A deep reinforcement learning approach to automatic
formative feedback

Aubrey Condor
University of California Berkeley

aubrey condor@berkeley.edu

ABSTRACT

Receiving formative feedback about open-ended responses
can facilitate the progression of learning. However, educa-
tors cannot often provide immediate feedback and thus for
students, learning may be slowed. In this paper, we will ex-
plore how an automatic grading model can be coupled with
deep Reinforcement Learning (RL) to create a system of
automatic formative feedback on students’ open-ended re-
sponses. We use batch (offline) learning with a double Deep
Q Network (DQN) to simulate a learning environment, such
as an open-source, online tutoring system, where students
are prompted to answer open-ended questions. An auto-
grader is used to provide a rating of the student’s response,
and until the response is scored at the highest category, an
RL agent iteratively provides suggestions to the student to
revise the previous version of their answer. The automated
suggestion can include either a key idea to consider adding
to the response, or a recommendation to delete a specific
part of the response. Our experiments are based on a simu-
lated environment, within which we anticipate a how a real
student might revise their answer based on the agent’s cho-
sen hint. Preliminary results show that in such environment,
the agent is able to learn the best suggestions to provide a
student in order to improve the student’s response in the
least number of revisions.

Keywords
Formative Feedback, Deep Reinforcement Learning, Auto-
matic Short Answer Grading

1. INTRODUCTION

It has been shown that the use of open-ended (OE) items is
beneficial for student learning by self-explanation [2], or in-
formation recall [1]. Additionally, receiving formative feed-
back — information communicated to the learner intended
to modify his or her thinking/behavior to improve learning
- about OE responses may also contribute to the progression
of learning for students [16]. However, assessing OE items

A. Condor and Z. Pardos. A deep reinforcement learning approach to
automatic formative feedback. In A. Mitrovic and N. Bosch, editors,
Proceedings of the 15th International Conference on Educational
Data Mining, pages 662—-666, Durham, United Kingdom, July 2022.
International Educational Data Mining Society.

© 2022 Copyright is held by the author(s). This work is distributed
under the Creative Commons Attribution NonCommercial NoDeriva-
tives 4.0 International (CC BY-NC-ND 4.0) license.
https://doi.org/10.5281/zenodo.6853061

Zachary Pardos
University of California Berkeley

pardos@berkeley.edu

and subsequently providing formative feedback is time con-
suming for teachers [6] and consequently, feedback to stu-
dents can be delayed.

We suggest the use of educational technology to help miti-
gate this issue. Technologies like online learning platforms
or intelligent tutoring systems can enable students to take
a proactive role in assessing their own abilities. In addi-
tion, they can help promote equitable learning for students
who do not have the resources to receive quick and indi-
vidualized feedback from a human tutor, parent, or private
educator. Such platforms have the capability to provide in-
stant feedback, allowing for students, of all types, to take
control of their own learning through real-time formative
self-assessment [11]. However, items that elicit instant feed-
back necessitate a structure for automatic grading, and the
creation of useful feedback. While implementing automatic
grading and producing related feedback for multiple choice
items is seamless, as a student’s response is limited to a
small number of choices, it is not so simple for OE questions
that elicit an infinite number of potential student responses.

In this paper, we explore how an Automatic Short Answer
Grading (ASAG) model can be coupled with deep Reinforce-
ment Learning (RL) to create a system that provides auto-
matic formative feedback for students’ OE responses. We
will use batch (offline) learning to simulate an environment,
such as an open source tutoring system, where students are
prompted to answer OE questions. Once the ASAG model
provides a rating of the response, the RL agent will give a
hint to the user by suggesting either a key phrase that the
user might consider adding to the response, or a portion of
the response that the user might want to delete when revis-
ing their answer. The student’s revision will be simulated
by either the key phrase being added to the previous re-
sponse at the agent’s chosen index within the response, or
the portion to consider removing deleted completely. The
new response will be once again sent to the auto grader to
be classified. This process will continue until the automated
rating has reached some defined threshold (as a function of
the reward), or a maximum number of hints has been pro-
vided.

The key idea of our work is to train an RL agent to choose
the best sequence of revisions for an OE response, in or-
der to arrive at an exemplary response in the least number
of revisions. Although the space of student responses to a
given question is infinite, we hypothesize that the agent can


https://doi.org/10.5281/zenodo.6853061

learn which of a finite set of revisions will be most useful to
improve a student’s answer.

The main contribution of this work is to explore a real-world
application of deep RL. There has been little work so far
studying the use of deep RL in educational contexts, and in
addition, coupling deep RL with language models (the auto
grader) has not been extensively investigated. In this paper,
we will briefly describe the ASAG, but will mainly focus on
the implementation of the deep RL algorithm.

2. RELATED WORK

Several works have focused on the use of RL for applica-
tions in education. Reddy et. al (2017) created a model-
free review scheduling algorithm to learn a policy that op-
erates on raw observations of a student’s study history, as
opposed to explicitly modeling the student as employed by
other scheduling algorithms [13]. Iglesias et. al (2009) used
RL within a pedagogical module of an education system
such that the system would automatically learn which ped-
agogical policy was best for a particular student [7]. Dorga
et. al (2013) presented an automatic probabilistic approach
for modeling student’s learning styles based on reinforce-
ment learning [5]. They show that because of the dynamic
aspects of detecting learning styles, the RL agent is able
to constantly adjust to a student’s performance. Park et.
al (2019) introduced an RL “social robot” for personalized
and adaptive education [12]. They illustrate how the agent
can utilize children’s verbal and nonverbal affective cues to
exert influence over the student’s engagement, in order to
maximize long-term learning gains. Rowe et. al (2015)
employ modular RL, a multi-goal extension of classic RL,
to dynamically tailor narrative-centered learning to partic-
ular students’ needs [14]. They show that including a data-
driven, planning approach can enhance student learning. Fi-
nally, Shawky & Badawi (2018) use RL to build an intelli-
gent environment that provides a method to account for the
continuously-changing states of student learners [15].

3. BACKGROUND

In this section we will provide a brief overview of the meth-
ods used in our work necessary to understand the results, in-
cluding the ASAG model, offline (batch) learning, Q-learning
and Epsilon-greedy sampling.

3.1 Deep Reinforcement Learning
Reinforcement learning (RL) employs learning to control a
dynamical system by providing feedback to an agent, via
a reward system, in order to choose an action to take in a
given state. The action consists of what the agent can do in
the state, where the state represents the current condition
of the agent. When the agent takes an action, it receives
a reward (either positive or negative) as feedback from the
environment. Thus, the agent learns a policy to maximize its
total expected sum of rewards. The system can be defined as
a fully or partially-observed Markov decision process (MDP)
[17].

Deep RL utilizes high-capacity function approximators - deep
neural networks - as the policy, in conjunction with RL. The
incorporation of deep networks has improved performance
for applications of RL in many domains [8]. With deep RL,

the agent can make decisions from unstructured data with-
out any manual engineering of the state space and the algo-
rithms can handle very large amounts of data for learning
an optimal policy.

3.2 The ASAG model

The Automatic Short Answer Grading (ASAG) model that
we use to provide an initial rating of student responses, as
well as feedback to the agent through a reward function
about the chosen action (response revision), is a BERT-base
multi-class classification model. The BERT transformer lan-
guage model, introduced in [4], is pre-trained on large amounts
of natural language text from Wikipedia and BooksCorpus,
and can be fine-tuned for downstream tasks such as classi-
fication. We use a compressed version of the model called
BERT-base, and fine-tune the model as a supervised classi-
fier using human ratings of the OE question(s) as ground-
truth ratings.

3.3 Offline (batch) learning

Traditionally, RL algorithms employ online learning by it-
eratively collecting experiences, i.e. data, while actively in-
teracting with the environment. The collected experiences
are used by the model to improve the policy [17]. For some
applications, however, using online data collection can be
resource heavy or dangerous or impractical for settings that
necessitate a large dataset [8]. In contrast, offline RL algo-
rithms utilize previously collected data. Data is stored in a
replay buffer and is not altered during training, allowing for
the incorporation of very large, or pre-existing datasets. Is-
sues posed by fully offline-learning algorithms include, most
prominently, a vulnerability to distributional shift.

3.4 Deep Q Learning

Q-learning is categorized as a model-free reinforcement learn-
ing algorithm - i.e. it does not use the transition probabil-
ity distribution or the reward function associated with the
MDP. Essentially, the model-free algorithm is based on trial-
and-error. For any finite MDP, the Q-learning algorithm will
find an optimal policy that maximizes the expected total re-
ward over all steps in the sequence, starting from the current
state [9]. The Q-function determines the value of a state-
action pair through the given reward. Deep Q-learning is
a variant of Q-learning where a nonlinear function approxi-
mator - a neural network - represents Q.

4. TRAINING THE RL AGENT

In this section, we describe the dataset used for initial results
as well as the RL formulation consisting of the state, reward,
and action set.

4.1 The Dataset

To evaluate our proposed methods, we take the most sim-
ple approach and use only one OE science question from an
open-source data set called the Automatic Student Assess-
ment Prize, Short Answer Scoring data (ASAP-SAS). The
data was used in a 2012 Kaggle competition® sponsored by
the Hewlett Foundation, and consists of almost 13,000 short
answer responses to 10 science and English questions. The
questions were scored from 0 (most incorrect) to 3 (most

Thttps://www.kaggle.com/c/asap-sas



correct), and each question includes a scoring rubric. We
chose the question that achieved the highest validation ac-
curacy, evaluated with a Cohen’s Kappa Metric, with the
automatic grading model. We did so such that the reward
signal, as it is a function of the autograder, would be strong
and consistent, rather than using a question that the au-
tograder has a difficult time scoring and may subsequently
provide inconsistent reward feedback to the agent.

The question prompt asks students to “List and describe
three processes used by cells to control the movement of sub-
stances across the cell membrane.” And the rubric states
that an answer rated at the highest level will include three
correct processes, down to the lowest level which will in-
clude zero correct processes. Examples of key statements
that can/should be included in an answer, according to the
rubric, include: “Selective permeability is used by the cell
membrane to allow certain substances to move across”, or
?Osmosis is the diffusion of water across the cell membrane”.
The list of key statements include in the rubric drove the ac-
tion space selection of phrases that the RL agent can add to
a response (to simulate suggesting that a student consider
the information in their revision).

4.2 The Algorithm

An overview of the proposed algorithm is as follows. For
each episode, we will first initialize by randomly sampling
one of the student’s short answers. The student answer text
will be vectorized and fed to the agent. Based on this state
input, the agent will choose an action to take, i.e., either
adding a key phrase or deleting a portion of the response.
This simulates the student taking the hint into account when
revising their answer. Next, we send the new student re-
sponse to our language model classifier, and receive a prob-
ability distribution of rating categories as output. Then we
will calculate our reward as a function of the difference in
class probabilities from the previous response, to the newly
revised response, such that an increased probability of the
highest rating category for the revised response would corre-
spond to a higher reward. If the response has reached a high
rating, the episode will terminate. Otherwise, the process is
repeated with the revised student response (the original re-
sponse plus the hint phrase, or minus the deleted portion) as
the new state, and the agent will choose another action un-
til the highest rating is achieved, or we reach a pre-defined
maximum number of revisions. Details of the process are
described below.

4.2.1 The State

The state is primarily represented by a student’s response.
As our RL agent will not take in words as input, we vec-
torize the student responses using a Word2Vec [10] model,
with embeddings of size 8, and a vocabulary specific to our
dataset. Word2Vec produces an embedding for each word
in the vocabulary, so in order to create one embedding for
the entire response, we concatenate the individual word em-
beddings. W2V mbeddings of size 8 are particularly small,
but we chose to sacrifice some information within the word
embeddings in order to keep our state space at a reasonable
size. Additionally, we concatenate each word embedding in-
stead of averaging them, which is a common method for
producing sentence embeddings because we want the agent

to have a capacity to interpret the response at the word
level, and not only as an aggregate response.

4.2.2 The Reward

The reward is a function of the difference in the ASAG
model’s classification probability distribution of ratings be-
tween the old response and the revised response, with a
penalty for each revision the agent makes. We include the
penalty (subtracting 1) because we want the agent to learn
how to revise the student’s response in the least number of
revision steps. Additionally, we more heavily weighted the
higher rating category probability changes because we care
more about a change in the highest rating probabilities, as
it is the ultimate goal to achieve the highest level rating.
Finally, we multiply the weighted difference in probabilities
by three, because the overall difference tended to be small,
and we needed to send a stronger signal to the agent. The
Reward formula is as such, where Apg represents the dif-
ference in probability of the 0 rating category between the
new and old response:

3-(0-Apo+1-Ap1+2-Ap2+3-Aps) —1

4.2.3 The Action Space

The action space consists of both adding key phrases to the
response or deleting a portion of the response. The agent
can choose only one revision (one addition, or one deletion)
in each step. The key phrases the agent can add must be pre-
defined by either a subject-matter-expert or created based
on a detailed scoring rubric, in order to determine what is
necessary for a student to include in their explanation to
achieve a high rating. For the question in our initial experi-
ment, "List and describe three processes used by cells to con-
trol the movement of substances across the cell membrane.”,
the list of 10 key phrases that the agent can choose from are
shown below.

['energy to move’], [across cell membrane’], [diffusion sub-
stance across’], ['active transport requires’], ['osmosis water
across’], ['passive transport requires’], ['no energy move’],
[from high concentration’], ['to low concentration’], ["'with
concentration gradient’]

The phrases are vectorized with Word2Vec the same way the
response is for the state space. The phrase can be added to
the response at any index in increments of 3 (i.e., the phrase
can be added to the very beginning of the response at index
0, or three words in at index 3, etc.). We hypothesized
that it is necessary that the agent chooses where, within
the response, the phrase will be added. Additionally, the
action space includes removing any one trigram within the
response. We limited the flexibility of the agent removing
text to trigrams to keep the action space at a reasonable
size. With a larger action space, it is reasonable to assume
that the agent will take much longer to learn.

4.2.4 The Q Network

The Q-Network consists of a fully connected neural network
with two hidden layers of size 300 and 200. The final layer
corresponds to the dimension of the action space. In addi-
tion, both hidden layers use an Rectified Linear Unit (ReLU)
activation function. As input, the network takes in the state
space (vectorized student response) and outputs an estimate



-10

-12

-14

-16

-18
0 10000 20000 30000 40000 S0DOO0 60000 70000 80000

Figure 1: Sum of rewards over 80K training episodes.

of the expected future sum of rewards of each action in the
action space. Thus, the agent chooses the action that has
the maximum @Q Network output. Our algorithm is opti-
mized using Adam stochastic optimization [3]. The size of
the replay buffer for the Q-Network is 10,000. In addition,
the Q-Network is trained with a batch size of 32, a discount
factor of 0.99, and a learning rate of 5e-4. We update the
target network every 4 episodes.

S. RESULTS

Preliminary results shown in Figure 1 imply that the agent
is indeed able to learn which revisions to make to a response
in order to achieve a higher rating from the autograding
model. Figure 1 shows the sum of rewards in an episode on
the y-axis, and the episode number along the x-axis. The
scale or number of the y-axis is not necessarily meaningful,
as our reward function is only created as a means to give
signal to the agent about the goodness of its sequence of de-
cisions. Rather, the overall pattern of the reward becoming
less negative, i.e. greater, as the training episodes increase
shows us that the agent can learn, over many episodes of
trial and error, an optimal policy to choose which actions
to take, in order to maximize its future sum of rewards. It
is worth noting that with limited computational resources,
training the agent over 80,000 episodes is not quick, so fu-
ture work will indeed include training over a greater number
of episodes, to see if the agent can achieve a somewhat con-
vergence to a higher total episodic reward than is shown in
Figure 1.

6. DISCUSSION

We emphasize that this project is a work in progress and
acknowledge that there is much more effort needed to ex-
plore the agent’s capacity to revise a students response. We
believe that it is an important and successful first step to
observe that the RL agent is indeed able to learn the task
that we proposed, as there exist many sequential tasks that
may not be appropriate for the RL formulation, or are too
complicated for an RL agent to learn. Using a reward that
is a function of a language model poses a unique challenge
as we adopt the limitations of the autograding model itself

into our reward formulation. Additionally, using concate-
nated word vectors as a state space adds an additional layer
of complexity because the variability in the state space is
infinite, as any student may use an infinite combination of
words in their response.

More importantly, we note that there are several practical
application of an RL agent revising a student’s response.
Our results are from a simulated environment that is meant
to represent a real-life student interaction, but does not do
so perfectly. When thinking forward to the real-life appli-
cation of implementing the algorithm in the context of a
real student revising their answer, many unanswered ques-
tions arise. Firstly, we assume that a student will take into
account the RL agent’s revision suggestion directly in our
simulation (the agent automatically adds the key phrase or
deletes the segment), but a real student will have the choice
to consider the suggestion or ignore it and make a different
revision. This may pose confusing signals to the agent about
whether or not the suggestion was the best one. Further, we
must investigate how exactly to provide the hints, as for-
mative feedback, such that the student actively learns from
their revision.

7. REFERENCES

[1] S. Bertsch, B. J. Pesta, R. Wiscott, and M. A.
McDaniel. The generation effect: A meta-analytic
review. Memory & cognition, 35(2):201-210, 2007.

[2] M. T. Chi, N. De Leeuw, M.-H. Chiu, and
C. LaVancher. Eliciting self-explanations improves
understanding. Cognitive science, 18(3):439-477, 1994.

[3] K. Da. A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[5] F. A. Dorga, L. V. Lima, M. A. Fernandes, and C. R.
Lopes. Comparing strategies for modeling students
learning styles through reinforcement learning in
adaptive and intelligent educational systems: An
experimental analysis. Fzpert Systems with
Applications, 40(6):2092-2101, 2013.

[6] C. L. Hancock. Implementing the assessment
standards for school mathematics: Enhancing
mathematics learning with open-ended questions. The
Mathematics Teacher, 88(6):496-499, 1995.

[7] A. Iglesias, P. Martinez, R. Aler, and F. Ferndndez.
Learning teaching strategies in an adaptive and
intelligent educational system through reinforcement
learning. Applied Intelligence, 31(1):89-106, 2009.

[8] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline
reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[9] F. S. Melo. Convergence of g-learning: A simple proof.
Institute Of Systems and Robotics, Tech. Rep, pages
1-4, 2001.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[11] D. J. Nicol and D. Macfarlane-Dick. Formative



[12]

[13]

[14]

assessment and self-regulated learning: A model and
seven principles of good feedback practice. Studies in
higher education, 31(2):199-218, 2006.

H. W. Park, I. Grover, S. Spaulding, L. Gomez, and
C. Breazeal. A model-free affective reinforcement
learning approach to personalization of an
autonomous social robot companion for early literacy
education. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 687—694, 2019.
S. Reddy, S. Levine, and A. Dragan. Accelerating
human learning with deep reinforcement learning. In
NIPS’17 Workshop: Teaching Machines, Robots, and
Humans, pages 5-9, 2017.

J. P. Rowe and J. C. Lester. Improving student
problem solving in narrative-centered learning
environments: A modular reinforcement learning
framework. In International conference on artificial
intelligence in education, pages 419-428. Springer,
2015.

D. Shawky and A. Badawi. A reinforcement
learning-based adaptive learning system. In
International Conference on Advanced Machine
Learning Technologies and Applications, pages
221-231. Springer, 2018.

V. J. Shute. Focus on formative feedback. Review of
educational research, 78(1):153-189, 2008.

R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.



