How to visualize CPAS model data

ClusterTech Limited

July 2022

This document describes how to access CPAS model output data for the study "*Numerical weather prediction at 200m local resolution based on an unstructured grid global model*", and how to use the Jupyter tools to visualize and analyse the data on the cloud-based platform CPAS.

Step 1: Visit CPAS website.

https://cpas.earth/

Step 2: Sign up (so that you can run a Jupyter environment with your CPAS account).

From the top menu of the CPAS website, click "SIGN UP / SIGN IN" at the top right corner.

The ClusterTech Platform for Atmospheric Simulation (CPAS) is a cloud-based service platform which implements Customizable Unstructured Mesh Generation (CUMG) and Hierarchical Time-Stepping (HTS) on Model for Prediction Across Scales - Atmosphere (MPAS-A (v6.3)) to better serve the computational needs of numerical atmospheric model users.

Background - CPAS is developed based on MPAS-A and WRF

To achieve a balance between accuracy and computational cost, many Numerical Weather Prediction models (NWPs), such as Weather Research and Forecasting Model (WRF), adopt a set of rectangular grids where local refinement is achieved by nesting a high-resolution domain inside coarser grids. MPAS-A adopts spherical centroidal Voronoi tessellations (SCVTs) covering the globe, while local refinement is achieved using variable-resolution meshes. MPAS-A is a promising model for practical usages. However, MPAS-A uses a constant global timestep, determined by the size of the smallest mesh cell, which limits the resolution variability. This is because the existence of a high resolution region would make the computational resource requirements prohibitively large.

HTS - Arbitrary resolution variation

CPAS has relaxed this restriction by implementing an optional **Hierarchical Time-Stepping (HTS)** treatment in the MPAS-A (v6.3) dynamic core. Cells of different sizes can have different time step levels and hence the computational requirements are substantially reduced, particularly for large variations in resolution. This allows MPAS-A to be used for high-resolution regional/local forecast.

The "Log in" window appears. Click "Sign up".

Log in		
	G Sign in with Google	
	or	
Enter your email		
Password		
Forgot password?		
	Log in	
	Don't have an account? <u>Sign up</u>]

The "Sign up" window appears.

• Sign up with Google

r

Click "Sign in with Google".

Sign up	G Sign in with Google	
Enter you	ır email	
Enter you	ir password	
Re-enter	your password	
□ agree Privac	e with the <u>Terms and Conditions</u> and <u>y Policy</u>	
	Sign up	
	Already have an account? Log in	

• Sign up with email registration

Enter your email address and your self-specified password for CPAS twice. Click "Sign up".

Sign up						
	G Sign in with Google					
	or					
myemail@	emailprovider.com					
•••••						
I agree with the <u>Terms and Conditions</u> and <u>Privacy Policy</u>						
Sign up						
	Already have an account? Log in					

You will receive a verification email and follow instructions to confirm the registration.

Step 3: Spawn your Jupyter notebook server. From the top menu, click "Visualization".

CPAS ClusterTech	My Specs	My Jobs	Visualization 🗗	My Subscription	💄 My Account	🕞 Sign Out
604690 M						

You will be directed to a new tab of Jupyter environment. Start the server by clicking the "Start My Server" button.

C Jupyter Home Token	
	Start My Server
The files are listed after sp	pawning the server:
	💭 Jupyter
	Files Running Clusters
	Select items to perform actions on them.
	D my_obs_data

Files	Running Clusters
Select iter	ns to perform actions on them.
0	▼ ■ /
) download
] my_obs_data
] plot
] resource
) template
	🕴 cpas-vis.ipynb
	sim-convert_mpas.ipynb
) VERSION.txt

Click "cpas-vis.ipynb" to run the notebook.

C JUPYter cpas-vis Last Checkpoint: 3 minutes ago (unsaved changes)	Logout Control Panel
File Edit View Insert Cell Kernel Widgets Help	Trusted 🖋 Python 3 O
E + ≫ 2 E + ↓ N Run ■ C ≫ Code + ■	Memory: 133 / 1024 MB
CPAS Notebook Service - Mesh and Simulation Result	CPAS
Visualization	ClusterTech
Copyright © 2019-2020 ClusterTech Limited. All rights reserved.	
Select/highlight code block and press [* Ctrl]+[# Enter] to execute.	
DO THIS FIRST: Select mesh and simulation job	
<pre>In []: from cpas.ui import UI ui = UI().select_job()</pre>	
Plot mesh	
<pre>In []: ui.plot_mesh()</pre>	

Step 4: Select the data for this study.

Select the code block under "DO THIS FIRST: Select mesh and simulation job" and press Ctrl+Enter to run it. Select "Demo data". Something like the following would appear:

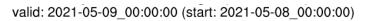
Select Data:	1	My data	Demo data	
Select Project:	2022-07 2022-07 2022-06 2022-06 2022-06 2022-07 2022-07 2021-07 2021-07 2021-07	7-15 08:03:12Z 7-15 08:02:51Z 7-15 08:00:11Z 3-07 10:38:45Z 3-06 01:20:22Z 5-23 10:25:03Z 1-12 01:37:18Z 7-12 03:08:22Z 7-12 03:07:45Z 7-09 09:54:50Z	journalpaper_greyzone_hk200m_default_static journalpaper_greyzone_hk200m journalpaper_greyzone_hk200m journalpaper_greyzone_hk1km TC_LUPIT_boost hko_0910_test_infa_8km atm_learner HK 200m (CPAS v0.16.1 Shin-Hong PBL experiments) WAQ_preferred_SoutheastChina (used since 2021-04-01) WAQ_preferred_SoutheastChina (used since 2021-04-01) WAQ_preferred_China16km (used since 2020-10-27) WFIP_200m_r0p5km WEIP2_Condon_radar_v2_ad1d12_160m_r8km	
Select Mesh:	2022-07	5-15 08:02:51Z	cpasv17_hk200m	
Found c grid.r	lata fi nc st	2022-02-07 04 2022-02-07 01 2022-02-04 18 2022-02-04 04 2022-02-03 20 2022-02-02 06 2022-02-02 06 2022-01-31 21 Lles: tatic.nc	3:31:40Z 2021050800 4:26:00Z 2021042100 1:32:09Z 2021052800 3:04:50Z 2021041200 4:57:56Z 2021040200 0:48:15Z 2021032800 3:28:59Z 2021032400 0:37:01Z 2021031500 1:29:32Z 2021031100 cpasv17_2021050800*.nc diag*.nc mesh*.nc and visualize_mesh().	

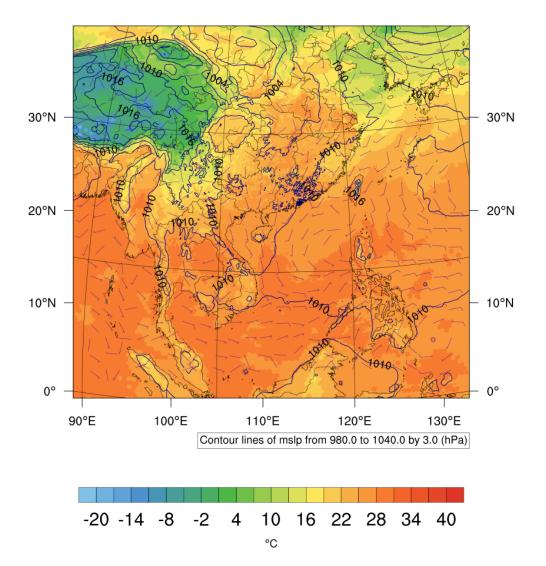
Found data files: grid.nc | static.nc | mesh.nc | diag.nc Ready to do plot_mesh() and visualize_mesh(). Ready to do plot_diag_contour() and visualize_sim().

In the Demo data collection, the project named "journalpaper_greyzone_*" contains the model simulations in the study "*Numerical weather prediction at 200m local resolution based on an unstructured grid global model*".

Step 5: Visualize and analyse the data.

Take glance on the code blocks below. Select the code block you desire and run it. All operations hereafter are pretty self explanatory.


	Plot mesh
In []:	ui.plot_mesh()
	Visualize mesh in interactive map
In []:	ui.visualize_mesh()
	Contour plot
In []:	ui.plot_diag_contour()
	Visualize simulation results in interactive map
In []:	ui.visualize_sim()
	Download mesh
In []:	ui.download_mesh()
	Write your code You are free to write your code for analysing your results in this Jupyter Notebook!
In []:	


It takes time to load data. Hang on some minutes when you see the Jupyter backend is processing as indicated by the black dot at the top right corner.

9	Logout	Control Panel	2	Logout	Control Panel
N	ot Trusted	Python 3 O	N	ot Trusted	Python 3

3.1.1 Plot single time step

ui.plot_diag_contour()						
executed in 12.1s, finished 16:13:51 2022-07-15						
→ Viewport						
Select Time (UTC): 2021-05-08_23:50:00 2021-05-09_00:00:00 2021-05-09_00:20:00 2021-05-09_00:20:00 2021-05-09_00:30:00						
Select color contour: u10 v10 q2 t2m	Select contour line:	None mslp t2m	Select wind vector:	None 10-meter wind		
Min. for color contour: -20 Max. for color	contour: 40 No	o. of intervals: 20	Automatically a	adjust the range.		
Min. for line contour: 980 Max. for line e	contour: 1040 No	o. of intervals: 20	Automatically a	adjust the range.		
Plot Contour						

You can also analyze the data using your own codes with common Python packages and Jupyter Notebook operation.

-- The End --