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Abstract. A recurring graph analysis task is to rank nodes based on
their relevance to overlapping communities of shared metadata attributes
(e.g. the interests of social network users). To achieve this, approaches
often start with a few example community members and employ graph
filters that rank nodes based on their structural proximity to the exam-
ples. Choosing between well-known filters typically involves experiments
on existing graphs, but their efficacy is known to depend on the struc-
tural relations between community members. Therefore, we argue that
employed filters should be determined not during algorithm design but
at runtime, upon receiving specific graphs and example nodes to pro-
cess. To do this, we split example nodes into training and validation
sets and either perform supervised selection between well-known filters,
or account for granular graph dynamics by tuning parameters of the
generalized graph filter form with a novel optimization algorithm. Ex-
periments on 27 community node ranking tasks across three real-world
networks of various sizes reveal that runtime algorithm selection selects
near-best AUC and NDCG among a list of 8 popular alternatives, and
that parameter tuning yields similar or improved results in all cases.
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1 Introduction

When graph nodes are attributed (e.g. they are social network users and at-
tributes are their areas of interest), they can be organized into communities of
shared metadata attributes [26]. By definition, these communities are not tied to
specific high-level structural characteristics, such as strong connectivity between
nodes. Still, it is commonly accepted that attributes could correlate to low-level
dynamics leading to the creation of edges, in which case graph structure can help
predict metadata. For example, nodes of social network graphs often exhibit ho-
mophilous behavior [23], a term describing their tendency to form edges with
others of similar attributes. Then, tightly knit structural communities become
good predictors of parts of -but not of whole- metadata communities [35].

A recurring graph analysis task, which we tackle in this work, is to rank
nodes based on their relevance to communities sharing metadata attributes of
interest [16, 19,29, 32, 33]. Ranking provides greater granularity than clear-cut
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predictions, for example in the scope of recommending more community mem-
bers. It also respects overlaps and fuzzy boundaries between communities [21].
Furthermore, node relevance scores obtained during ranking are often the core of
more sophisticated systems, such as graph neural networks for classification after
initial neural estimations [13,15] and post-processing strategies that threshold
transformations of scores to predict community membership [3].

A popular use case for community node ranking, which we also follow, is
to start with a few known community members serving as examples, and in-
ferring the relatedness of all nodes to respective communities based on their
structural proximity to the examples [34,37,19]. This task is performed inde-
pendently for one or more communities. Assumptions about what constitutes
proximity have coalesced under the field of graph signal processing [section 2],
where they are modeled with ad-hoc graph filters and controlled by a small num-
ber of parameters [25,8].1 Different filters and parameters match different types
of communities. For example, filter efficacy could depend on the number of com-
munity members [1,12,19]. As a result, deployed filters may work well in certain
graphs but not necessarily in others. By extension, running filter-based tools
‘off-the-shelf* in deployed systems risks producing node ranks of lesser quality.

In this work, we address the above issue by exploiting autotune principles
[17] for runtime selection of graph filters. We explore two strategies: a) choosing
the best among a list of promising filters, and b) tuning the parameters of a
generalized filter form. For the second strategy, we also introduce a novel tuning
algorithm that keeps examining a wide search breadth in the solution space but
converges within a bounded number of filter runs. The effectiveness of our ap-
proach is corroborated on 27 community node ranking tasks across 3 real-world
graphs of different domains. Results indicate that neither strategy falls signifi-
cantly behind best-performing ad-hoc filters when optimizing popular node rank
quality measures. Furthermore, parameter tuning frequently captures structural
proximity better than ad-hoc assumptions and improves rank quality.

This paper is organized as follows. In section 2 we present graph filters as
an approach for ranking nodes with respect to metadata communities, alongside
a generalized literature filter form. In section 3, we describe our runtime filter
selection approach and its implementation choices. We also present a novel al-
gorithm for tuning parameters of generalized graph filters. In sections 4 and 5
we evaluate our approach in real-world data and discuss practical applicability
and potential risks. Finally, in section 6 we summarize our findings and present
promising research directions.

2 Background

Graph edges are often represented by adjacency matrices A with elements Afu, v] =
{1 if edge (u,v) exists, 0 otherwise}. These are symmetrically normalized by weigh-

! Most non-filter node ranking algorithms, such as k-shell decomposition and varia-
tions [36], blindly rank the importance of nodes within graph structures and can not
personalize ranks in terms of importance to specific communities.
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ing edges to mitigate the importance of highly connected nodes per:
W = D—l/QAD—1/2

where D with elements Dju,v] = {>_,, Afu,v'] if u = v,0 otherwise} are di-
agonal matrices of node degrees. The graph’s spectrum can be defined as the
eigenvalues of the normalized adjacency matrix.? In detail, eigenvalue decom-
position yields W = UAU™!, where A are diagonal matrices of eigenvalues
A = diag([A1, A2, ..., n]) and U are orthogonal matrices whose columns hold
the corresponding eigenvectors. For connected graphs, eigenvalues of the normal-
ized adjacency matrix are real-valued and reside in the unit range \; € [-1,1].

Graph signal processing [27,24, 28] manipulates signals p whose elements
plu] correspond to values stored at nodes u. To do this, it defines their graph
Fourier transform as F{p} = U~!p and its inverse as F1{F{p}} = UF{p}.
Then, it observes that W" = UA"U~! = H(W) = UH(A)U™? for func-
tion forms H(-) whose Taylor expansions exist around zero, and defines filters
Hr = [H(M),H(\2),...H(\,)] in the Fourier space, whose parameters arise
through transformations H()\;) of eigenvalues \;. Graph filters can be applied
on signals via an element-wise multiplication ® on their Fourier transform F{p}.
The outcome of filtering in the node space becomes:

F Y Hz o F{p}) =UHANU 'p=HW)p

During the above analysis, the function forms H(-) determining graph filters
can be parameterized in terms of their Taylor coefficients hg, h1, ... per:

HW) =Y hyW*
k=0

As Wkp propagates graph signals p at k hops away through normalized adjacency
matrices W, the above formula describes a weighted aggregation of multi-hop
signal propagation. Filters matching different structural assumptions arise from
different coefficients hy. Two well-known filters are personalized PageRank [3, 4]
and heat kernels [16]. These respectively adopt degrading hop weights hy, = (1 —
a)a® and the kernel hy, = e~'t* /k! for parameters a € [0,1) and t € {1,2,3,...}.
Given the above formulation, graph filtering can rank how nodes pertain to
communities of interest [34, 37, 19]. Approaches start with signals p whose values
capture whether nodes v belong to sets C of known community members per:

plv] = {1 if v € C,0 otherwise}

Then, for graphs with normalized adjacency matrices W, graph filters H(W)
yield new signals r» = H(W)p with elements r[u] corresponding to how proximate
nodes u are to known member sets C' under some understanding of proximity.
Finally, nodes are ranked by order of their proximity to known members.

2 The graph’s spectrum can also be defined as the eigenvalues 1 — \; of its normalized
Laplacian I — W. This, too, can express filters as infinite-degree polynomials of W.
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3 Tuning Graph Filters at Runtime

As previously mentioned, graph filters for community node ranking should ide-
ally be selected at runtime, after graphs and example community members be-
come known and therefore can be used to understand underlying structural
features. We consider best-performing filters those with higher node rank qual-
ity, for instance measured with the area under curve of the receiver operating
characteristics (AUC) [6] and the normalized discounted cumulative gain across
all graph nodes (NDCG) [14]. Employed measures should coincide with practical
objectives on unknown test data. For example, high AUC indicates higher ranks
for community members than non-members, whereas high NDCG verifies the
community membership of top-ranked nodes.

To optimize node rank quality at runtime, we follow an autotune paradigm
that searches through the parameter space of black box algorithms to opti-
mize validation objectives. Originally, the term was associated with specific ap-
proaches [17], but nowadays broadly describes automatic selection of machine
learning model parameters. This comes at the expense of multiple algorithm
runs, but there exist mature solutions for fast computation of graph filters [18].

Our approach starts with sets C of known community members among graph
nodes, which are organized into binary graph signals p per the formulation of
section 2. We split known members into non-overlapping subsets Cirain, Coatia C
C, which correspond to “training” graph signals psq:n to be used as filter inputs,
and desired output validation signals p,q1:q. We employ evaluation measures
M(-,+), such as AUC or NDCG, that assess node rank quality via pairwise
comparison between predictions and ground truth, and select filters with high
M(Ttrain, Pvatia) for predicted ranking scores rirqin = H(W)pirain. We avoid
overfitting by computing measures only across non-training nodes. As long as
graphs exhibit homogeneous correlations between communities and edges, filters
maximizing validation evaluation are expected to also maximize M (7, ptest) for
r = H(W)p on nodes other than known community members, where pi.s; are
unknown ideal test labels. Our pipeline’s data flow is summarized in Figure 1.

We follow two strategies for graph filter selection by the autotune component
of our approach. The first is to perform a simple selection among a list of popular
filters, such as those we experiment with later on. The second is to start with the
parameterized graph filter form presented in section 2 and tuning a vector of its
parameters h = [ho, h1,...,hx]? to optimize validation objectives. We explore
only non-negative parameters to match the widespread literature practice of
introducing only non-negative correlations between hops and high-quality node
ranks. Then, without loss of generality, we tune all parameters in the range [0, 1].

When tuning graph filter parameters on non-differentiable (potentially even
non-convex) validation objectives, a first take is to adopt existing generic black
box optimization algorithms [7, 10]. However, these do not guarantee convergence
for all deployed system inputs. At the same time, adjusting one graph filter
parameter to control the importance of propagating graph signals a fixed number
of hops away could drastically affect the validity of other propagation weights.
This hypothesis is also corroborated by experiments later on.
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Fig. 1. Overview of graph filter autotuning under measures M. Example nodes are
split between training and validation graph signals, where the latter assume the role of
ideal training outputs. Highlighted signal elements correspond to higher node values.

To address the above concerns, we propose an algorithm for graph filter
parameter tuning that maintains a broad parameter search space while converg-
ing in finite time. This involves cycling through parameters, and progressively
minimizing a loss function ¢(h) = 1 — M(H(W)ptrain, Pvatia) by finding the
best permutation around each parameter with coarse linear search. As tuning
progresses, we shrink the search range, so that small permutations around ideal
values are eventually found. Intuitively, this is equivalent to moving the center of
the selected rectangle chosen for each parameter based on subsequent selections
of other parameters. If shrinking is slow enough, by the time when parame-
ter permutation breadths become small, potential combinations with drastically
different permutations of other parameters have already been considered.

Conceptually, this procedure is a variation of divided rectangles (DIRECT)
[9] that, instead of keeping many candidate rectangles to divide, keeps only
one, though of larger width than the partition. This practice corresponds to the
shrinking radius technique proposed for non-convex block coordinate optimiza-
tion [22], although the two are not mathematically equivalent due to the finite
sum of rectangle widths that limits the optimization within the hypercube of
searched parameters instead of looking at an unconstrained range.

In detail, we start from the center of the parameter hypercube and cycle
through parameters i. For each of those, we consider the range Ah[i] in which to
search for new solutions and partition it uniformly to 2P + 1 candidate points,
P of which examine higher parameter values and an equal number lower values.
Values are snapped to the search bounds 0 or 1 if they subceed or exceed those
respectively. Perturbations form a set Hgeqren Of potential parameter vectors,
of which we select the one minimizing the loss. Finally, we contract the search
range by division with constant 7" > 1 and move on to the next parameter.
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Cycling through parameters stops when loss reduction becomes smaller than a
tolerance € across all parameters. This process is outlined in Algorithm 1.

Algorithm 1 Parameter tuning

Inputs: parameter loss £(h), tolerance e, line search partitions P, range shrinking T’
Outputs: near-optimal vector of K parameters
h <+ [0.5] x K, Ah < [0.5] X K, err < [oo] X K, i+ 0
while max; err[i] > € do
u; <—unit vector with u;[j] = {1 if ¢ = j, 0 otherwise}
Hcarch < {max(0,min(1,h + u; - Ah[i] - (p/P —1)))|p=0,1,...,2P}
err[i] « £(h) — minpen L(h)
h < argminnen,,,, .,
Ah[i] < Ah[i)/T
i< %—f— 1) mod K
return

search

o(h)

If the objective £(h) is Lipschitz continuous with Lipschitz constant L < oo
(when the loss is differentiable, this means that sup ||V4(h)|| < L), it is easy to
see that the division of the parameter permutation radius by T every K itera-
tions lets the algorithm run in amortized time O(K (run £(h))log, £). If graph
nodes are fewer than edges (as happens for connected graphs), in which case the
running time of ¢(h) is not dominated by node validation. Using sparse matrix
multiplication to iteratively compute Krylov space elements {W*ps qin |,k =
0,...,K} by left-multiplying previous ones with W, graph filters run in time
O(KE), where FE is the number of graph edges. Thus, our graph filter parame-
ter tuning mechanism can be implemented to run in amortized time:

O(K*E(logy L —logre))

Running time scales linearly with the number of edges and quadratically with
the number of parameters. We recommend and employ default parameters P =
2,T = 1.01, which suffice to minimize the Beale and Booth functions often used
in optimization benchmarks [2] to 10~¢ parameter (instead of loss) tolerance.

4 Experiment Setup

We experiment on three publicly available real-world graphs with metadata com-
munities. First is the Amazon co-purchasing graph [20], whose nodes and edges
correspond to products and frequent co-purchases. Products are organized into
metadata communities based on their type (e.g. book, movie) attribute. Second
is the Citeseer citation graph [11], whose nodes and edges correspond to scientific
publications and citations. Publications are organized into communities based
on scientific field. Third is the Maven dependency graph [5], whose nodes and
edges correspond to software projects and dependencies. Projects are organized
into communities based on the organization responsible for their development.
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These graphs were chosen for experimentation on merit of comprising meta-
data communities with enough member nodes to conduct robust validation. To
not over-represent graphs with many communities and obtain enough validation
nodes later on, we experiment with the first three communities of each graph
with at least 500 nodes. We treat all edges as undirected so that symmetric nor-
malization of filters is applicable. Community details are summarized in Table 1.

Table 1. Details of communities we experiment on.

Community Graph Nodes Edges Members

amazon0 Amazon 554,789 3,577,450 280,507
amazonl Amazon 554,789 3,57,7450 64,915
amazon2 Amazon 554,789 3,577,450 17,966
citeseerQ Citeseer 3,327 9,464 596
citeseerl Citeseer 3,327 9,464 668
citeseer2 Citeseer 3,327 9,464 701
maven( Maven 1,965,359 19,431,302 1,687
mavenl Maven 1,965,359 19,431,302 1,043
maven2 Maven 1,965,359 19,431,302 49,883

For each of the the above-described communities, we generate three splits of
known-test members by assuming that known members are uniformly sampled to
comprise 10%, 20%, or 30% of total members. We remind that validation nodes
can only be subsampled from known members. Sampling is seeded to ensure
reproducibility and fair comparison between approaches. In total, experiments
on 9 communities create 9 - 3 = 27 different known-test member splits. For each
split, we consider two different node ranking objectives; optimizing AUC, and
optimizing NDCG. Thus, we obtain 27 - 2 = 54 experiment setups.

We investigate the ability of our approach to produce high-quality community
node ranks compared to ad-hoc graph filters and parameters often encountered in
the literature. We compare the following alternatives, all of which we integrated
in the pygrank Python library [18] alongside experiment setups:

— ppra [25,3, 4]. Personalized PageRank that performs stochastic random walks
with restart probabilities 1 — a at each step [29]. We test common values
a € {0.5,0.85,0.9,0.99} and compute filters to numerical tolerance 1079,

— hk k [8]. Heat kernels that form bandpass windows around desired propaga-
tion hops k. We test common window centers k € {2,3,5,7}.

— select [this work]. Runtime selection of the best among ppra and hkk by
withholding a 10% validation subset of known community members. When
graphs are unknown during algorithm selection, this becomes a baseline for
tuning.

— tune [this work]. Tuning a generalized graph filter with 40 parameters, where
the filter is obtained with non-zero Taylor coefficients hg = 1 and tuned
hi,...,hy via Algorithm 1 towards maximizing measures of choice on the
same 10% validation subset as in select. Optimization absolute deviation
tolerance is set to € = 1076,
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— tuneLBFGSB [ablation study]. A variation of tune that substitutes our tun-
ing algorithm with the L-BFGS-B optimizer [7] provided by the scipy library
[31] with default parameters and 10~ percentage decrease on the evaluation
function as a stropping criterion to make sure that tuning does not stop early.
This is a popular optimizer still used for parameter search [30] and approx-
imates Neuton’s method while limiting the number of computations to only
first-order gradients. Experiments with the Nelder-Mead optimizer yielded
similar or worse results that we do not report due to space constraints.

5 Experiment Results

Tables 2 and 3 present the quality of community node ranking across experiment
setups in terms of AUC and NDCG respectively. Before exploring graph filter
selection, we verify that individual ad-hoc filter efficacy varies across communi-
ties and training-test splits. Indeed, no explored filter outperforms the rest in all
experiments. For instance, ppr0.99 is often the best in Amazon communities, but
also the worst in Maven communities, where it lags behind others up to 0.035
AUC. Runtime filter selection would be useful as long as it lags less behind.
Choosing between ad-hoc filters with our validation strategy does not always
retrieve the best-performing ones. We attribute this behavior to few missing ex-
amples still impacting the ideal filter propagation weights needed for high-quality
node ranking. Withholding fewer nodes could degrade validation robustness and
future research could investigate new mechanisms to improve generalization. For
the time being, selection of best among existing alternatives at runtime chooses
the best filters in 31/54 settings. But, even when this scheme fails to identify
the best filter, it often retrieves near-best ones that at worst lag behind only by
0.011 in terms of AUC or NDCG, where this gap usually shrinks to 0.001.
Parameter tuning with Algorithm 1 outperforms all ad-hoc filters in 40/54
experiment settings. This induces up to 0.010 AUC and 0.033 NDCG improve-
ments, indicating that it manages to discover nuanced notions of structural prox-
imity. It lags behind by at worst 0.007 on account of either measure, and often
by much less. Compared to selecting among filters, tuning yields better evalua-
tion outcomes in 49/54 of experiment settings. As such, we recommend it as an
out-of-the-box solution for community node ranking in new graphs, especially
if structural characteristics correlating to the formation of communities are not
known beforehand. Finally, comparing our optimization algorithm to L-BFGS-B,
the latter induces marginal improvements in the Citeseer graph, but falls sig-
nificantly behind -even compared to filter selection- in the Amazon and Maven
graphs. This corroborates the need for retaining a wide parameter search space.
In relation to applying our methodology, we experimented on communities
with enough example members to achieve a robust evaluation when randomly
withholding 10% of them. Fewer known members may not yield robust validation
strategies and we hereby caution against blindly applying our methodology when
too few members are known. In principle, we expect our approach to work well
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Table 2. Test set AUC of community node ranks for ad-hoc filters and those obtained
through runtime tuning on the same measure. The highest value is bolded.

Ad-hoc Autotune
Com. Examples|ppr0.5 ppr0.85 ppr0.9 ppr0.99 hk2 hk3 hk5 hk7 |select tune tuneLBFGSB
amazon0 10% .825 .844 .853 901 .823 .825 .832 .844| .901 .903 .883
amazon0 20% .820 .855 .870 910 .817 .824 .844 .865| .910 .918 .900
amazon0 30% .815 .868 .884 .914 .810 .824 .855 .880| .914 .924 .908
amazonl 10% .930 .934 .935 944 930 .930 .931 .933|.944 .943 .940
amazonl 20% 941 .946 .948 954 941 .941 .944 .946| .954 .955 .953
amazonl 30% .946 953 955 960 .946 .947 .951 .954| .960 .961 .959
amazon2 10% .960 .964 .965 968 .959 .960 .961 .963|.968 .968 967
amazon2 20% .970 974 974 975 970 .971 .972 .974| 975 .977 976
amazon2 30% .973 .976 977 976 972 .973 .975 .976| .977 .979 978
citeseer0 10% 778 .789 792 793 775 777 781 .784| .793 .795 795
citeseer0 20% .841 .849 .850 .845 .838 .840 .844 .847| .845 .852 852
citeseer0 30% .859 .867 .868 .861 .856 .859 .863 .866| .868 .869 .869
citeseerl 10% .805  .807 807 .798 .806 .805 .805 .806| .798 .805 .806
citeseerl 20% .820 .823 824  .813 .820 .820 .821 .823| .820 .819 .823
citeseerl 30% .816 .821 .821 .811 .816 .816 .819 .820| .816 .821 821
citeseer2 10% .659 .669 672 .675 .656 .657 .661 .664| .656 .670 676
citeseer2 20% 718 727 .730 731 716 717 721 .724| .716 .732 .733
citeseer2 30% 767 773 774 769 766 .767 .770 .773| .773 .775 776
maven0 10% 998 997 .995 942,998 .998 .998 .997|.998 .994 .989
maven0 20% .997 .995 .994 1925 .997 .997 .997 .996| .997 .998 .984
maven0 30% 997 .995 .993 911 .998 .997 .997 .995|.998 .998 1982
mavenl 10% .996 .993 991 967 .996 .996 .996 .995| .996 .995 .986
mavenl 20% .996 992 .990 961  .996 .996 .995 .994| .994 .995 .984
mavenl 30% .997 .992 .989 956  .998 .997 .996 .995| .992 .992 .982
maven2 10% 998 .998 .998 .993  .997 .998 .998 .998| .998 .998 997
maven2 20% 997 997 997 991 997 .997 .997 .997| .997 .997 .996
maven2 30% .997 997 997 1990 .997 .997 .998 .997| .997 .997 .996
Average .897 .903 .905 .898 .896 .897 .901 .904| .909 .912 .908

-and therefore be applicable on- community node ranking based on at least the
same number of known members (at least 50) as in our experiments.

As evidence that tuning discovers non-trivial graph propagation schemes,
Figure 2 shows the first 41 parameters of high-AUC filters for citeseer0 with 30%
known members. There, tuning discovers a different propagation strategy than
ad-hoc filters, which subsequently manages to (slightly) improve the best filter in
Table 2. Moreover, Figure 3 shows that tuning is tailored not only to communities
but even to specific sets of example nodes, yielding drastically different filters
for the same communities. Given that tuned graph filters generally outperform
others, this finding corroborates our hypothesis that filters should be selected at
runtime to match the characteristics of data they are about to process. Finally,
filter differences between different fractions of community examples support our
practice of withholding only a small fraction of validation nodes.

—— select (ppr0.9)
hk7

—— tuned

01— T T T 7 T T

Fig. 2. Parameters h; of filters with high
AUC on citeseer0 with 30% examples.

citeseer0 10% citeseer0 20%  citeseerl 10%

< Tabl Ll T

0 20 0 o 20 w0 o 20 20 o 20 40

citeseerl 20%

Fig. 3. Parameters tuned on citeseer( and
citeseerl with 10% and 20% examples.
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Table 3. Test set NDCG of community node ranks for ad-hoc filters and those obtained
through runtime tuning on the same measure. The highest value is bolded.

Ad-hoc Autotune
Com. Examples|ppr0.5 ppr0.85 ppr0.9 ppr0.99 hk2 hk3 hk5 hk7|select tune tuneLBFGSB
amazon0 10% .970 976 978 985 .970 .971 .975 .978| .985 .987 .983
amazon0 20% .968 976 979 984 967 .970 .975 .978| .984 .987 .983
amazon0 30% .965 .976 978 983 .964 .968 .974 .978| .983 .987 .982
amazonl 10% .955 .962 964  .972 .954 .956 .960 .963|.972 .972 .969
amazonl 20% .954 .963 .966 972 .953 .956 .962 .965| .972 .976 971
amazonl 30% 951 .963 .966 970 .950 .955 .961 .966| .970 .976 970
amazon2 10% 912 .923 927  .933 .910 .913 .920 .925| .920 .927 934
amazon2 20% .914 .928 .932 933  .913 .917 .926 .931| .933 .941 937
amazon2 30% .912 .926 1929 .929 910 .915 .924 .929| .929 .938 .933
citeseer0 10% .896 .900 .902 902 .894 .895 .897 .899| .902 .903 .904
citeseer0 20% .922 1931 .933 1926 .920 .923 .928 .931| .926 .932 .934
citeseer0 30% .915 .925 .926 1923 907 .918 .923 .926| .923 .930 1929
citeseerl 10% .905 .905 .905 904 .905 .905 .904 .903| .904 .907 .907
citeseerl 20% 901 .903 904 .895  .900 .901 .903 .903| .903 .897 .905
citeseerl 30% .892 .893 .892 877 .891 .892 .893 .892| .892 .890 .889
citeseer2 10% .869 .876 .878 .879 .867 .868 .872 .875| .868 .883 .881
citeseer2 20% .887 .896 .897 .899 .886 .888 .890 .895| .886 .898 .900
citeseer2 30% .894 .904 .905 .903 .893 .896 .902 .905| .905 .908 .908
maven0 10% .803 .786 778 .723  .803 .804 .796 .774|.796 .813 745
maven0 20% 738 .708 .693 615 743 .741 .724 .694| .743 .744 637
maven0 30% 673 .637 .625 .554  .676 .674 .651 .629| .674 .670 .581
mavenl 10% .812 .823 .821 781 .807 .817 .828 .830| .828 .863 .814
mavenl 20% .806 .814 .812 767 788 .800 .817 .818| .818 .831 .801
mavenl 30% 770 774 773 728 767 .775 .780 .773| .773 .825 762
maven2 10% .904 .907 .906 .845 .903 .908 .911 .909| .911 .935 .889
maven2 20% .863 .864 .861 785 .862 .867 .869 .865| .869 .903 .840
maven2 30% .812 .812 .808 729 811 .816 .818 .813| .818 .861 .786
Average .880 .883 .883 .863 .878 .882 .885 .883| .888 .899 877

6 Conclusions and Future Work

This work introduces a runtime graph filter selection scheme for community node
ranking based on known member nodes. Selection involves either choosing be-
tween promising filters or tuning the parameters of a generalized filter form. For
the latter, we introduced a novel algorithm that meshes parts of previous alter-
natives to satisfy both scalability and a wide parameter search breadth needed
by graph filters. We verified the efficacy of our approach with experiments across
real-world graph communities, where we found that, given enough example com-
munity members to satisfy robust evaluation by withholding a few of them, our
methodology (especially tuning) yields filters with similar or better AUC and
NDCG than alternatives. Thus, we recommend its adoption in practice.

In the future, we are interested in experimenting on more graphs, improving
our tuning algorithm, and theoretically probing its optimality. More robust eval-
uation could also be devised to autotune from fewer known community members.
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