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ABSTRACT 
Vocabulary proficiency testing plays a vital role in identifying the 
learner's level of vocabulary knowledge, which can be used to 
provide personalized materials and feedback in language-learning 
applications. Item Response Theory (IRT) is a classical method 
that can provide interpretable parameters, such as the learner's 
ability, question discrimination, and question difficulty in many 
language-proficiency testing environments. Many vocabulary 
proficiency tests include more than one type of question format. 
However, traditional IRT lacks the capability to tap into the in-
formation present within question texts and question formats, 
which can be ideally used to gauge a learner's underlying skills in 
more detail. In addressing this, we propose a model to reinforce 
traditional IRT with deep learning to exploit the information hid-
den within question content and format. Experimental results on 
a sample real-world dataset demonstrate the effectiveness of the 
proposed model, highlighting that question-related information 
can be utilized to predict a learner's performance more accurately. 

Keywords 
Item response theory, Deep learning, Item difficulty, English vo-
cabulary. 

1. INTRODUCTION 
Vocabulary proficiency assessment plays an important part in lan-
guage education and has lately gained increased popularity in 
online language learning. It is crucial to identify the learners’ 
English vocabulary proficiency to higher accuracy in providing 
personalized materials and adaptive feedback in language-learn-
ing applications [1]. With the estimated learners' vocabulary 
knowledge state, systems can better gauge the attainment levels 
of learners and tailor the learning materials accordingly. Moreo-
ver, learners may also develop better learning plans to deal with 
their specific weaknesses and maximize their learning efficacy 
depending on the results. Most importantly, it can help place a 
second-language learner quickly in the ideal content space when 
returning to the application after a long break during which he or 
she may have forgotten a lot or, conversely, have progressed in 
the target language outside the realm of the application [2].  

Computerized adaptive testing (CAT) is a mode of testing that has 
gained popularity because of its unparalleled ability to measure 
latent abilities in large-scale testing environments [3]. In CAT, 

estimating the difficulty level, also called item calibration, is es-
sential for maintaining, updating, and developing new items for 
an item bank. Item Response Theory (IRT) [4] is a classical 
method widely used to determine item difficulties. IRT can pre-
dict student performance using the logistic-like item response 
function and provide interpretable parameters. For this reason, 
different IRT models have been widely applied in CAT applica-
tions [5]. 

Although IRT has made a great deal of success and is widely ap-
plied, some problems still limit its usefulness. The critical 
drawback of traditional IRT is that it can only exploit the response 
results and ignore the actual contents and formats of the items [6]. 
Thus, IRT cannot capture the rich information hidden within 
question texts and underlying formats. This problem leaves no 
possibility of generalizing item parameters to unseen items and 
understanding the format’s impact on the difficulty of items [2]. 
In addition, IRT only provides an overall latent trait for learners, 
while each question usually assesses different knowledge con-
cepts or skills [7]. Thus, enhancing IRT to provide detailed results 
on each knowledge concept or skill in a reliable way is still an 
open issue. 

Many researchers are beginning to focus on new approaches for 
estimating the difficulty of questions or items to improve tradi-
tional IRT. Studies have already shown that the representational 
information of questions is significantly related to the difficulty 
level. For English vocabulary questions, word length and corpus 
frequency prove to be essential factors for predicting vocabulary 
difficulty [8], while the average word and sentence lengths have 
been used as key features to predict English text difficulty [9]. 
Along these lines, many works have begun to estimate difficulty 
parameters based on items' textual content using deep neural net-
works [2].  

In vocabulary proficiency assessment, some studies have indi-
cated that even for the same vocabulary item, different question 
formats impact the difficulty level and explanatory power in pre-
dicting receptive skills [10]. The ability of learners to fully 
comprehend a specific word can be divided into different compo-
nents. The best-known and most widely used framework is 
Nation's division of vocabulary knowledge into nine components 
of 'word knowledge' (e.g., spelling, word parts, meaning, gram-
matical functions, and collocation) [11]. The framework has been 
instrumental in describing the totality of what learners need to 
know. However, no single question format can adequately de-
scribe vocabulary comprehension. Usually, different question 
formats are used to assess different skills, such as learners' read-
ing, writing, listening, and speaking skills collectively. However, 
IRT only provides an overall latent trait on the question level and 
cannot provide more detailed results on the underlying skills.  
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2. RELATED WORK 
IRT is one of the most time-tested theories for estimating latent 
abilities and has been used in educational testing environments 
since the 1950s [12]. There are several IRT models widely in use, 
such as the 1-parameter, 2-parameter, and 3-parameter models 
[13,14,15]. Extended from IRT, Multidimensional Item Response 
Theory (MIRT) [17] tries to meet multidimensional data demands 
by including an individual's multidimensional latent abilities	for 
each skill. Although MIRT goes a step further to include the 
knowledge-concept proficiencies of individuals, it is sensitive to 
the knowledge concepts on which they have high latent abilities 
[17]. In addition, since the process of estimating the parameters 
for MIRT is the same as IRT, these two models share the same 
shortcomings. 

With the recent surge in interest in deep learning, many works 
have begun to incorporate deep learning models into IRT to ad-
dress the shortcomings of traditional IRT models. For example, 
the synthesis of Bayesian knowledge tracing (BKT) and IRT [18, 
19] empowers the individualization of questions and learners. Re-
cently, Deep-IRT [20] was proposed by combining a dynamic 
key-value memory network (DKVMN) [21] with an IRT module 
to improve the explanatory capabilities of the parameters. Fur-
thermore, Emiko et al. [22] improved Deep-IRT with two 
independent neural networks for students and items.  

Other IRT-based works have focused on improving the estimation 
accuracy of parameters by exploiting the semantic representations 
from question texts. Cheng and Liu [23] proposed a general Deep 
Item Response Theory (DIRT) framework that uses deep learning 
to estimate item discrimination and difficulty parameters by ex-
tracting information from item texts. Benedetto et al. [24] adopted 
transfer learning on Transformer language models [25] and per-
formed the estimation of the difficulty parameter. Hsu et al. [26] 
proposed a method for automated estimation of multiple-choice 
items’ difficulty for social studies tests. Their findings suggest 
that the semantic similarity between a stem and the options 
strongly impacts item difficulty. Susanti et al. [27] proposed a 
system for automatically generating questions for vocabulary 
tests. Factors such as the reading passage difficulty, semantic sim-
ilarity between the correct answer and distractors, and distractor 
word difficulty level are all considered for controlling generated 
items' difficulty in this system.  

Studies looking into language tests also tried to predict the item 
difficulty and automatically generate items of various difficulty 
levels. Many of these studies have investigated the relationship 
between test item difficulty and linguistic features such as pas-
sage length, word length, and word frequency. Hoshino and 
Nakagawa [28] used a support vector machine to estimate the dif-
ficulty of cloze items for a CAT. Beinborn et al. [29] used Natural 
Language Processing (NLP) to predict c-test difficulty at the 
word-gap level, using a combination of factors such as phonetic 
difficulty and text complexity. Loukina et al. [30] conducted a 
study to investigate which textual properties of a question affect 
the difficulty of listening items in an English language test. Settles 
et al. [31] used Machine Learning and NLP to induce proficiency 
scales and then used linguistic models to estimate item difficulty 
directly for CAT. However, these studies did not consider a vari-
ety of item formats that would typically appear in a test, and failed 
to consider linguistic skills in vocabulary learning. Recently, 
Brian and Andrew [48] have incorporated rich linguistic features 
(lexical, morphological, and syntactic features) as skills in skill-
based models for learners’ vocabulary learning performance pre-
diction. It highlighted that the use of linguistic skills is quite 

helpful in this regard. However, their work also failed to consider 
question formats’ influence on the difficulty level and different 
receptive skills. In addressing this, here we incorporate item-for-
mat information and associated skill requirements to improve the 
estimations of IRT parameters, and in effect, the prediction accu-
racy of a learners' performance. 

3. PROPOSED METHOD 

 
Figure 1. Overview of the proposed framework. 

3.1 Framework 
Inspired by previous studies [6, 23], we propose a framework to 
enhance traditional IRT with deep learning, which aims to obtain 
the learner parameter (ability) and item parameters (discrimina-
tion and difficulty) to predict learner performance in vocabulary 
questions. In achieving this, as shown in Figure 1, our framework 
comes with three parts: the leaner ability network, item network, 
and prediction module. 

3.1.1 Item Network 
The items’ characteristics, i.e., the difficulty and discrimination 
parameters, are calculated in the item network. 

For a vocabulary question presented in a specific format, two el-
ements influence the item’s characteristics: the target vocabulary 
and the required skills to respond correctly. For the target vocab-
ulary, the semantic features are embedded into a d-dimensional 
vector 𝑣  using pre-trained Word2Vec [32] vector 𝑣!  and 
Speech2Vec [33] vector 𝑣" , where	 𝑣 = 𝑣!⊕𝑣" 	and	 d	 =
50. And the required skills for this question are represented by 
one-hot vectors 𝑆 = (𝑆#, 𝑆$, … , 𝑆%), 𝑆& 	 ∈ {0,1}% , where 𝑛 is the 
number of required skills. Then, we utilize a d-dimensional dense 
layer to acquire the dense embedding for each skill 𝑆& for training, 
the dense embedding of 𝑆& as 𝑠& , and  𝑠& 	 ∈ 	ℝ' : 

𝑠& =	𝑆&𝑊" ,                                      (1) 

where 𝑊" 	 ∈ 	ℝ(×' are the parameters of the dense layer. Then 
we use the target vocabulary embedding and the skill embedding 
to obtain the item parameters (discrimination and difficulty).  

Discrimination. Question discrimination 𝑎 can be used to ana-
lyze learner performance distribution on the question. Inspired by 
previous works [17, 23], we learn 𝑎 from required skills that cor-
respond to the question. A deep neural network (DNN) is trained 
to estimate 𝑎. Specifically, we sum the dense embedding of re-
quired skills to get a d-dimensional vector 𝐴 ∈ ℝ' . Then, we 
input 𝐴 into the DNN to estimate 𝑎. Finally, we normalize 𝑎 so 
that it is in the range [−4, 4] [16]. The definition of 𝑎 is as follows:  

𝑎	 = 	8	 ×	(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑁𝑁*(𝐴)) − 	0.5), 𝐴	 = 	𝑠 ⊕ 𝑠 .     (2) 



Difficulty. Question difficulty 𝑏 determines how hard the ques-
tion is. Adopting from previous works [8, 9], we predict 𝑏 based 
on the semantic features of the target word.  In addition, the depth 
and width of the required skills examined by the question also 
significantly impact the difficulty. The deeper and broader the re-
quired skills being examined, the more difficult the question is 
[23]. Therefore, we adopt a DNN to model 𝑏 based on the target 
vocabulary embedding 𝑣 and the required skills 𝑠 depending on 
the corresponding question format. Like the discrimination, we 
normalize 𝑏 so that it is in the range [−4, 4] [16]. The definition 
of 𝑏 is as follows:  

𝑏	 = 	8	 ×	(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐷𝑁𝑁+(𝐵)) 	− 	0.5),   𝐵	 = 	𝑠 ⊙ 𝑣 .    (3) 

3.1.2 Learner Ability Network 
In the learner network, the proposed method calculates a learner’s 
ability. For a learner, we initialize a proficiency vector 𝛼	 =
(𝛼#, 𝛼$, … , 𝛼%) randomly, where 𝛼& 	 ∈ 	 [0, 1] represents the de-
gree of proficiency of a learner on a specific skill 𝑖.  

Ability. Learners’ ability 𝜃 has strong interpretability for their 
performance on questions. It is closely related to the proficiency 
of various skills tested in the questions [23]. Therefore, we mul-
tiply the corresponding proficiency 𝛼  with the skill dense 
embedding of the questions 𝑠 and get a d-dimensional vector 𝛩 ∈
	ℝ'. Then we input 𝛩 into a DNN to learn the ability parameter, 
which is defined as follows:  

𝜃	 = 	𝐷𝑁𝑁𝜃	(𝛩), 𝛩	 = 	𝛼 ⊙ 𝑠 .                  (4)  

3.1.3 Prediction of Learner Response  
Like previous works [20, 22, 23], the proposed method predicts a 
learner’s response performance to a question as a probability. We 
input the trained parameters, namely, 𝜃, 𝑎, and 𝑏 into the item re-
sponse function (Eq.5) to predict	𝑃(𝜃), the learner’s probability 
of answering the specific question correctly. 

𝑃(𝜃) = 		 #
#,-!"($	!	&)

.                                 (5) 

3.1.4 Model Learning 
The parameters to be updated in the proposed framework mainly 
exist in two parts: learner ability network and item network. The 
updating parameters include the proficiency vector 𝛼 and skill 
dense embedding weights	𝑊". In addition, the weights of the three 
DNNs {𝑊.//"	,𝑊.//&	,𝑊.//$	} are updated as well. 

The loss function of the proposed method is the negative log-like-
lihood function. The learner’s response is recorded as 1 when 
he/she answers the item correctly and 0 otherwise. For learner 𝑖 
and question 𝑗, let 𝑟&1 be the actual score for learner 𝑖 on question 
𝑗, and 𝑟̃&1 be the predicted score. Thus, the loss for learner 𝑖 on 
question 𝑗 is defined as: 

ℒ	 = 	 𝑟&1𝑙𝑜𝑔𝑟̃&1 	+	(1	 −	𝑟&1 	)𝑙𝑜𝑔(1	 −	 𝑟̃&1 	).            (6) 

Using Adam optimization [34], all parameters are learned simul-
taneously by directly minimizing the objective function. 

4. EVALUATION  
4.1 Dataset  
Our real-world dataset came from one of Japan's most popular 
English-language learning applications. We tentatively used a 
sample dataset from 129 application users who newly registered 
in 2021, and most of them are Japanese students learning English. 
This dataset included 1,900 English words labeled by the 

Common European Framework of Reference for Languages 
(CEFR), mainly in the B1/B2 range. Each word in the dataset had 
six different question types collectively assessing reading, writing, 
listening, and speaking skills. The dataset included the initial re-
sponses (when encountering for the first time) of the users to such 
questions.   

4.1.1 Item Formats 
The knowledge pertaining to English words is not all-or-none as 
with the case with any other language. Rather, there are different 
aspects, such as knowledge of the reading, writing, listening, 
speaking, grammatical behavior, collocation behavior, word fre-
quency, stylistic register constraints, conceptual meaning, the 
associations a word has with other related words, and so on [11, 
35]. Hence, as summarized in Table 1, there are six different ques-
tion formats to collectively assess reading, writing, listening, and 
speaking skills of vocabulary learning in our dataset. For each 
format, we indicate the linguistic skill(s) required to tackle the 
question (L = listening, R = reading, S = speaking, W = writing) 
and some of the evidence from the literature supporting this as-
signment. Below are the descriptions of the six question formats. 
Multiple-choice definition: choose the Japanese description of the 
English word. Multiple-choice recall: choose the corresponding 
English word given the Japanese description. Spelling: type the 
spelling of the English word given the Japanese description. 
Cloze test with spelling: type in the blank with the appropriate 
English word. Multiple-choice listening: choose the correspond-
ing English word given the pronunciation. Multiple-choice cloze 
test: choose the appropriate English word to fill the blank. 

Table 1. Summary of question formats and required skill(s). 

Label Question Format Skills Refer-
ences 

Format 1 Multiple-choice defini-
tion R [40,41,44] 

Format 2 Multiple-choice recall R  [40,41] 
Format 3  Spelling R S W [39] 
Format 4  Cloze test with spelling R S W [39,42] 
Format 5 Multiple-choice listening L R [38,43] 
Format 6 Multiple-choice cloze test R W [31,39,42] 

 
4.2 Experimental Settings  
We conducted extensive experiments to evaluate the accuracy of 
our model in predicting the performance of learners and com-
pared it with several existing models. To set up the experiments, 
we partitioned the dataset, where the question-user interactions 
were divided into the training and testing sets at different ratios: 
60%, 70%, 80%, and 90%.  

We name our method Format-Aware IRT(FIRT). FIRT-S is a var-
iant of FIRT, which only uses speech embedding based on the 
Speech2Vec, and FIRT-W is a variant that only uses word em-
bedding based on the Word2Vec. We compared our method's 
performance with IRT, MIRT, and Probabilistic matrix factoriza-
tion (PMF) [36].  

Following previous works [23, 37], we chose four widely used 
metrics for the evaluation: Prediction Accuracy (ACC), Area Un-
der Curve (AUC), Mean Absolute Error (MAE), and Root Mean 
Square Error (RMSE). The smaller the values of RMSE and MAE, 
and the larger the values of AUC and ACC, the better the results. 



 
Figure 2. Comparison of learner performance prediction among different methods. 

 
Figure 3. Comparison among different question formats.

4.3 Results 
4.3.1 Performance Prediction 
The overall results on all four metrics are shown in Figure 2 for 
six different models predicting learners’ performance. We ob-
serve that our proposed models (FIRT, FIRT-S, and FIRT-W) 
perform better than other traditional baseline models, such as IRT, 
MIRT, and PMF. It is clear that our deep learning-based models 
can effectively make use of the vocabulary content and format 
information to improve the performance. 

4.3.2 Impact of Different Formats 
Many studies predicting vocabulary knowledge use only a single 
question format. However, results based on a single format can 
be misleading because it might be gauging a limited skill space 
pertaining to vocabulary knowledge. Understanding the differ-
ences among various formats may provide insight for developing 
tests and tools that can measure proficiency on a much-balanced 
scale [47]. Along this line, we conducted experiments to evaluate 
our model's ability to predict performance on different question 
formats, and to illustrate the variability of performance depending 
on the format. 

The results in Figure 3 show that our models perform better in all 
question formats. This indicates that the vocabulary content and 
format information, together with the underlying skill proficiency, 
help predict learners’ performance better, which are typically ig-
nored in the traditional methods. Also, we observe that the 
prediction performance is strongly affected by the question for-
mat. As we mentioned earlier, different question formats assess 
different linguistic skills like reading, writing, listening, and 
speaking. The results show that all models have considerably sat-
isfactory performance for multiple-choice items, which assess 
only one or two underlying skills and are easy to understand and 

answer [45, 46]. However, the prediction performance for Format 
3 (Spelling) and Format 4 (Cloze test with spelling) are deficient 
compared with others, which intuitively suggests that responses 
to question formats that necessitate multiple underlying skills are 
more difficult to predict accurately. In addition, we noticed that 
FIRT-S (using speech embedding) performs slightly better than 
other models for Format 5 (Multiple-choice listening). This im-
plies that using other features besides semantic features may 
improve the performance. Moreover, the findings implies that 
testers should consider the effect of different formats when as-
sessing vocabulary knowledge and strive to use a combination of 
formats in vocabulary assessment to gauge a broader skill space. 

5. CONCLUSION  
In this work, we proposed a framework that reinforces IRT with 
deep learning routines that take full advantage of the questions' 
representational information, such as the question contents, for-
mats, and the required linguistic skill(s) to tackle the question. 
Experiments were conducted to confirm the effectiveness of the 
proposed approach, and the results showed that our method per-
forms better than other methods. We highlight that vocabulary 
content and format information together with the required skill set 
is useful in accurately predicting learners’ vocabulary proficiency.  

However, there are some limitations in this work. The dataset is 
relatively small, and the learner base is limited to learners of the 
same language background. For future work, we plan to collect 
more data on learners of various backgrounds, which may be use-
ful when generalizing the method to a broader audience. Also, it 
is likely that the six item formats explored in this work over-index 
on language reception skills rather than production skills (i.e., 
writing and speaking). In going forward, we need to test more 
writing and speaking questions, and include additional linguistic 
skills to expand the capabilities of our model. 
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