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Abstract—Serverless computing has emerged as a very popular
cloud technology, together with its companion Function-as-a-
Service (FaaS) programming model enabling invocations of
stateless functions from clients. An evolution of serverless is
now taking place, shifting it towards the edge of the network
and broadening its scope to stateful functions, as well. In this
paper we argue that stateless vs. stateful is not a dichotomy
of the application per se, but rather a time-varying property
of most (if not all) applications, as confirmed by the analysis
of real traces collected in a production environment. Based
on this observation, we propose a mathematical formulation
of a resource allocation problem that jointly encompasses both
operation modes, dubbed lambda vs. mu, which can be solved
efficiently at run-time by an edge orchestrator. We evaluate the
proposed solution via simulation experiments in realistic network
and workload conditions, which leads the way to the practical
realization of a system where applications can freely adapt their
current operation mode and optimize their performance at a
minimum cost of operation from the network’s perspective.

Index Terms—FaaS, Function-as-a-Service, distributed com-
puting, edge computing, stateful functions

I. INTRODUCTION

Edge computing is a powerful extension of cloud comput-
ing toward the network edge. It consists of geographically
distributed compute nodes located in proximity to access net-
works (far-edge nodes) or within the core network of the telco
operator (near-edge nodes) [1]. Edge nodes run microservices:
small pieces of code that are often packaged inside containers
rather than virtual machines because they are faster to boot
up and more lightweight [2]. We can identify two main ways
to operate microservices and realize an end user application:
Function as a Service (FaaS) vs. Platform as a Service (PaaS).

FaaS was initially designed for cloud data centers [3] but
is rapidly gaining momentum in edge computing, too [4].
With FaaS, a microservice (called function) can be instanti-
ated in several containers that are equivalent to one another
and, hence, can be autoscaled by the platform provider with
maximum flexibility. Such an equivalence allows consecutive
invocations from the same client to be forwarded to different
containers, and a given container to serve multiple clients.
Besides, FaaS enables a pure pay-per-use model, where billing
is based on the number of function invocations or cumulative
execution time, regardless of the rate of invocations. One
disadvantage of FaaS is that the containers cannot keep any
state associated to the application’s session [5]: every time a
function is invoked, if needed, it must read (write) the session
state from (to) a remote storage service (e.g., located in the
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cloud), which increases latency and incurs extra costs. From
now on, we refer to FaaS containers as stateless.

On the other hand, with PaaS a container is dedicated to a
user application instance so that: i) all the invocations from
the client are forwarded to that container; and ii) that container
handles invocations from that client only. Since the container
is dedicated to the client, it keeps the session state locally,
hence we call it stateful. In contrast to the previous approach,
this one reduces latency, as session state does not need to be
accessed from a remote storage. As a result, this approach is
widely used by edge platforms, and also FaaS platforms for
edge computing are starting to consider stateful containers as
a possible alternative to stateless [6]. Yet, this approach falls
short of flexibility and cost-efficiency: in general, a dedicated
container is expensive for the user (especially at the edge)
as resources are paid for the whole time during which the
application is active, which is inefficient with a sporadic use.

In the literature and market technology, the stateless and
stateful operation modes are considered as alternatives, with
the choice being made by the developer at design time.
However, it can happen that the very same application has
a heterogeneous usage pattern over time, which may result
in degraded performance (during peaks under a stateless
approach) or wasted resources (during sporadic use under
a stateful approach). Therefore, in this work we get a new
perspective, and propose instead to let an application adapt
dynamically to the best operation mode, i.e., to switch from
being stateless to stateful, and vice versa, depending on the
current conditions. The contribution of this work is threefold:

– we show with a quantitative analysis of public traces ob-
tained in the wild that alternating between operation modes
minimizes the cost of operation, in terms of the container
renting fees (stateful), function invocations and storage
services (stateless), and migration overhead (Sec. III);

– we formulate a problem that jointly optimizes the placement
of stateful containers and the distribution of function invo-
cations to stateless containers at the edge, and propose an
efficient solution and practical implementation (Sec. IV);

– we evaluate the performance of the proposed system through
simulations under realistic network and workload condi-
tions, to identify the key trade-offs incurred by the con-
figuration of the system parameters (Sec. V).

The paper also includes Sec. II to position our work in the
state-of-the-art and Sec. VI, which concludes the paper and
outlines the future work.



II. RELATED WORK

Many big players offer FaaS solutions to their customers,
such as Amazon with AWS Lambda, Microsoft with Azure
Functions, and IBM with Cloud Functions, just to name a
few. Although these systems were initially designed for cloud
environments, there are now extensions toward the network
edge: Amazon Lambda@Edge, Microsoft Azure Edge Zones,
and IBM Edge Functions. All the above platforms adhere to
the typical FaaS approach where functions are served as state-
less containers. However, we highlight that stateful containers
are gradually coming into the picture as a complementary
approach. Specifically, Microsoft introduces the concept of
entity functions [7], which are uniquely identified, dedicated
resources that keep the session state locally as an in-memory
object. Long-lived functions [8] from Amazon and Durable
objects [9] from Cloudflare are other examples of dedicated
resources from commercial FaaS platforms.

Besides platforms from companies, some open-source FaaS
solutions are also available, e.g., Apache OpenWhisk, Open-
FaaS, Kubeless, and Knative. All of them leverage Kubernetes
as orchestration system underneath. In Kubernetes, function
instances are called Pods, which can encapsulate one or more
containers. Kubernetes defines both stateless and stateful Pods,
the latter being implemented by matching persistent volumes
to uniquely identified Pods [10].

In the scientific domain, there are some works in the
direction of realizing a coexistence of stateless and stateful
containers in FaaS systems, especially from the point of view
of the programming model to be used and related Application
Programming Interfaces (APIs). For instance, Baresi et al. [11]
describe the proof-of-concept implementation of a FaaS plat-
form for edge computing, based on Apache OpenWhisk,
also mentioning stateful containers for uniquely identified
resources. However, none of the works so far consider the pos-
sibility for a function to dynamically adapt its operation mode
over time, which we have hinted in our previous work [12] and
investigate in detail here.

On the other hand, a well-studied topic in edge computing
is the optimal placement of dedicated microservices in the
infrastructure. It is known that algorithms that are widely
used in cloud data centers cannot be exploited as-is at the
edge, due to the distinctive characteristics of this environment,
e.g., wide-area deployment and resource limitations of edge
nodes. As comprehensively described in related surveys [13],
[14], most of the scientific works formalize the problem as a
linear programming one where the objective function typically
aims at optimizing latency, energy, or resource utilization.
As optimization constraints, authors usually consider network
limitations (e.g., bandwidth capacity or network latency) and
compute ones (e.g., available processing power and memory).

Given the relatively newer topic, fewer works instead aim
at optimizing the distribution of function invocations to state-
less containers. The work in [15] proposes a decentralized
framework where entry points to the system take autonomous
decisions on where to forward function invocations, based on

weights that are dynamically and locally updated to minimize
the communication latency. In [16], function invocations are
dispatched based on the queue length and service capacity of
each container, with the aim to minimize latency. To the best
of our knowledge, there are no works formulating an opti-
mization problem that jointly aims at optimizing placement of
stateful containers and dispatching of invocations to stateless
containers, which we address in Sec. IV.

III. MOTIVATION

In this section, we report the findings of our analysis of
real FaaS traces collected in a period of two weeks in 2020
on Microsoft Azure Functions and made available in a public
dataset1, thoroughly analyzed in [17]. The dataset contains
more than 44 millions of anonymized function invocations
from 856 applications. For each invocation a set of data are
included, from which we use the following: the timestamp,
unique identifiers of the user ID and application name, and
a flag specifying whether the application’s state has been
accessed in read or write mode. The applications sampled in
the dataset are very heterogeneous, e.g., the number of daily
invocations ranges from very few to millions. Read accesses
are 77% of the total.

Our objective is to show that the majority of those appli-
cations can benefit from a policy that adapts their stateful
vs. stateless nature over time, in terms of some performance
metric, which in the following we assume to be the cost of
operation under some reasonable simplifying assumptions. In
particular, we assume that the cost of a stateful application
is given only by the duration of the time window when it is
assigned a dedicated container:

cµ = ΩµTµ, (1)

where Ωµ is the cost per time unit and Tµ is the time units the
application spent as stateful. On the other hand, for a stateless
application we assume that its cost is given by the number of
invocations and the type of state access, as follows:

cλ = ξλ
(
NR
λ +NW

λ

)
+ σRλN

R
λ + σWλ N

W
λ , (2)

where ξλ is the cost per function invocation, σRλ (σWλ ) is the
cost per read (write) access, and NR

λ (NW
λ ) is the number of

function invocations with read (write) accesses.
Computing the cost of an application in the dataset with

λ-only and µ-only policies is straightforward. For the hybrid
case, called λ+µ, where an application migrates from stateful
to stateless, we have defined two migration costs (τlambda:
from stateful to stateless; τmu: from stateless to stateful) and
implemented the following policy:
– if an application is currently run as stateful, it migrates to

stateless if keeping the container occupied until the next
function invocation, which costs Ωµ (tnext − tnow), is more
expensive than migrating to stateless right now;

1https://github.com/Azure/AzurePublicDataset/blob/master/
AzureFunctionsBlobDataset2020.md

https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunctionsBlobDataset2020.md
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Fig. 1. Comparison of the cost of execution of the applications in the Microsoft Azure Database [17] with λ-only vs. µ-only vs. λ+µ policies, with ξλ = 0.6,
σRλ = 0.4, σWλ = 5, τλ = τµ = 12, and Ωµ = 6.3 · 10−6: absolute (left) and relative (right). All costs in 10−6 $.

– otherwise, if an application is currently run stateless, we
perform a simulation in a look-ahead window of future call
invocations in the cases migration-to-µ vs. keep-as-λ; we
then migrate it to stateful if a break-even point is reached.
Note that both policies are heuristic but require prophetic

powers to predict the precise future pattern of function invo-
cations, which is almost always not available to the platform
or the application logic programmer as it depends on external
circumstances. However, this assumption is consistent with our
goal of showing that a suitable policy exists, not how it could
be realized effectively in real settings.

The values used for the cost model are reported in the
caption and they are inspired from publicly available prices
of Amazon Lambda@Edge2, where (e.g.) the invocation of
1 million functions costs $0.6, and the cost of a GET (PUT)
operation to read (write) the state is about $0.4 ($5) for 1
million operations. In the absence of a more realistic model,
the migration cost in either direction has been arbitrarily
estimated as twice the cost of function invocation + read +
write. The figures reported are purely indicative, e.g., they do
not include storage costs and they do not take into account
volume discounts, and subject to change depending on the
region, provider, as well as to adapt to the evolution of
technology and business models. However, we believe these
simplified assumptions are sufficient for our purposes. We
show in Fig. 1 the costs obtained with the three policies.
As can be seen from the left part of the figure, showing the
absolute costs, the µ-only and λ-only curves intersect: some
applications are better served always as stateful while others
as stateless, the latter being the majority in the dataset used
with the cost model values adopted.
Key observation. However, by using a λ + µ hybrid policy,
the cost can be minimized for all functions, which confirms
our intuition that all applications should be able to alternate
between stateful and stateless in their lifetime.

The relative advantage, in terms of cost, of λ+µ compared
to λ-only and µ-only, respectively, is shown in the right hand

2https://aws.amazon.com/lambda/pricing/?nc1=h ls

side of Fig. 1: most of the applications have a cost ratio
> 1, which becomes substantial for a significant fraction of
them, especially in the µ-only case. We note that for very few
applications the cost ratio is < 1: this happens because of edge
effects of the analysis and only for applications that absolutely
always are required to remain as either stateful or stateless to
minimize their cost. We have decided not to prune the dataset
from such applications, for better transparency of the analysis,
but such applications have negligible statistical significance,
and they are anyway of little interest for our work.

The tool source code and scripts for this cost analysis on
the Azure dataset are publicly available on GitHub3.

IV. SYSTEM MODEL

Our system is modeled as follows and illustrated in Fig. 2.
We have a set of clients that use services provided by edge
or cloud nodes, which are reached through brokers located at
the network edge that represent entry points to the system.
We assume for simplicity of notation that each client hosts a
single application and we only consider those that are alive
and active. The cloud resources are assumed to be unlimited,
while edge nodes have a finite number of containers reserved
for the service, but as all the clients are located at the edge
of the network it is always “cheaper” to run applications on
them compared to the cloud. Such a cost could refer to the use
of network resources (point of view of the edge infrastructure
operator) or to the latency (point of view of the end users).
Note that the “cost” in this section is different from that in
Sec. III: the latter is assumed to be minimized by applications
by switching back and forth between the µ vs. λ modes of
operation to adapt to a changing environment; instead, in
the following we adopt the perspective of the infrastructure
operator and strive to minimize the operational costs.

At a given time, as already discussed, an application can
be in one of two possible states depending on its internal
operation and environmental conditions: i) stateless (we call
it a λ-app), where a pool of containers is shared among a set

3https://github.com/ccicconetti/support, tag dataset-001, check out the
instructions in Dataset/001_Mu_Lambda/README.md.

https://aws.amazon.com/lambda/pricing/?nc1=h_ls
https://github.com/ccicconetti/support
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of applications invoking stateless functions, vs. ii) stateful (we
call it µ-app), where the application invokes stateful function
calls, which require persistence on a dedicated containerized
microservice. We assume that the transition from one state to
another is mediated in the edge domain by an orchestrator (not
shown in Fig. 2), which is in charge of: i) handling transition
requests from the applications, ii) deciding whether to assign
a container of a µ-app to the cloud or to the edge, and in the
latter case on which edge node, and iii) configuring the brokers
so that the stateless functions invocations can be dispatched
to the containers shared by λ-apps. In this work, we focus
on the decision process for resource allocation of µ- and λ-
apps, which we model mathematically in Sec. IV-A, and for
which we provide a solution and an implementation scheme,
respectively in Sec. IV-B and Sec. IV-C. We do not elaborate
on the protocols and interfaces that would be needed for the
practical deployment, which is left for future work.

A. Problem formulation

We now formally define the resource allocation problem,
taking into account jointly the µ- and λ-apps. Again, with
reference to Fig. 2, let A = {ak} be the set of application
clients and B = {bi} the set of brokers. We define the
association yki between a client ak and a broker bi as follows:

yki =

{
1, if ak is bound to bi
0, otherwise

(3)

Besides, yki has the following property:∑
i

yki = 1,∀k (4)

which states that each client is bound to one broker only. A
broker bi receives function invocations from its clients and
dispatches such invocations to containers, which are function

instances running on compute nodes. In our system, E = {ej}
is the set of compute nodes. Each compute node ej is assumed
to be deployed at the network edge (i.e., edge nodes) and to
have Nj containers instantiated on it. The only exception is
represented by e0, which is a cloud node having N0 = |A|
containers instantiated on it.

Moreover, we indicate with Aλ(t) and Aµ(t) the subset of
clients requiring at time t to be served by λ- and µ-containers,
respectively. At any time t, it occurs that Aλ(t) ∪ Aµ(t) = A
and Aλ(t) ∩ Aµ(t) = ∅. We also define xkj(t) as follows:

xkj(t) =

{
1, if ak has a µ-container on ej at time t
0, otherwise

(5)

At any time t, xkj(t) is subject to the following two
constraints: ∑

j

xkj(t) = 1,∀k ∈ Aµ(t) (6)

xkj(t) = 0,∀k ∈ Aλ(t) (7)

Eq. (6) guarantees that each client requiring a dedicated
container at time t receives exactly one. Eq. (7) instead states
that clients requiring at time t to be served by λ-containers
cannot be given at the same time a dedicated µ-container.

To guarantee that, at any time t, enough resources are
available to λ-containers on any node ej , we define a further
constraint as follows:∑

k

xkj(t) ≤ α ·Nj , (8)

where 0 ≤ α ≤ 1. The above constraint states that the number
of µ-containers that are instantiated on node ej at time t cannot
exceed a pre-defined fraction of Nj . Limit cases: α = 0 means
that µ-containers cannot be assigned to edge node j; with
α = 1 all the resources can be used by µ-containers.

For what concerns clients ak ∈ Aλ(t), we define rk as
their request rate, i.e., the rate at which those clients invoke
λ-containers. Therefore, we can define the request rate exiting
any broker bi at time t as:

Ri(t) =
∑

k∈Aλ(t)

yki · rk (9)

In a similar way, sj indicates the service rate of a λ-
container running on ej , namely the rate at which that type of
container can serve invocations. Given that the cloud node
is considered to have unlimited resources, we set s0 >
maxk{rk}. We define the available service rate at time t of
any node ej as:

Sj(t) = sj ·
∑
k

(1− xkj(t)), (10)

which is an aggregate of the service rates of all the containers
in ej that are not assigned to µ-apps.

Any broker bi dispatches invocations to λ-containers by
distributing such invocations toward compute nodes, based on



weights wij(t): over a sufficiently large time horizon, the ratio
between the function invocations dispatched by the broker i
toward the edge nodes 1 and 2 will be wi1/wi2. At any time
t, these weights are subject to the following three constraints:

wij(t) ≥ 0,∀i,∀j (11)∑
j

wij(t) = 1,∀i (12)

∑
i

wij(t) ·Ri(t) ≤ β · Sj(t),∀j, (13)

where 0 < β < 1. Specifically, constraint (13) ensures stability
by stating that at any time t the request rate entering any node
ej cannot exceed a fraction of the available service rate of
that node. Parameter β is introduced to allow for some service
capacity over-provisioning.

Finally, we define cij > 0 as a cost over the path inter-
connecting bi and ej . Following the considerations made at
the beginning of Sec. IV, this cost could be related to the
usage of network resources, to the communication latency, or
to a combination of both. Note that for any broker bi, we set
ci0 > maxj{cij}, which means that reaching the cloud node
is always more expensive than reaching any edge node.

Given the above definitions and constraints, we formulate
the following optimization problem:

min
xkj(t),wij(t)

{
Ω
∑
k,i,j

cij ·xkj(t)+
∑
i,j

cij ·wij(t)·Ri(t)
}
, (14)

where Ω is big enough that the first term always dominates
over the second one. The above problem aims at instantiating
µ-containers on compute nodes and finding the weights wij(t)
that allow to dispatch invocations to λ-containers so as to
minimize a combined overall cost in the system.
Key observation. The objective function in Eq. (14) stipulates
that the use of edge resources is preferred for µ-applications,
which is counterbalanced by the selection of a minimum
amount of containers (1 − α)Nj reserved for λ-applications
in each edge node ej .

B. Solution

The constraints Eq. (3)-Eq. (13) and the objective function
Eq. (14) form a mixed integer linear programming problem,
as the variables xky(t) (integer) and wij(t) (real) only exhibit
linear relationships. Furthermore, thanks to our assumption
that Ω� 1, it is possible to separate the problem into two sub-
problems, which can be solved sequentially and still achieve
the global optimum, as given by the following objective
functions with the following procedure at time t:
1. µ-apps allocation sub-problem: find xkj(t) with objective

function Eq. (15):

min
xkj(t)

∑
k,i,j

cij · xkj(t), (15)

which means that all the µ-apps will be assigned to a
container on the edge nodes (or in the cloud). As a result

of the allocation in the previous step, all the containers for
which it is xkj(t) = 1 will not contribute to the execution
of λ-app function invocations, as (1− xkj(t)) will be 0 in
Eq. (10).

2. λ-apps allocation sub-problem: find wij(t) with objective
function Eq. (16):

min
wij(t)

∑
i,j

cij · wij(t) ·Ri(t), (16)

which means that load balancing of λ-apps at each broker
bi will happen in accordance with the weights found; we
recall that stability is ensured by Eq. (13).

Both sub-problems in steps 1 and 2 above are instances
of well-known optimization problems. More specifically, the
first one is a case of assignment problem and the second one
of transportation problem, and both can be solved (exactly)
with efficient algorithms from the operations research litera-
ture [18].

For example, to carry out the performance evaluation in the
next section, we use the following algorithms: for the µ-apps
allocation problem we adopt the Hungarian method, which has
O(|Aµ(t)|3) worst-case time complexity; on the other hand,
we transform the λ-apps allocation problem into an equivalent
minimum cost flow problem, which we then solve using the
“successive shortest path”, having worst-case time complexity
O
(
R̄ · (E + V log V )

)
, where:

R̄ =
∑

k∈Aλ(t)

rk,

E = Ā · N̄ + 2 · (Ā+ N̄),

V = 2 · (Ā+ C̄ + 1),

Ā = |Aλ(t)|,

N̄ =
∑
j

[
Nj −

∑
k

xkj(t)

]
.

C. Overall operation

The solution illustrated in the previous section provides the
optimal allocation, under the given constraints and costs, for
a given set of applications Aλ(t) ∪ Aµ(t). In principle, this
implies that whenever any of the following happens, the algo-
rithm has to be re-run: i) a new application becomes active;
ii) an active application become inactive; iii) an application
migrates from µ-app to λ-app or vice versa. If the population
of users is large or the frequency of changes is high, the
allocation will have to be adjusted very often, which in turn
has two consequences. First, the orchestrator may become a
performance bottleneck: even though we have formulated the
problem so that efficient solutions can be used, finding an exact
solution in a short amount of time can be a challenge with
large problem instances, which needs to be addressed either
by using a big amount of computational resources (costly
and with environmental sustainability concerns) or by finding
approximate solutions (possibly degrading the performance).



Second, whenever a new allocation of resources is found
by the orchestrator, some of the current µ-apps may need
to be migrated from one edge node to another, which is
undesirable both for the edge infrastructure operator (network
resources are consumed) and for the end users (possible
service interruptions and latency spikes).

To address this issue we propose to run the resource
allocation algorithm in Sec. IV-B only periodically (we call the
period epoch). Of course, asynchronous events may happen in
between epochs, which we can handle in a best-effort manner
as follows:
1. a new λ-app becomes active: we configure brokers in such

a way that invocations of unknown functions are directed
automatically to the cloud, hence no reconfiguration is
needed at the edge (even though the allocation of wij is
sub-optimal in general);

2. a new µ-app becomes active: the orchestrator assign it to the
edge container with minimum cost cij among those edge
nodes j that have available resources for this according to
Eq. (8), which is a O(|E|) operation; if no such edge node
is available, then the container is created in the cloud; in
any case, no re-allocation of the other currently active µ-
apps is done;

3. a λ-app becomes inactive: no operation needed on the
brokers, who will simply not receive anymore function
invocations from the corresponding client;

4. a µ-app becomes inactive: the container assigned is deal-
located, which frees resources on the corresponding node;

5. migration µ → λ: execute the actions in point 4 followed
by those in point 1;

6. migration λ→ µ: execute the actions in point 2.
The epoch duration is a system parameter that has to be tuned
appropriately since it incurs a performance trade-off, which
we study with simulations in Sec. V.

V. EVALUATION

In this section we assess the performance of the framework
proposed in Sec. IV using numerical simulations. For repro-
ducibility purposes, the tool used is released as open source
on GitHub4, together with the artifacts and the scripts to run
the experiments and analyze the output.

The network topology used is depicted in Fig. 3: it was
generated with “ether: Edge Topology Synthesizer”5, which
produces realistic edge network models with mixed compute
nodes: end-user devices (our brokers, in blue), small PCs (far-
edge nodes, in yellow), and servers (near-edge, in green). We
have used as network cost cij the logical distance between
broker i and edge node j, in number of hops. The cloud node is
not included in the topology but it is considered in the resource
allocation with cost ci0 = 2 · max {cij}. The request rate of
λ-apps is assumed to be ri = 1 for all applications, while the
service rate is sj = 10 for far-edge nodes and sj = 20 for

4https://github.com/ccicconetti/serverlessonedge/tree/v1.3.0, see instruc-
tions in README.md within simulations 010, 011, and 012.

5https://github.com/edgerun/ether.

Fig. 3. Network topology: blue nodes are the brokers, yellow nodes are far
edges, green nodes are near edges, black dots are network devices.

near-edge nodes; similarly, the number of containers available
in each node is Nj = 4 in far-edge devices and Nj = 8
in near-edge devices. In the following we report the results
obtained with two types of simulation: snapshot and dynamic.

A. Snapshot simulations

Snapshot simulations follow a Monte Carlo approach: a
number of λ-apps (µ-apps) is drawn from a Poisson distri-
bution with mean E[|Aλ|] (E[|Aµ|]); each app is assigned to
a random broker selected independently from those available
with uniform distribution probability; we execute the algo-
rithms in Sec. IV-B and find the costs of λ- and µ-apps. We
then repeat the same process for several replications (6400
in our experiments), all contributing to the same experiment
instance. We have run instances with E[|Aλ|] = 50 while
changing α ∈ {0/8, 1/8, . . . , 7/8}, β ∈ {0.1, . . . , 0.9}, and
E[|Aµ|] ∈ {25, 50, 75} in a full combinatorial manner.

In Fig. 4 we study the effect of α and β on the (unitary)
cost of λ-apps, defined as the value of the summation in
Eq. (16) divided by the number of λ-apps in the snapshot.
As the fraction of containers per edge node reserved to λ-
apps is (1−α), the cost increases with α. The impact of α is
much more prominent with small values of β, when the cost is
higher. In fact, β controls how much margin the orchestrator
should reserve to cope with deviations of the actual rate of
requests from applications compared to the nominal values
si provided to the algorithm: e.g., β = 0.1 means that we
consider only 10% of the nominal service rate capacity in
each container, which increases the use of the cloud (= higher
cost) compared to bigger values of β. As can be expected, all
curves tend asymptotically to a minimum cost, which is that
incurred when serving all the λ-apps on far-edge nodes.

On the other hand, the impact of α on µ-apps is shown in
Fig. 5, in terms of the fraction of µ-apps that are assigned
a dedicated container in the cloud, hence at a higher cost in
our model: the curves with all values of E[|Aµ|] decrease
almost linearly. The results confirm in a quantitative manner
the intuition that the choice of α creates a trade-off between
the performance of µ-apps (better with bigger α) and λ-apps
(better with smaller α), which leads the way to an auto-tuning
of this parameter based on long-term optimization objectives,
which is left for future work.

https://github.com/ccicconetti/serverlessonedge/tree/v1.3.0
https://github.com/edgerun/ether
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B. Dynamic simulations

In the dynamic simulations we use the Microsoft Azure
traces described in Sec. III to drive an event-driven simula-
tion of i) the clients, whose applications alternate over time
between the µ and λ operation modes according to the pattern
that minimizes the respective user cost, and ii) the orchestrator,
which performs both periodic optimization in Sec. IV-B and
the best-effort measures reported in Sec. IV-C. For simplicity
of analysis, we set α = β = 0.5. Each simulation replication
lasts 24 hours of simulated time and we run 6400 replications
for each epoch duration, which increases from 1 minute to
30 minutes (we discard the samples in the first epoch as
warm-up period to reduce initial bias effects). The workload
is composed of a number of applications drawn from a
Poisson distribution with average E[|A|] ∈ {50, . . . , 250},
each assigned to a random broker in the network and exhibit-
ing a random operation mode pattern from the traces, with
randomized initial offset and wrap-around at the trace’s end.

As can be seen in Fig. 6, for all workloads, the unitary cost
of λ-apps increases with the epoch duration. This is because
with larger optimization periods, there are (on average) more
asynchronous transitions to λ operation mode, which triggers
the best-effort procedure in Sec. IV-C that merely directs them
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to the cloud. The increase is more prominent with lighter
workloads (i.e., E[|A|] = 50, 100) where the cloud is used
more sparingly when solving the λ-apps allocation.

The cost of µ-apps also increases with the epoch duration
(see Fig. 7), but only slightly because the best-effort procedure
in Sec. IV-C recycles containers that are currently available
for µ-apps. In Fig. 8 we report the cumulative distribution
over all the replications of the unitary cost of µ-apps, for the
representative case of 1 minute epoch duration. As expected,
the cost increases with the workload, but it is interesting
to note that from E[|A|] = 100 to E[|A|] = 150 there is
a wider gap, which happens because that is precisely when
the orchestrator begins to use the cloud due to a shortage of
edge resources for µ-apps. For a similar reason the curves
E[|A|] = 150 and E[|A|] = 200 are almost overlapping: in
that area, the marginal cost of adding more µ-apps is small
because most of them are still served by edge nodes.

We conclude with Fig. 9, which shows the migration rate of
µ-apps caused by executing the periodic optimization. As can
be seen, all the curves decrease significantly with the epoch
duration. This suggests that this system parameter should be
set to a large value, which also reduces the rate of execution
of the optimizations, hence the computational burden on the
orchestrator. However, this indication is in contrast with the
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cost analysis of both λ- and µ-apps, thus a fundamental trade-
off exists, which we plan to investigate more deeply in our
future work, under realistic migration overhead costs.

VI. CONCLUSIONS

In this paper we have taken a novel perspective on the
schism between the stateless (λ) and stateful (µ) operation
modes for edge-cloud applications. In particular, based on
the analysis of publicly available traces collected in a Mi-
crosoft Azure production environment, we have found that
applications can benefit, in terms of operation costs, from
alternating between the two operation modes over time. This
observation has led us to the definition of a mixed integer
linear problem that jointly optimizes the resource allocation,
in terms of containers assigned to µ-apps and load distribution
for λ-apps, depending on the instantaneous mode preferred by
each application. We have formulated the problem so that it
can be solved efficiently in two sequential steps, meant to be
executed periodically, and we have proposed best-effort mea-
sures to handle asynchronous changes in between consecutive
optimization runs. We have evaluated the performance of the
proposed solution through comprehensive simulation exper-
iments on a synthetic, but realistic, edge network topology
and using a trace-driven workload composition. The results

have shown that our framework is flexible enough to adapt to
a wide set of scenarios through the configuration of system
parameters, including: the fraction of containers reserved for
λ-apps (1−α), the over-provisioning factor to absorb the peaks
of λ-apps (β), and the epoch duration. In our future work we
will investigate how to set dynamically these parameters to
achieve long-term optimisation objectives, we will study the
impact of realistic migration overheads, and we will analyze
the management plane protocols and programming interfaces
for a practical implementation.
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