
1

On the Resource Consumption of Distributed ML
Georgios Drainakis∗, Panagiotis Pantazopoulos†, Konstantinos V. Katsaros‡, Vasilis Sourlas§, Angelos Amditis¶

Institute of Communication and Computer Systems (ICCS), Athens, Greece
Email: ∗giorgos.drainakis@iccs.gr, †ppantaz@iccs.gr, ‡k.katsaros@iccs.gr, §v.sourlas@iccs.gr, ¶a.amditis@iccs.gr

Abstract—The convergence of Machine Learning (ML) with
the edge computing paradigm has paved the way for distributing
processing-heavy ML tasks to the network’s extremes. As the
edge deployment details still remain an open issue, distributed
ML schemes tend to be network-agnostic; thus, their effect on the
underlying network’s resource consumption is largely ignored.

In our work, assuming a network tree structure of varying size
and edge computing characteristics, we introduce an analytical
system model based on credible real-world measurements to
capture the end-to-end consumption of ML schemes. In this
context, we employ an edge-based (EL) and a federated (FL)
ML scheme and in-depth compare their bandwidth needs and
energy footprint against a cloud-based (CL) baseline approach.
Our numerical evaluation suggests that EL exhibits a minimum of
25% bandwidth-efficiency compared to CL and FL, if employed
by a few nodes higher in the edge network, while halving the
network’s energy costs.

I. INTRODUCTION

The recent paradigm of shifting computation to the edge
of the network and beyond, even reaching hand-held devices,
promises to minimize latency and exploit local context. This
allows for a new breed of applications to emerge [1] e.g., vir-
tual reality, ultra-high quality streaming, driving automation
etc. Machine Learning (ML) applications appear to play a key
role in such a shift [2], given their heavy computational needs
and high data availability requirements. In fact, offloading
ML tasks to the edge (Edge Learning - EL) or to the clients
themselves (Federated Learning - FL) is increasingly gaining
ground [3], as opposed to the traditional centralized approach
(Centralized Learning - CL), where large amounts of data is
centrally gathered for training e.g., in a Data Centre (DC).

While the emerging distributed ML algorithms tackle the
fundamental challenge of training heterogeneous data stem-
ming from multiple locations [2], the energy footprint and
bandwidth needs of these distributed schemes in a realistic
network environment have been largely neglected; and so is
the identification of their induced costs for the various network
stakeholders (i.e., cloud/edge provider, mobile network oper-
ator, end-user). Such an exploration relates to the underlying
edge network topology that remains open to question. Until
recently there have been numerous approaches in regards to
the network location of edge computing nodes [1], from a
base station (BS) level near the client to an intermediate
nano-DC. The required convergence is expected to be shaped
by multiple parameters such as the application and network
requirements, geographical coverage, costs etc. Insights from
an ML-standpoint are missing even if valuable, as ML tasks
are fast becoming the dominant network workloads [4].

Background: A handful of works seek to compare EL with
cloud-based schemes, as in [5], where a simulation-based

study identifies the relation of the network overhead to the
achieved ML accuracy and in [6], where experiments are
conducted on an edge-testbed to measure the accuracy as well
as the involved traffic overhead and computational costs. An
overall modeling of the ML schemes’ resource consumption
is still missing. Some recent works following the modeling
thread, are usually restricted to a specific stakeholder, thus
lack a system-wise view. For CL, the work in [7] models
the energy expenditure of the ML task itself in the cloud
by analyzing the energy cost of each ML function (backward
and forward propagation). Regarding EL, energy consumption
and computational models are mostly considering the physical
layer i.e., user equipment (UE) [8]. Likewise, FL studies have
focused on the participating devices; in [9] the UE’s energy,
computation and communication cost is explored and in [10]
bare-metal measurements are carried-out on smartphones.

Our contribution: To compare the consumption of vari-
ous ML schemes, we model a network in an end-to-end
fashion; we consider the cloud elements, the core network,
the edge nodes together with the user equipment (UEs). We
factor-in each component’s characteristics (i.e., throughput,
computational capacity and energy consumption) relying on
credible measurements taken from real systems. Assuming
a tree-like network (physical) topology, which is widely-
adopted in literature [11], we draw on the different cases
for the edge nodes network location, representing various
degrees of data aggregation. Having secured (through our prior
research) that those aggregated data suffices to achieve certain
accuracy levels, if utilized to train ML models, we leverage
our measurement-based system model to study the result of
the application of both distributed (EL, FL) and centralized
(CL) ML schemes over the network. Analytical calculations
are derived to capture the bandwidth and consumed energy of
each scheme along with the way the involved energy costs are
broken down into the system’s stakeholders; thus, revealing
each scheme’s benefits and emerging trade-offs. This study
extends our previous work [12] on the CL-FL comparison by
introducing EL as an alternative distributed ML scheme; we
extend the system model to allow for edge node utilization and
shed light on the resources consumption per-stakeholder. Our
theoretical analysis and numerical results recommend for ML
workloads an edge node deployment at a regional level, closer
to the cloud. A regional EL scheme is shown to be at least
25% more bandwidth-efficient compared to CL and FL, while
reducing the energy costs of the mobile network operator up
to 50% and 75% compared to CL and FL, respectively.

The remainder of the paper is structured as follows. In Sec-
tion II the model is introduced and analytical expressions are
derived. Section III presents numerical results and parameter

2

analysis while Section IV concludes discussing future work.

II. SYSTEM MODEL

We consider a large-scale cellular network environment
with several mobile clients, each generating an amount of
training data. The clients are connected with a cloud server,
located inside a data centre (DC) and with edge nodes, via an
intermediate core network (Fig. 1). Utilizing client data1, we
aim to perform a ML task i.e., to train a model2, originally
generated in the cloud server, in line with the following ML
schemes:

CL: Training is performed by the cloud server. In each
training round the server selects a group of clients, which
are asked to directly upload their raw data to the server. The
server utilizes all acquired round data, thereafter, to perform
the training task. This process is repeated for several rounds,
each time with a selection of another group of clients, until
all data is depleted.

FL: Training is performed by the clients, while the cloud
server performs the model aggregation. In each round, the
server dispatches the current training model to the selected
clients (learners), which in turn train it using their own data
and computing resources. As opposed to CL, clients are no
longer required to upload their actual data, guaranteeing data
privacy. Instead, once the (local) training is completed, they
upload the updated model parameters (which are typically far-
more lightweight compared to the actual data) to the cloud
server. Upon collecting the updated model parameters, the
server performs model aggregation and (re)-distributes the
updated (aggregated) model to a different group of clients.

EL: Training is performed in the edge nodes, aggregation
in the cloud server. EL functions as an intermediate scheme
between a fully-centralized (CL) and a fully-distributed (FL)
solution, where the edge nodes act as learners. We consider a
setup where edge nodes can be positioned in a varying depth
of the network topology. The clients that participate at each
round upload their raw data to the edge node that serves their
cell. An edge node serving such a cell (or multiple) is called an
active edge node. Active nodes also acquire the current training
model from the cloud server. Afterwards, they perform the
training using the collected data and upon completion, push
the model parameters back to the cloud server. Similarly to
the FL scheme, the cloud server is only responsible for model
aggregation and (re-)distribution of the updated model.

A. Network model

We assume a mobile Long-Term Evolution (LTE) cellular
network where a basestation (BS) lies in the centre of each
cell. We refer to the wireless part of the network (BS-client
link) as the access network, while the wired part (from BS
up to the cloud) comprises the core network (Fig. 1). The
core network is divided to the mobile network, where the edge
nodes reside (metro and edge in Fig. 1), the backbone network
and cloud infrastructure.

1Control and management plane’s messages are of negligible size.
2We assume a recently generated model without pre-training.

Fig. 1. End-to-end network architecture

Access network throughput: The client throughput B2;84=C in
both the uplink (UL) and the downlink (DL) (in MBytes/sec)
is modelled as a Gaussian random variable (Ñ). Its mean
value (mean client throughput) equals that of the average cell
throughput3 2, divided by the number of online clients @.
Including the number of online clients in the computation,
allows to factor-in the way the locally-present number of users
shapes the throughput provision in the considered area. An
artificial standard deviation parameter f is also introduced,
equal to 20% of the mean value [14], to account for throughput
variations e.g., due to path loss. Also, we assume that a
minimum throughput 2<8= exists for any client, to allow for
BS-client communication, both in DL and in UL, equal to the
5% cell edge rate4, representing the worst wireless conditions.
Thus, B2;84=C for UL and DL is:

s*!/�!
2;84=C

= <0G{#̃ (2*!/�!
@

, f), 2*!/�!
<8=

} (1)

Core network throughput: The core network includes the
following elements [15]: 1) An interface to the access network
(BS); 2) The metro and edge network’s elements, i.e., several
ethernet switches (ETH), a broadband network gateway (BNG)
and the edge router; 3) the backbone network’s routers and
4) the DC’s elements, i.e., an edge router and a data center
switch. The average throughput of each element for the UL/DL
(B*!/�!2>A4) is based on Cisco routers/switches performance
benchmarking [15] and measurements on a 3-sector 2×2
Multiple-Input-Multiple-Output remote radio 4G/LTE [15]. A
total number of 3 backbone network’s routers is considered,
in line with [16], which shows that a hopcount of maximum 3
in the core network suffices to reach the DC (from the mobile
network) for the majority of popular services.

Edge node topology: Unlike the well-established infrastruc-
ture of the rest of the core network [15], the edge network’s
topology is yet to be converged; the edge nodes’ network
location is an open issue [1]. For our model, we consider a tree
topology [11], with BNG being the tree’s root and ethernet
switches constituting the tree’s leaves (Fig. 1). As the tree

3That is, 5.9 (UL)/7.73 (DL) MBytes/sec for 2.5 GHz LTE according to [13]
4That is, 0.24 (UL)/0.22 (DL) MBytes/sec according to [13]

3

expands from the BNG down to the BS (DL direction), more
and more leaves are generated. This behavior is governed by
the tree height � and width, . A full,-ary tree is considered,
where , is the fan-out degree of each tree node i.e., each
node has , leaves. Motivated by the applications’ demands
for low latency and high throughput, we adopt a "pervasive"
edge-deployment paradigm [1]; the edge node placement may
occur in any tree layer, representing various degrees of client
aggregation. For example, layer 1 denotes edge placement in
BNG, while layer ! denotes edge placement at the BS. In any
case, the lower the edge node is placed in the network (closer
to the BS), the lower is the degree of aggregation; each edge
node will serve a smaller number of clients (equivalently, cover
a smaller service area). As a result, a larger number of edge
nodes is required in total. When CL or FL is used, no edge
nodes are utilized and thus, affecting relevant computations;
data is directly exchanged between the server and the clients
via the intermediate network nodes. In EL, however, the edge
nodes location dictates its performance. Essentially, each !

value is associated to a distinct EL scheme’s variant, spanning
from (access) variants approaching the BS to regional ones,
residing towards the cloud. For each EL variant we study,
all edge nodes are considered to be located in the same
tree layer (!), therefore they present an equal degree of
aggregation. So, the total number of active edge nodes per
round is 6 = ,!−1, ! ∈ [1, �], where ! is the tree layer
where the nodes are located. We assume that any edge device
considered is attached to a tree node, which is typically an
ethernet switch (ETH).

B. Data assignment

Real-world client devices will generate data via their sen-
sors, cameras etc. To emulate such an environment, we divide
the original training dataset into partitions and assign them
to the various clients. Each partition represents the data that
is generated and stored in the client’s device. In specific, we
assume a dataset of 3B0<?;4 training samples of a total size
of 3 Bytes. We also define the dataset size to sample ratio
AB0<?;4 = 3/3B0<?;4. The dataset, including data and labels,
is divided into I partitions. A fixed number of per round
participating clients : is chosen (:<I). The total number of
rounds is then equal to D = dI/:e. In each round, the server
identifies all online clients @, from which, a total of : clients
are randomly chosen to participate. Each selected client is as-
signed a dataset partition. Marking the per client dataset size as
38 , the total dataset can be written as: 3 =

∑I
8=1 38 . Assuming

a fixed model size <, the per client data to model size ratio
is defined as A30C08 = 38/<, 8 ∈ [1, I]. If the initial dataset
is equally distributed among the clients (i.e., e.e.d. setting),
the client dataset size (38) and dataset to model size ratio
(A30C08) are simplified to: 38=3/I, A30C08=3/(< ·I),∀8 ∈ [1, I],
respectively.

Upon partition assignment, the training procedure takes
place. In the CL case, the selected clients upload their local
datasets to the cloud server in a parallel manner. The time (C8)
required for each client’s dataset (38) upload is equal to the
time of the access upload plus the time of the core upload,

therefore can be written as (Sec. II-A): C8 =
38

B*!
2;84=C

+∑
9

38
B*!2>A4 9

,

for 9 core components. The total time to upload all datasets
equals to that of the "slowest" client, since a parallel trans-
mission is assumed. The cloud server, thereafter merges the
datasets into a single super-dataset and performs the ML
training task, marking the end of the round. This procedure is
repeated until all datasets are used. Same settings overall apply
to the FL case. Here, the cloud server firstly shares the training
model to the clients. Then, each client trains the model using
only its available (local) data and finally uploads the updated
model back to the server, again in a parallel manner.

In EL, each participating client uploads its data to its serving
edge node; the latter has already received the training model
from the cloud server and then the training process occurs
per edge node. Subsequently, updated models are uploaded
back to the cloud server, similar to the FL case. In terms
of data transmission, in each round, every edge node needs
to exchange the model with the cloud server and acquire all
datasets from its serving clients. For our modeling, we assume
that each round’s selected clients (:) are uniformly distributed
across the network’s cells. This ensures that in every round,
all randomly selected clients across the network’s cells will be
evenly divided in the available (serving) edge nodes, therefore
all available edge nodes will be active learners. In an actual
network however, the edge node locations and their serving
cells respectively are governed by various factors e.g., spa-
tial characteristics, cellular architecture, average user demand
etc. Moreover, the network’s cells can be further differenti-
ated e.g., picocells, nanocells etc. Although less realistic, our
baseline assumption is insightful as it reduces the involved
problem parameters and enables us to focus on the effect of
network topology into EL’s performance.

C. Traffic Overhead

We define the traffic overhead (1) of a ML scheme as the
total amount of data exchanged for the duration of the training
process, multiplied to the total number of network nodes
(hops) the data transverses from source to destination. Based
on the network topology (Sec. II-A) and the data assignment
process (Sec. II-B) of our model, 1 for each ML scheme is
calculated as follows:

b=

3 · ℎtotal, CL
2 · < · I · ℎtotal, FL
2 · < · 6 · I

:
· ℎtop + 3 · ℎbottom, EL

(2)

where ℎC>C0; are the total hops from the cloud to the client,
ℎC>? the hops from the cloud to an edge node and ℎ1>CC><
the hops from an edge node to the client. Apparently, ℎC>C0; =
ℎC>? + ℎ1>CC><. In CL, the whole dataset 3 traverses the
network from the clients to the cloud (ℎC>C0;), where the
training occurs. In FL, instead, a total of I clients will both
receive (DL) and push (UL) their models (of size <) to the
cloud. In EL, there are two distinct communication streams;
the clients push data to the edge nodes (for ℎ1>CC>< hops) and
the active edge nodes per round 6 exchange models with the
cloud (for ℎC>? hops).

4

D. UE and Servers’ Computational Capacity

User equipment: The computational capacity of a mobile
device to perform a ML task E"!

2;84=C
, measured in (processed)

training samples/sec depends on the dataset content, the UE
capabilities and the complexity of the ML model. An ap-
proximation for popular large-scale classification tasks can
be found in [17], where different models have been tested
in various configurations. We use a reference (average) value
of E"!

2;84=C
=125 training samples/sec, as the most appropriate

for our training dataset and model (Sec. III).
Edge nodes: Edge node characteristics have not been re-

vealed yet, given that they are not fully deployed in practical
systems. We have therefore considered the latest commercial
solutions specified by Amazon’s Wavelength services [18] as
our main reference. It offers cloud services specialized for
ML and is equipped with an NVIDIA Tesla V100 Graphics
Processing Unit (GPU). Thus, an edge node’s computational
capacity E"!

4364
equals that of a GPU’s computational capacity,

whose values for ML tasks can be found in [19], from
where we select an average value of E"!

4364
=6000 training

samples/sec.
Cloud server: Computational tasks for the cloud server

include training (in CL) and model parameter aggregation (in
FL, EL). Regarding training, we assume that a DC is equipped
with a Tensor Processing Unit (TPU), as opposed the edge
server’s GPU. Based on [19], we select an average value
for the computational capacity for training E"!

2;>D3
=40,000

training samples/sec. In regards to aggregation, no reference
values can be found in the literature, thus we rely on an
empirical approach; we measure the average capacity for
training and aggregation tasks in our personal computer (PC)
setup (i.e., 6250 training samples/sec and 1.56 model ag-
gregations/sec respectively) and compare against the training
capacity reference value of 40,000 training samples/sec that
was selected, according to [19]. Assuming a linear relation,
the average cloud aggregation capacity E��

2;>D3
is calculated as

10 model aggregations/sec. Our modeling does not look into
scale out schemes, where clusters of servers may be used to
increase parallelism in DCs.

E. Energy Consumption

User equipment: Only the consumption that occurred as
a result of the UE participation in the ML scheme is con-
sidered; that is for expenditure due to data transmission
(TX)/reception (RX) or training (ML) related tasks. Any
expenditure due to UE’s standard operation e.g., display-
ing, is neglected. The energy consumption 42;84=C8 i.e., bat-
tery discharge of the 8Cℎ client’s device is computed as:
42;84=C8=4

) -
2;84=C8

+4'-
2;84=C8

+4"!
2;84=C8

, where the superscript TX,
RX and ML marks one of the aforementioned functions. In
a given time period C, this can be calculated as 42;84=C8 =

?2;84=C8 · C, where ?2;84=C8 , 8 ∈ [1, I] stands for the respective
(average) power consumption. For LTE, average power con-
sumption values related to transmission are reported in [20],
where ?) -

2;84=C8
=2.2 Watts and ?'-

2;84=C8
=1.5 Watts, ∀8 ∈ [1, I].

Likewise, for ML, based on [17], we assume ?"!
2;84=C8

=2 Watts,
∀8 ∈ [1, I], as the most appropriate to our ML model and

training task (see Sec. III). The sum of all device energies
42;84=C8 comprises the total client energy expenditure 42;84=C .

eclient=

?) -
2;84=C

∑I
8=1 (

38
B*!
2;84=C8

), CL, EL

?"!
2;84=C

·3
E"!
2;84=C

·AB0<?;4
+ < ·∑I

8=1 (
?)-
2;84=C

B*!
2;84=C8

+ ?'-
2;84=C

B�!
2;84=C8

), FL
(3)

In CL and EL, total client energy is dictated by the upload
time of each client, which in turn depends on the the client’s
dataset size 38 and its UL throughput B*!

2;84=C8
. In FL, the total

energy is not only affected by the transmission (exchange of
models in UL/DL), but also by the time required for the local
training.

Edge nodes: For the edge devices, energy is consumed only
in the EL case, due to training. Given a specific number of
dataset samples, its training time CCA08= is calculated using the
computational capacity values from Sec. II-D. The respective
energy expenditure is given by 44364 = CCA08= · ?"!4364

, where
?"!
4364

stands for the average power consumption for training.
Using [21] for CPU-GPU power benchmarking, we obtain an
average value of ?"!

4364
=50 Watts.

e4364 =

0, CL,FL
?"!
4364

·3
E"!
4364

·AB0<?;4
, EL

(4)

Network devices: Energy needs in the mobile network are
calculated by summing the energy consumption of the mobile
network devices i.e., routers, switches etc. which are given
by [15] (in Joules/bit) in relation to the data exchanged for
the UL/DL streams. We denote as 4<>1 9 the average energy
consumption per bit for a network element 9 . The total traffic
for each ML scheme, can be obtained from Eq. 2. The mobile
network’s energy consumption 4<>1 can then be calculated by
summing the energy consumption of all devices:

e<>1 =

8 · 3 ·∑ℎC>C0;−ℎ102:

9=1 (4*!
<>1 9
), CL

8 · < · I ·∑ℎC>C0;−ℎ102:
9=1 (4*!

<>1 9
+ 4�!

<>1 9
), FL

8 · < · 6 · I
:
·∑ℎC>?−ℎ102:

9=1 (4*!
<>1 9

+ 4�!
<>1 9
) + 8 · 3 ·∑ℎ1>CC><

9=1 (4*!
<>1 9
), EL

(5)

where ℎ102: stands for the number of hops in the backbone
network and cloud infrastructure, while 8 appears due to byte
to bit conversion.

Cloud server: The computational capacity values of cloud
tasks (training and aggregation) are discussed in Sec. II-D.
Energy expenditure per task can thus be calculated5, given
an average power expenditure. For the training task (in CL),
being an intensive processing task, we assume an average
power ?"!

2;>D3
=384 Watts, based on Google’s TPU benchmark-

ing [22]. For the (less-intensive) aggregation task (in EL,
FL), we assume ?��

2;>D3
=15 Watts, based on measurements

for matrix multiplication tasks [23], which are similar in
complexity to weighted averaging (aggregation). The cloud
energy consumption 42;>D3 then becomes:

5Inference i.e., applying the trained model on active (new) data also involves
resources but may come as a stand-alone task, much later than training which
is far more demanding in computations and network resources. Likewise,
latency is not modelled in our setup, as training time requirements typically
dominate over any latency considerations.

5

ecloud=

?"!
2;>D3

· 3/(E"!
2;>D3

· AB0<?;4), CL
?��
2;>D3

· I/(E��
2;>D3

), FL
?��
2;>D3

· I · 6/(E��
2;>D3

· :), EL
(6)

III. NUMERICAL RESULTS

Scenario Parameters: To compare the behavior of the
ML schemes in question (CL, FL, EL), we have selected
an indicative ML task, to be performed over a network of
varying characteristics. In specific, we assume the Street View
House Numbers (SVHN) dataset, widely used in bibliography
e.g., [24], is utilized for image-classification. SVHN contains
531K 32x32 colour training images (of 3=1.3 GB size) split
in 10 classes, while exhibiting a fixed dataset size to sample
ratio AB0<?;4=2447 Bytes/sample. The original dataset can
be replicated without affecting AB0<?;4 by adding random
Gaussian noise (blurring) to the image vectors. The total
replicas are denoted as \, essentially resulting in a total
synthetic dataset of size 3 ·\. The classification task is assumed
to be carried-out using a 3072x512x10 neural network, with
a total size < of 6.1 MB. The dataset is divided into equal-
sized partitions I i.e., e.e.d. setting. The ML task terminates
when all data is depleted, since our previous work in [12] has
shown that utilizing the complete dataset once (essentially one
epoch) with the above-mentioned model, suffices for over 75%
accuracy for FL and over 80% for CL.

In terms of the network topology, we assume a tree-
hierarchy as in Fig.1, with a tree height �=7, allowing for
a broader range of solutions than [15]. To study various
edge node placement scenarios, we vary the tree width , ,
representing the edge nodes density, as well as the tree layer
!, representing the edge nodes’ proximity to the clients. The
tree’s root is always set in the BNG, assuming that an edge
node cannot be placed in the backbone network. Based on
these settings, the number of hops from the clients to the cloud
ℎC>C0;=13. Also, the hops from the edge node to the cloud
ℎC>? are equal to the total hops from the BNG to the cloud
(ℎ102:=6), plus the total hops from the BNG to the edge node
location (Fig.1), thus ℎC>?=6+!. The hops from the edge to
the clients are ℎ1>CC><=ℎC>C0;-ℎC>?=7-!, with ! ∈ [1, � = 7].

Fig. 2. Normalised traffic 1 against the edge nodes density (W) and proximity
to clients (L)

Effect of tree characteristics and edge node location: Ini-
tially, we seek to explore the effect of the network’s tree
characteristics and edge node location on EL’s performance
(CL and FL are not affected as there is no interaction with the
edge nodes and ℎC>C0;=13). The SVHN dataset is replicated

Fig. 3. Normalised traffic 1 against the per client data to model size ratio
A30C0 and the per round clients : as a percentage of the total clients I

100 times (\=100), resulting in a total size 3=130GB dataset.
We assume I=20K total partitions assigned to the clients, while
a fixed number of :=1000 is set for the participating clients
per round (i.e., 20 rounds in total). In each cell, we assume
@=20 online clients. To more accurately reflect the network
usage, 1 is normalized to the total dataset size 3.

The resulted traffic overhead 1 with respect to both the edge
node location (layer !) and tree’s width , is depicted in Fig.
2. For CL, a fixed traffic overhead 1300% of the total dataset
size is generated, accounting for the fact that the whole dataset
traverses from clients to cloud (ℎC>C0;=13). For FL, 1 is almost
doubled, since the ML models traverse both in the UL and in
the DL direction. Their behavior is independent of , and
governed by the per client data to model size ratio A30C0, as
explored in our earlier research work [12]. Traffic overhead
in case of EL, on the other hand, depends both on the edge
nodes location (!) and their accompanying density (,). For
!,, < 4, EL generates less than 50% 1 compared to CL
and less than 25% compared to FL. When ! > 4 or , > 4
i.e., when the edge nodes are placed 4 layers below the BNG
(towards the DL direction), EL shows a sudden increase in
1, coinciding with FL’s 1. In that sense, a spatially limited
edge network is recommended, closer to the cloud server, for
ML-related applications. In regards to the energy footprint for
the mobile network 4<>1 , it varies similarly to 1, since it is
governed by the total traffic that traverses through the network
nodes; as shown Table I, its maximum value (for large !,,) is
twice the value of its minimum. Therefore if EL is employed
towards the cloud, it is twice more energy-efficient for the
mobile network operator as opposed to a layer close to the
clients; at the same time, an energy cost reduction up to 50%
and 75% emerges for the operator compared to the use of CL
and FL, respectively. In regards to the energy expenditure for
the rest of the network’s stakeholders (Table I), we deduce
that EL almost halves the total client consumption compared
to FL and reduces the cloud’s consumption by at least 1600%,
when having the consumption offloaded to the edge devices.
Interestingly, if the cloud operator offers edge services i.e., we
calculate 44364 and 42;>D3 together, a 14% reduction of energy
emerges when EL is used instead of CL.

Effect of A30C0 and :: We now study how EL’s consumption
is affected, in comparison to the other ML schemes by 1)
the ML task’s attributes (captured by the per client data size
to model size ratio A30C0) and 2) by the data assignment
procedure’s specifics (dictated by the participating clients

6

TABLE I
ENERGY EXPENDITURE PER NETWORK STAKEHOLDER

EL CL FL
42;84=C (KJ) 970 970 2200

4<>1 (KJ) [6-12] 14 25

44364 (KJ) 400 0 0

42;>D3 (KJ) (0-30] 500 30

per round :). We select a synthetic SVHN dataset with
\=10, 3=13GB, <=6.1MB. Drawing on the results of our
previous experiment, we select two indicative variants for
EL, a Regional-EL scheme (REL) closer to the BNG with
(!,,)=(1,3) and an Access-EL scheme (AEL) closer to the
BS/clients with (!,,)=(7,2). Also, we assume e.e.d. settings,
therefore A30C08 is equal for all clients, 8 ∈ [1, I] and denoted
as A30C0, for simplicity. As depicted in Fig. 3, A30C0 shapes
the traffic overhead for all ML schemes. In specific, for
A30C0<2 i.e., the client holds data of size less than 2 times
the model size, the bandwidth expenditure of CL, FL and
AEL reaches the 1300% of the total dataset. REL on the
other hand, is proven more efficient, utilizing less than half
of 1, compared to the rest. An increase of A30C0 i.e., the client
holding considerable data in relation to the model, favors both
FL and AEL, while CL and REL are not affected. FL and
AEL gain a 50% reduction for A30C0=4 (thus reaching REL’s
performance). These results are in line with our previous work
on A30C0’s effect on CL-FL performance [12]. We also note
that AEL’s traffic overhead can be reduced by manipulating
the participating clients per round :; as : is increased above
the value of 25% of the total clients I, AEL’s bandwidth
expenditure is reduced exponentially. Such a modification,
however, has no effect on the other schemes.

IV. CONCLUSIONS

We have in-depth analyzed the energy and bandwidth con-
sumption of distributed ML schemes over a network with
varying edge nodes configuration. Our simplified yet realistic,
measurement-based system model is introduced to calculate
the consumption costs of ML schemes and the way the associ-
ated costs are distributed to the involved network stakeholders.
Based on our model, we compare the consumption of two
distributed ML schemes (EL, FL) against a centralized one
(CL), under various cases for the edge nodes network location,
followed by a numerical parameter investigation using an
actual ML dataset. Our analysis suggests that both the traffic
overhead and the energy footprint rapidly increase for EL,
when edge nodes are placed closer the clients, in a dense-tree
topology. Also, increasing the data to model size ratio or the
participating clients per round, exponentially reduces the over-
head for EL, as opposed to FL (linearly), CL (constant). Our
work points to interesting future directions: the investigation
(via simulation) of network topology’s effect on the resulted
ML accuracy; the impact of non-uniform distribution of clients
across the network’s cells or the extension of the linear energy
consumption model.

ACKNOWLEDGEMENTS

This paper is part of the 5G-IANA project, co-funded by
the EU under the H2020 Research and Innovation Programme

(grant agreement No 101016427).

REFERENCES

[1] D. Artuñedo Guillen et al., “Edge computing for 5G
networks- 5G PPP white paper,” Mar. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.4555780

[2] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2155–2169, 2020.

[3] S. Hosseinalipour et al., “From federated to fog learning: Distributed
machine learning over heterogeneous wireless networks,” IEEE Com-
munications Magazine, vol. 58, no. 12, pp. 41–47, 2020.

[4] “Ai, machine learning among top cloud workloads,”
https://www.datanami.com/2017/10/26/ai-machine-learning-among-
top-cloud-workloads/, (Accessed on 04/10/2021).

[5] L. Valerio, A. Passarella, and M. Conti, “Accuracy vs. traffic trade-off of
learning iot data patterns at the edge with hypothesis transfer learning,”
in IEEE 2nd International Forum on Research and Technologies for
Society and Industry Leveraging a better tomorrow, 2016, pp. 1–6.

[6] F. Liang et al., “Toward edge-based deep learning in industrial internet
of things,” IEEE Internet of Things Journal, vol. 7, pp. 4329–4341, 2020.

[7] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Delight: Adding
energy dimension to deep neural networks,” in Procs. of the International
Symposium on Low Power Electronics and Design, 2016, pp. 112–117.

[8] Q. Zeng et al., “Energy-efficient radio resource allocation for federated
edge learning,” in 2020 IEEE International Conference on Communica-
tions Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.

[9] N. H. Tran et al., “Federated learning over wireless networks: Opti-
mization model design and analysis,” in IEEE Conference on Computer
Communications (INFOCOM), 2019, pp. 1387–1395.

[10] Z. Xu, L. Li, and W. Zou, “Exploring federated learning on battery-
powered devices,” in Proceedings of the ACM Turing Celebration
Conference-China, 2019, pp. 1–6.

[11] A. Zavodovski et al., “Exec: Elastic extensible edge cloud,” in Proceed-
ings of the 2Nd International Workshop on Edge Systems, Analytics and
Networking, 2019, pp. 24–29.

[12] G. Drainakis et al., “Federated vs. centralized machine learning under
privacy-elastic users: A comparative analysis,” in IEEE 19th Intern’l
Symposium on Network Computing and Applications, 2020, pp. 1–8.

[13] M. R. Akdeniz et al., “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE Journal on Selected Areas in Communica-
tions, vol. 32, no. 6, pp. 1164–1179, 2014.

[14] M. Rizwan and S. A. Abbas, “Median path loss, fading and coverage
comparison at 3.5GHz and 700Mhz for mobile WiMax,” in IEEE
International Multitopic Conference, 2008, pp. 266–271.

[15] A. Vishwanath et al., “Energy consumption comparison of interactive
cloud-based and local applications,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 4, pp. 616–626, 2015.

[16] Y.-C. Chiu et al., “Are we one hop away from a better internet?” in
Procs. of the 2015 Internet Measurement Conference, pp. 523–529.

[17] J. Liu, J. Liu, W. Du, and D. Li, “Performance analysis and characteri-
zation of training deep learning models on mobile device,” in 25th IEEE
Intern’l Conf. on Parallel and Distributed Systems, 2019, pp. 506–515.

[18] Amazon AWS Wavelength - EC2 instance types. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/

[19] Y. Kochura et al., “Batch size influence on performance of graphic
and tensor processing units during training and inference phases,”
in International Conference on Computer Science, Engineering and
Education Applications. Springer, 2019, pp. 658–668.

[20] A. Nika et al., “Energy and performance of smartphone radio bundling
in outdoor environments,” in Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 809–819.

[21] D. Li et al., “Evaluating the energy efficiency of deep convolutional
neural networks on CPUs and GPUs,” in IEEE Intern’l Conference on
Big Data and Cloud Computing, 2016, pp. 477–484.

[22] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017, pp. 1–12.

[23] T. Jakobs, M. Hofmann, and G. Rünger, “Reducing the power consump-
tion of matrix multiplications by vectorization,” in IEEE Int’l Conference
on Computational Science and Engineering (CSE), 2016, pp. 213–220.

[24] A. Tarvainen and H. Valpola, “Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised deep
learning results,” in Advances in neural information processing systems,
2017, pp. 1195–1204.

View publication statsView publication stats

https://www.researchgate.net/publication/353039764

