereby a robot’s visible behaviors emerge from “actors” of various kinds concurrently
producing and reacting to events.

So far, Elixir, with its best-in-class support for the Actor Model, has served all implementation
needs well. With the expansion of learning capabilities requiring an apperception engine to
synthesize logic programs, this is no longer entirely true.

An apperception engine is best implemented in a logic programming language capable of
constraint solving such as SWI-Prolog augmented by CHR (Constraint Handling Rules). Prolog
will also provide the execution environment for the logic programs synthesized by the
apperception engine.

Fig. 27 Sample code from an apperception engine’s Prolog implementation

Because of the close relationship between generative model actors and the apperception
engine, it would be counterproductive to keep implementing GMs in Elixir while the
implementation of how and what they learn is in Prolog.

Adding an actor and eventing extension to SWI Prolog enables migrating GM actors to Prolog
while leaving sensing and actuation in Elixir. This allows a system architecture that “cuts at
natural joints”, with embodiment (actual and virtual) implemented in Elixir and active inferencing
implemented in Prolog.

https://www.swi-prolog.org/
https://www.swi-prolog.org/pldoc/man?section=chr

Fig. 28 Implementation decoupling cognition actors (Prolog) and embodiment actors (Elixir)

6. Concluding remarks
All three completed iterations, each with its own model of cognition and each implemented as a
society of actors, were successful in that they produced reasonably competent behaviors on
roving Lego robots. The robots all managed to track food, while avoiding obstacles and,
sometimes, each other. In one model, a robot could even infer, in a very limited way, the intents
of another robot.

The first model was ad hoc while the others increasingly aligned to the concepts and principles
of Active Inference.

The current iteration has ambitious goals, not least among them:

● The implementation of an apperception engine that successfully and efficiently
generates code that, when run, predicts perceptions, updates beliefs and selects action
policies for a GM.

● Measuring on a robot deviation to homeostasis and expressing it as feelings that give an
emotional charge to beliefs, and using this to prioritize possibly conflicting action policies.

● Implementing metacognition capabilities that guide the evolution of a society of
generative models along a homeostatic gradient, without micromanaging the process.

This effort has already raised questions that, I hope, will be explored if not answered:

● How much does growing a society of generative models have in common with
developmental biology?

For one thing, the number of GMs starts small (one) and grows. Each new GM shares
the same “genetic code” (its framework code) yet differentiates. Furthermore, the
“phenotype” of a GM (its scope and synthesized logic programs) is constrained by
“neighboring” GMs (those it depends on for its perceptions).

● What is the “minimum viable priors” a robot needs to engage successfully in autonomous
learning?

Some functionality must be present apriori without which autonomous learning
necessarily fails. For example, some predefined constraints/heuristics are essential to
pruning the search tree of the apperception engine. Without them, acceptable solutions
are unlikely to be found in a reasonable amount of time.

● Under what conditions does unsupervised learning tend to converge on competency?
Diverge?

As a robot learns it engages in “babbling”, i.e. trying out different logic programs for
obtaining perceptions, updating beliefs, and selecting actions, all with different degrees
of success. Babbling is useful if it leads to better programs and thus greater competency
at preserving homeostasis. Babbling is useless if it does not. Distinguishing useful from
useless babbling matters.

Acknowledgements
This work was supported in part by a grant from the Maine Technology Institute and by
SmartRent. I also wish to thank the members of the Active Inference Institute who provided
much appreciated support and feedback.

References
[1] Minsky, Marvin (1986). The Society of Mind. New York: Simon & Schuster. ISBN
0-671-60740-5.
[2] Hewitt, Carl (2015). Actor Model of Computation: Scalable Robust Information Systems,
arXiv:1008.1459 [cs.PL].
[3] Clark, Andy (2016). Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford
University Press. ISBN-13: 9780190217013.
[4] Thomas Parr, Giovanni Pezzulo and Karl J. Friston (2022). Active Inference - The Free
Energy Principle in Mind, Brain, and Behavior. MIT Press. ISBN: 9780262045353.

https://en.wikipedia.org/wiki/Developmental_biology
https://youtu.be/J6eJ44Jq_pw?t=2789

[5] Richard Evans, Jose Hernandez-Orallo, Johannes Welbl, Pushmeet Kohli, Marek Sergot
(2020). Making sense of sensory input. arXiv:1910.02227v2 [cs.AI].

