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Abstract—The increasing focus of the research community
towards lightweight and small footprint neural network models
is closing the gap between inference performance in cluster-
scale models and tiny devices. In the recent past, researchers
have shown how it is possible to achieve state-of-the-art perfor-
mance in different domains (e.g. sound event detection, object
detection, image classification) with small footprints and low
computational cost architectures. However, these studies lack a
comprehensive analysis of the input space used (e.g. for images)
and present the results on standard RGB benchmarks. In this
manuscript, we investigate the role of smart vision sensors (SVSs)
in deep learning-based object detection pipelines. In particular,
we combine the motion bitmaps with standard color spaces
representations (namely, RGB, YUV, and grayscale) and show
how SVSs can be used optimally for an IoT end-node. In
conclusion, we report that, overall, the best-performing input
space is grayscale augmented with the motion bitmap. These
results are promising for real-world applications since many SVSs
provide both image formats at low power consumption.

Index Terms—smart vision sensors, edge computing, tinyML,
embedded computer vision

I. INTRODUCTION

In recent years, many efforts have been made to port
artificial intelligence to edge devices, typically composed of
microcontroller-based embedded systems, with limited avail-
able resources [1]–[3]. Several literature approaches adopt
techniques such as model pruning [4], [5] or knowledge
distillation [6], [7] intending to decrease the complexity of
computationally expensive models that otherwise cannot fit
on resource-constrained units. These techniques have shown
significant results in network compression by enabling the
porting of state-of-the-art models on MCUs with a minor im-
pact on the final performance (2-3% accuracy drop). However,
current approaches do not always examine the impact of the
type of camera used on an embedded platform. They also do
not consider scaling with different input image formats, which
is crucial when implementing computer vision algorithms on
microcontroller units (MCUs).
Nowadays, more and more smart vision sensors (SVS) are
being developed to ease image processing pipelines by per-
forming in-hardware compression and signal processing. A
significant advantage of SVSs is that they are computationally
efficient since they generally exploit parallelization to process
the whole image on a single clock cycle [8]. When bringing
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intelligence on edge devices, it is crucial to respect the
stringent computational constraints deriving from the target
platforms, which usually have less than a MB of flash and
a similar amount of RAM. Thus, relying on a pre-processed
input, for example, by using an SVS, can significantly lighten
the computational load on the MCU. This benefits the runtime
performance of the applications and the resulting power con-
sumption of the devices, a key aspect for always-on Internet
of Things devices.
Among the many variations of SVS present in literature [9]
(ranging from skin detection [10]–[12], background subtrac-
tion [13], color tracking and face detection [14]), the most
relevant for urban scenarios are SVS integrating a background
removal algorithms at the sensor level. These provide, in a
power-efficient manner, high-level information that can be
used to ease subsequent processing steps. It has already been
proved how such sensors are a good fit when paired with
traditional image processing techniques [15], [16], leading
to lower system power requirements. In this work, we want
to investigate the effects of using information generated by
similar systems when performing an object detection task, and,
in particular, we will focus on the power-performance trade-off
of such pipelines. To do so, we will emulate the information
generated by these sensors by using different approaches for
background subtraction. Using an object detector based on
the novel PhiNets architecture family, we will argue how
the motion bitmaps generated can be used to develop neural
network pipelines for object detection.

The work is structured as follows:

• Section II covers some examples of SVS and pipelines
developed to take advantage of the data generated by
these sensors;

• Section III presents our experimental setup, focusing
on the training data used, the object detection pipeline
employed, and the approaches used to emulate a possible
output of a background subtracting SVS;

• Section IV presents the two proposed experiments that
we carried out to analyze the effects of background re-
moval data on object detectors using different processing
techniques and different network complexities. Moreover,
we show empirically how the motion bitmaps affect the
generated feature maps during an inference pass.



II. RELATED WORKS

There are several SVS performing on-board background
subtraction in literature. The goal of these devices is to
produce motion bitmaps from the acquired images directly
in-sensor, in a power-efficient manner. The main difference
with state-of-the-art approaches is the background subtraction
algorithm implemented, which directly impacts the device’s
power consumption. For example, a 64×64 CMOS sensor
based on frame difference is proposed in [17]. It consumes
only 0.4mW at 100 fps. In [18], the authors present an
image sensor with motion-triggered feature extraction capa-
bilities, thus delegating the processing to external units (like
MCUs). However, this approach limits the analysis that can
be performed on the produced features. In [19], the authors
proposed a novel algorithm for background removal based on
two adaptive thresholds. As can be seen, there are several
different approaches employed by SVSs for providing a high-
level interpretation of the input to the subsequent steps of the
image processing pipeline. This results in a wide variety of
different motion bitmaps that can be obtained using various
sensors in the same scene. Given the high variance of these
motion bitmaps, in this work, we will compare three different
methods: a K-nearest neighbour (KNN) based approach [20],
a mixture of Gaussians (MOG) approach [21] and a simple
frame difference, for training the deep-learning-based object
detection.

In the last decade, many techniques to process binary images
have been developed [22], [23] and have recently been applied
to the output of SVSs [15], [16], [24]. However, many con-
straints prevent from easily adapting these techniques to new
problems, mainly due to the hand-crafted nature of the selected
features. The end-to-end nature of deep learning offers a better
option since we can adapt the processing pipeline to a new task
by re-training the neural network. In this work, we adopt the
novel PhiNets architecture family [25], a scalable backbone for
object detection and tracking on MCUs. We chose PhiNets
because their scalability principles enable the correlation of
different input types (motion bitmap, RGB, grayscale) and the
optimal neural architectures (and thus computational cost).

III. EXPERIMENTAL SETUP

A. Data preparation

To simulate the outputs of different SVS and correlate them
to network performance, we relied on the well-known MOT17
dataset [26]. This benchmark contains a collection of annotated
videos with different properties (e.g. illumination, the density
of targets, static or moving camera). Given the restricted
application domain of SVSs, we only used video sequences
acquired from stationary cameras, allowing us to benchmark
different background subtraction algorithms. Moreover, this
subset also represents the typical SVS application scenario
(e.g. fixed to a pole in urban applications). We generated
five square crops for each frame in the original sequences to
have enough data to train a network from scratch. The crops
are randomly located in the original frame and have a size

between 300 and 700 pixels. For data augmentation, we flipped
crops with a 50% chance. With this approach, we generated
10875 crops containing ≈ 55000 bounding boxes. We split
the frames in train and test randomly, with a 90-10 ratio. All
crops belonging to the same frame are inserted together either
in the training or test sets.

The bounding boxes are assigned to each crop if a fraction >
0.35 of an object is inside the crop and are ignored otherwise.
In the same way, occluded objects are accounted for only if
the same fraction of the object is visible.

In this work, we used this data to evaluate some object
detectors in terms of Mean Average Precision (mAP) and
investigate the impact of SVSs input in such a pipeline.
Mean Average Precision has always been computed with an
Intersection Over Union (IOU) threshold of 0.5.

B. Object Detector

As the primary use case of SVSs is low-power machine
intelligence, we used the Phinets architecture described in [25]
as a processing algorithm for the sensor’s output. It is a low
operation count scalable backbone, composed of a sequence
of B (in our case we used the default value of 7) inverted
residual blocks, designed to be adapted to different embedded
platforms and MCUs. Scalability is achieved by using three
parameters that can optimize the resource requirements for the
networks to target them to various hardware configurations.
These parameters are:

• α: width scaling parameter, used to regulate the operation
count of the network;

• β: shape parameter, used to optimize the static memory
requirements for the architecture;

• t0: base expansion factor, used to optimize the RAM
required by the network.

This backbone is coupled to a YOLOv2 [27] detection
head to provide an end-to-end object detector. We performed
minimal modifications of the architecture to accommodate for
input with varying channel count. These changes are supported
in the original implementation1.

C. Network Training

The different architectures tested were trained on the arti-
ficial dataset generated as described before, where each crop
has been normalized between [−1; 1] on each channel before
sending it as input to the network. The Adam [28] optimizer
was used, with a cosine decaying learning rate starting at 10−2,
for 300 epochs. A constant 10−2 learning rate was used for
the first three epochs.

D. Experiments

To improve the coverage of our analysis, we emulate SVSs
employing different background subtraction techniques. In
particular, we applied algorithms based on:

• Frame difference. This method computes the pixel-wise
intensity difference between two consecutive frames.

1https://github.com/fpaissan/phinet_pl



Fig. 1. The different pre-processing steps applied to a frame crop to emulate different SVS. A- default RGB frame crop. B, C, D - output of the different
background subtractors. E, F - grayscale and RGB masked inputs. G, H - grayscale and RGB images with additional motion bitmap channel

After this, a threshold is applied on the output map
to binarize the image and create the foreground and
background masks. Example results are shown in Figure
1B.

• MOG: Mixture of Gaussian based algorithm, as described
in [29] and [30]. The default OpenCV implementation is
used (Figure 1C).

• KNN: K-nearest neighbor-based algorithm, as described
in [31]. The default OpenCV implementation is used
(Figure 1D).

To identify the best input format for our detection application,
we tested the object detector combining image data and motion
data in different ways:

• RGB, G: Input is composed of the image data in 3
channel color and grayscale (A in Figure 1);

• MB: Input is composed of the motion bitmap obtained
with the algorithms shown above (B, C, D in Figure 1);

• RGBA, GA: Input is composed by the color and grayscale
image, respectively, with an additional input channel
containing the motion bitmap data (G, H in Figure 1). It
represents a concatenation between image channels and
motion bitmap along the channel axis;

• RGBM, GM: Input is composed by the color and
grayscale image respectively, masked using the motion
bitmap. The output image is equal to the original image
in pixels where motion is detected and is zero otherwise
(E, F in Figure 1). This kind of input represents the dot
product between the original image and the binarized
motion bitmap.

IV. RESULTS

We split the experimental analysis into two steps. At first, a
single network will be evaluated using different input formats
to identify the best ways to use the additional data coming
from SVS. The second experiment will then analyze the
behavior of networks of different complexities when dealing

with the various input configurations to understand if lower
complexity networks can take advantage of different inputs
compared to higher ones.

A. Benchmarking of different inputs
The first experiment analyzed the impact of the different

types of input on the performance of a single network. The
parameters used to generate the architecture are shown in Table
I. This is the largest default architecture presented in [25].

TABLE I
HYPERPARAMETERS OF THE NETWORK USED IN EXPERIMENT 1

Resolution α B β t0 MAC Parameters
128× 128 0.35 7 1 6 9.5 to 9.8 M 55.4 K

For each input type, the network has been trained three times
for 300 epochs over the training dataset to minimize perfor-
mance variance. Table II shows the average mAP reached for
each of the different input configurations, together with the
operation count for the network (which varies slightly due to
the different number of input channels used).

TABLE II
ACHIEVED MAP FROM THE DIFFERENT INPUT TYPES ANALYSED IN

EXPERIMENT 1

Input type Background subtractor MAC avg mAP σ
RGB - 9.70M 52.4 10.1

RGBA KNN 9.79M 70.7 1.51
RGBM KNN 9.70M 47.1 2.66

G - 9.49M 68.3 3.60
GA KNN 9.60M 71.6 2.31
GA FD 9.60M 71.5 3.94
GM KNN 9.49M 60.0 5.42
MB KNN 9.49M 56.3 3.95
MB FD 9.49M 44.9 1.35
MB MOG 9.49M 54.8 2.76

YUV KNN 9.79M 70.6 2.31

As shown in Table II, the quality of different background
subtraction approaches has been evaluated by training the



Fig. 2. Results of varying network sizes for different input types

network on a single channel image containing only the motion
bitmap data (1 channel, binarised input). This has shown
how the K-nearest neighbor-based background subtractor
outperformed other approaches, but performance is not too
far from using a MOG-based subtraction algorithm. The
naive frame difference implementation is, as expected, beaten
by more advanced methods but has still provided enough
information for the network to detect objects in the frame. This
experiment also shows that training the network on a more
straightforward grayscale input consistently outperformed
using a more feature-rich RGB implementation. This could
be due to the fact that the network tested is relatively tiny, so
having a feature-rich input composed of a higher number of
channels leads to a more underfitting model with respect to
using a more basic input image. Given this observation, we
also tested the network on an image coded in YUV format. In
this way, the complete information of the RGB data can still
be used by the CNN while providing an easily interpretable
luminance channel. However, the performance demonstrated
in this configuration has been similar to using the original
RGB color space, thus confirming the underfitting hypothesis.

Regarding the different possible ways to provide motion
bitmap data to the network, it is notable how the addition of
a dedicated input channel allows the network to make better
use of this data, for a very low increase in computational cost
(around 1%), as will be investigated in Section IV-C.
Another interesting result is the relatively close performance
of the network working on grayscale data merged with the
best performing background subtractor and the simplest
frame-difference implementation. This shows that, while
the standalone motion bitmap obtained through frame
difference presents heavy artifacts that challenge the detection
performance, it still contains meaningful information that can
be extracted by the network to increase performance when
coupled with the original image.

B. Network size variation
The following experiment aimed at understanding how

different input formats influence the performance of networks
of diverse computational complexities. Multiple networks were
tested, of a varying number of operations between 3M and
10M multiply-accumulate operations, to understand if smaller
networks would benefit more from less complex representa-
tions of the input data. As before, the different architectures
were all trained for 300 epochs 3 times, and the average of
the achieved mAP over the three runs has been reported.
Table III shows the generating hyperparameters for the archi-
tectures tested, taken from [25].

TABLE III
HYPERPARAMETERS USED TO GENERATE THE DIFFERENT

CONFIGURATIONS TESTED

.

Resolution α B β t0 MAC Parameters
128× 128 0.35 7 1 6 9.5 to 9.8 M 55.4 K
128× 128 0.25 7 1 6 5.8 to 6.1 M 34.7 K
128× 128 0.2 7 1 5 2.9 to 3.2 M 20.1 K

As shown in Figure 2, the input types offering the best
performance across all network complexities are those
joining the motion bitmap data to the captured frame by
using an additional channel. This shows how SVSs data can
significantly improve detection quality for scenarios where
object detection from a static camera is the target - but the
data coming from these sensors must be completed with image
data to provide a complete representation to the network.
Even for very low operation count nets (≈ 3MMAC), object
detection from merged frame data and motion data is a much
simpler task than detection from only the motion bitmap,
no matter how accurate this may be. This is especially true
for scenarios where partially occluded or overlapping objects
need to be detected, as the additional input information,
in this case, can allow the network to discern between a
single blob and multiple superimposed targets (as can be
seen from Figure 5 and Figure 6). Notably, using a single



Fig. 3. Channel importance for the most extensive grey-scale
configuration.

Fig. 4. Channel importance for the most extensive RGB
configuration.

Fig. 5. All objects are identified
with an RGB input.

Fig. 6. Occluded objects are merged
using only the motion bitmap.

channel, grayscale input provides performance close to the
one obtained using these more comprehensive approaches. At
the same time, while scaling network size, accuracy increases
very slowly, as this type of input does not provide rich
enough information content that more extensive networks can
use.

With our experimental setup, the single-channel grayscale
input showed excellent performance across the tested com-
plexity range. Therefore, using preprocessing steps such as
masking the input image does not seem to make sense from
a performance standpoint. It is still interesting to note the
performance trend for RGB images as, in some applications,
color information could result in a more significant perfor-
mance advantage than with our setup. This type of input shows
an exciting trend in the analyzed complexity range where,
with simpler networks, using a masked version of the input
demonstrates better performance. On the other hand, larger
networks benefit more from the higher amount of data in the
full image. Using a binarised motion bitmap mask as input to
a standard CNN does not provide notable advantages in this
application, as performance is lower than using different input
types. Additionally, smaller networks still show a significant
performance loss compared to larger ones as the binarised
input does not provide a direct interpretation. Instead, larger
networks offer a better ability in reconstructing the semantic

content of the frame in the case of partially occluded objects.
Advantages of this kind of input may be more notable when
using binarised neural networks or different processing tech-
niques.

C. Does the SVS matter?

Models trained with the motion bitmaps as an additional
channel of the input image are the best-performing ones.
Therefore, we investigate how the trained networks weigh
each input channel to validate the idea. We expect that, if the
foreground mask is the key to boost the detection performance,
the feature map generated by this channel (that can be studied
given the architectural design of PhiNets) should have a
considerably higher activation rate. To prove this idea, we
assumed to have a random tensor as input of the network
(random matrix with entries sampled by a uniform distribution
between [−1, 1]). We computed the value of the activations for
each channel over 500 different random inputs. After this, we
calculated the covariance matrix and considered the diagonal
elements (after dividing the matrix by the trace) as a metric
of how meaningful every channel is. Results are summarised
in Fig. 3 and Fig. 4 for the most computationally expensive
network among the ones proposed in the manuscript. With
this analysis, we confirm our hypothesis about the importance
of the motion bitmap in the object detection pipeline and
conclude that the training performed on the target datasets
benefited from using the information of the SVS.

V. CONCLUSIONS

In this paper, we investigated the role of SVSs for object
detection pipelines based on deep learning. In particular, we
showed how an embedded-friendly detection pipeline - which
exploits PhiNets - can be boosted by providing additional
information based on in-sensor processing of the images.
Overall, we conclude that the information contained in the
motion bitmap is really valuable and helps the detector gain
a 5% improvement in mAP without compromising the com-
putational cost of the pipeline.
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