
1. Introduction
Using physical parameterizations of micro-to turbulent scale processes in weather and earth system (ES) numeri-
cal models is unavoidable. Explicit representation of a full range of underlying degrees of freedom is both unfea-
sible and undesirable because of intrinsic unpredictability at these scales (Craig & Cohen, 2006). Accordingly, 
parameterizations of subgrid scale processes are and will remain among leading sources of model uncertainty. 
Understanding and accounting for the impacts of this uncertainty continues to be one of the outstanding chal-
lenges for environmental modeling and prediction.

Over the last two decades, the inclusion of stochastic representation of unresolved variability of sub-grid scale 
processes in weather and ES models has emerged as a viable approach to representing the intrinsic uncertain-
ties of physical parameterizations in the context of improving probabilistic prediction skill using ensembles 
(Berner et al., 2011, 2015; Bouttier et al., 2012; Buizza et al., 1999; Charron et al., 2010; Christensen et al., 2015; 
Davini et al., 2017; Hermoso et al., 2021; Jankov et al., 2017; Leutbecher et al., 2017; Palmer et al., 2005, 2009; 
Ollinaho et al., 2017; Romine et al., 2014; Sanchez et al., 2015; Stanford et al., 2019; Thompson et al., 2021). 
The representations of uncertainty using this approach are commonly referred to as stochastic parameterizations 
(Berner et al., 2017). Stochastic parameterizations may be formulated either by including an empirical stochas-
tic representation of the parameterization uncertainty into a numerical model a posteriori (Berner et al., 2017; 
Palmer, 2001), or by derivation of stochastic governing equations (Debussche et al., 2012). The latter formulation 
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Plain Language Summary All numerical weather and climate prediction models contain 
approximate representations (parameterizations) of high resolution cloud processes. Model error results from 
either inaccurate parameter settings, or from the fact that parameters are static while they should vary in 
time and space. Previous studies have shown that random variation of model parameters can help to improve 
predictability of weather and climate. This study examines several methods by which model parameters can 
be varied in time, and finds that the best results are obtained when parameter variations are consistent with the 
time evolution of the weather system that is being simulated.
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is more rigorous but not yet mature for weather and ES modeling applications because it requires development 
of new numerical models (Berner et al., 2017). Empirical stochastic parameterizations are now widely used in 
existing weather and ES models.

The most commonly used empirical stochastic parameterization, that is directly related to the uncertainty of 
the existing physical parameterizations in numerical models, is the Stochastically Perturbed Parameterization 
Tendency (SPPT; Palmer et al., 2009) scheme. The scheme consists of adding random perturbations to net ther-
modynamic and dynamic tendencies produced by physical parameterizations at resolvable scales. The pertur-
bations are sampled at every time step by multiplying the unperturbed net tendency by a stochastic temporally 
and spatially correlated noise. Spatio-temporal variability of the noise is governed by a linear Auto Regressive 
process model (AR1) applied to a Gaussian correlated spatial noise pattern in the horizontal domain. Applica-
tions of the SPPT scheme in global models have produced significant positive impacts on ensemble prediction 
skill by increasing the ensemble spread and reliability and reducing biases in some variables for prediction ranges 
from days to seasonal climate (Bouttier et  al.,  2012; Charron et  al.,  2010; Leutbecher et  al.,  2017; Ollinaho 
et al., 2017; Palmer et al., 2009; Sanchez et al., 2015; Weisheimer et al., 2014). The most significant impacts were 
found in the tropical regions associated with convective and precipitation processes (Leutbecher et al., 2017). 
Additionally, positive impacts have been demonstrated in climate model simulations for processes such as the 
Madden-Julian Oscillation (Leutbecher et al., 2017), El Nino Southern Oscillation (Christensen et al., 2017), and 
tropical precipitation (Davini et al., 2017). Studies with regional high-resolution models using the SPPT scheme 
have shown improvements also to short-range ensemble prediction, most notably to the ensemble spread (Baker 
et al., 2014; Berner et al., 2011, 2015; Jankov et al., 2017, 2019; Romine et al., 2014; Wang et al., 2019).

Although including the SPPT scheme as a stochastic representation of parameterized physics uncertainty in 
deterministic numerical models has shown clear benefits, it has also been noted that the SPPT could lead to 
numerical instability, and to physical inconsistencies and imbalances in energy and moisture fluxes locally and 
globally (Davini et  al.,  2017; Leutbecher et  al.,  2017; Ollinaho et  al.,  2017). These shortcomings have been 
attributed to the assumption of a uniform uncertainty representation for all parameterizations in the model, imply-
ing the same error characteristics for different processes, and to the absence of conservation constraints on the 
tendency perturbations (Leutbecher et  al.,  2017). To address the need for a more physically-based approach, 
recent developments have focused on either the implementation of stochastic schemes for specific processes, 
such as for example, the convective initiation in boundary layer (Kober & Craig, 2016) and deep convection 
(Bengtsson et al., 2011, 2019), or on holistic formulations that may apply to different parameterizations by using 
a single formulation for stochastic perturbation of selected parameters within the deterministic parameterizations 
(Baker et al., 2014; Christensen et al., 2015; Jankov et al., 2017; McCabe et al., 2016; Ollinaho et al., 2017; 
Thompson et  al.,  2021). Within the latter framework, hereafter referred to as the Stochastic Parameters (SP) 
approach, a parameter is considered to be any tunable scalar physical quantity within an existing deterministic 
parameterization. In the current study we consider the SP approach, focusing on cloud and precipitation micro-
physics parameterizations.

The mathematical formulation of an SP scheme is similar in simplicity to an SPPT scheme, in that they both 
make use of a single stochastic process model for any parameterization, but SP applies it to the parameters 
within each selected parameterization instead of to the tendencies. In this way, the sources of uncertainty unique 
to each parameterization are represented while preserving the parameterization's built-in physical consist-
ency (Baker et  al.,  2014; Ollinaho et  al.,  2017). As a result, the SP schemes produce physically-based and 
physically-consistent stochastic variability to the tendencies of the resolved states. Evaluations of the SP schemes 
in global and regional models have shown positive impacts on the ensemble prediction skill of various degrees 
depending on the prediction time range, the modeling system, and verification variables (Christensen et al., 2015; 
Hermoso et al., 2021; Jankov et al., 2017; Leutbecher et al., 2017; McCabe et al., 2016; Ollinaho et al., 2017; 
Stanford et al., 2019; Thompson et al., 2021; Wang et al., 2019). In comparison to the SPPT, the impacts of the SP 
schemes on ensemble spread were found to be smaller, but adding value when the two approaches were combined 
(Christensen et al., 2015; Hermoso et al., 2021; Jankov et al., 2019; Ollinaho et al., 2017). These findings point 
to two non-exclusive conclusions: the unresolved variability has a broader scope than is contained in the param-
eter uncertainty, and applications of the SP approach may need to capture a larger diversity of processes (i.e., 
more parameters and parameterizations within a model) with improved process-specific configurations and better 
understanding of impact mechanisms to achieve full benefits (Jankov et al., 2019; Leutbecher et al., 2017). The 
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first conclusion underscores the need for better understanding of the sources of unresolved variability, whereas 
the second encourages further exploration of the known sources.

Recent studies on the application of the SP schemes to microphysics parameterizations using cloud-permitting 
resolution regional models provided examples of benefits from including the uncertainty of these processes. 
Stanford et  al.  (2019) showed that perturbing the ice microphysics parameters involved in mass-size and 
fallspeed-size relationships using the SPP (Stochastically Perturbed Parameterization; Ollinaho et  al.,  2017) 
scheme resulted in significant impacts on the variability of ice cloud optical depth, rain-rate and precipitation in 
ensemble simulations of deep convection events. Similarly, Hermoso et al. (2021) demonstrated that the Random 
Parameters (RP) scheme (McCabe et al., 2016) applied to several microphysics parameters in a two-moment bulk 
microphysics scheme significantly increased ensemble variability of convective storm evolution for the studied 
case. Thompson et  al.  (2021) reported important localized impacts on the precipitation properties including 
changes to maximum hail-size from perturbing only two microphysics parameters using the SPP scheme. These 
results clearly point to potential for expanding the scope of relevant impacts by including more processes within 
the SP framework. Another direction for further development that so far has not received much attention concerns 
configurations of the SP schemes that involve selection of controlling factors, such as temporal and spatial decor-
relation scales and statistical distributions for the parameters. The evaluation and calibration of the SP config-
urations in the prior studies have focused mostly on enhancing the ensemble prediction skill, in particular the 
ensemble spread (Christensen et al., 2015; Jankov et al., 2019; Ollinaho et al., 2017; Thompson et al., 2021). 
Although justified for the purpose, this approach does not consider representativeness of the configurations with 
respect to the process-level uncertainty that the schemes are meant to capture. This could lead to selections of the 
controlling factors that are inconsistent with the properties of the physical processes represented by the parame-
terizations (Ollinaho et al., 2017).

This study addresses evaluation of the SP configurations at the process level, focusing on cloud microphys-
ics parameterizations. Our approach is based on the notion that the parameterization uncertainty is a statistical 
generalization of the parameterization errors with respect to the true processes and as such could be character-
ized through evaluation against reference data with a high information content about the processes. Candidate 
approaches include: using Cloud Resolving Models (CRMs) including Large Eddy Simulation configurations, 
with more detailed representation of cloud microphysics, and comparison versus observations with high infor-
mation content about process level outputs from the microphysics parameterizations. Both approaches have 
strengths and weaknesses. The CRMs produce dynamically consistent high information content data but carry 
their inherent numerical model uncertainties and due to computational burden are also challenging to apply to 
a wide range of natural scenarios. They have been used for evaluation and calibration of microphysics param-
eterizations (Khain et al., 2015) and may be in principle adopted to characterize properties of SP-versions of 
the parameterizations. That methodology would be similar to the coarse-graining method that was applied to 
evaluate and propose modifications to the SPPT scheme using CRM simulations (Shutts & Pallares, 2014). We 
are not aware, however, of any published studies that have used CRM data to calibrate SP-microphysics schemes. 
The comparison versus observations approach has the strength of using data that represent the actual true state 
with high accuracy (to the limits of observation errors) and for many scenarios. The primary weakness of this 
approach is that the data are by design limited to the observable quantities, requiring careful selection of types of 
observations that could provide sufficient information about the process-level state of the microphysics. In this 
study the evaluation of the SP-microphysics configurations was considered from the prospective of observability 
by satellite remote sensing.

As a first step we investigated sensitivity of a microphysics parameterization to different configurations of the 
SP scheme applied to multiple microphysical parameters within a Lagrangian column model that was used in 
prior studies to characterize parameter uncertainty by means of multivariate nonlinear inversions using simulated 
remote sensing observations (Posselt & Vukicevic, 2010; van Lier-Walqui et al., 2012, 2014). The column micro-
physics model is forced with prescribed time-varying profiles of temperature, humidity and vertical velocity. 
This modeling framework allowed for investigation of the effect of changes in microphysics parameters on the 
model output in isolation from any feedback to the cloud-scale dynamics. The test case selected in this study of 
an idealized representation of mid-latitude squall-line convection is the same as was used in prior studies (Posselt 
& Bishop, 2012; Posselt et al., 2014; Posselt & Vukicevic, 2010; van Lier-Walqui et al., 2012, 2014). Use of this 
model in prior studies enabled use of multi-parameter distributions from previous Bayesian inversion as the basis 
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for setting the statistical properties of parameter distributions used in the SP scheme. Additionally, impacts of the 
non-stochastic and stochastic multi-parameter representation of parameterization uncertainty on the microphysics 
model solution and the related satellite-based observable quantities could be directly compared.

The current study addresses the following questions.

What is the microphysics state response to stochastically perturbed parameters ?

What is the sensitivity of observable quantities to the SP configurations ?

What is the impact of using correlated parameter perturbations ?

What is the potential of using microphysics sensitive observations to estimate the SP configuration controls ?

The paper is organized as follows. The 1D column model, the formulation of the SP scheme for the study of 
configurations, and the design of the sensitivity experiments is presented in Section 2. The experiment results are 
discussed in Section 3. The summary and conclusions are outlined in Section 4.

2. Methodology
2.1. 1D Column Microphysics Model and Case

Our goal is to explore stochastic parameter perturbations in a system that is low-dimensional and simple, enabling 
straightforward interpretation of results, and also sophisticated enough to represent the complexity of a realistic 
three dimensional cloud system. Posselt and Vukicevic (2010) described a single column version of the NASA 
Goddard Cumulus Ensemble (GCE) model (Tao et al., 2014) that simulates the changes a vertical column of the 
atmosphere would encounter if it were to be embedded in a three dimensional deep convective system. By apply-
ing a base state temperature and water vapor profile representative of a deep convective environment, then impos-
ing perturbations to temperature, water vapor, and vertical motion consistent with convective system evolution 
from initiation through maturity to dissipation, the model can be made to approximate the behavior of a single 
column within a fully three dimensional environment. The model microphysical parameterization is consistent 
with those used in modern numerical weather prediction models, and is a single moment bulk scheme (Lang 
et al., 2007; Lin et al., 1983; Rutledge & Hobbs, 1983, 1984; Tao et al., 2019) with two liquid (cloud droplets 
and rain) and three ice (suspended ice particles, falling snow/aggregates, and graupel/hail) hydrometeor species. 
Clouds interact with longwave and shortwave radiation, and are allowed to be advected in the vertical direction 
only. No sources or sinks of cloud mass due to horizontal advection are considered.

In the setup described in Posselt and Vukicevic (2010), the model emulates the development of a linear squall line 
type of convection over a three-hour time period, represented by time evolution of the vertical profiles of cloud 
droplets, rain, pristine ice, graupel and snow as shown in Figure 1 (respectively panels g–k). This is desirable 
for our experiments, as the evolution proceeds through two distinct phases: convective (0–90 min), during which 
there is more intense vertical motion and also more intense rainfall, and stratiform (120–180 min), during which 
there is more moderate vertical motion and lighter rainfall. The 90–120 min time period represents a transition 
period in between the two phases. In addition, different cloud microphysical processes are active in convective 
versus stratiform time periods, with convective times controlled more strongly by liquid microphysics and strat-
iform times controlled more by ice microphysical parameters. This change in behavior allows us to test how the 
SP scheme is able to adapt to changes in the degree to which various parameters influence the model output.

The specific parameters we perturb (Table  1) control: the snow and graupel particle fall speed, snow and 
graupel density, rain particle size distribution, and cloud-to-rain autoconversion threshold. As in Posselt and 
Vukicevic (2010), we use as output quantities of interest the Precipitation Rate (PR), Liquid and Ice Water Paths 
(respectively LWP and IWP), and Outgoing Longwave and Shortwave (respectively OLW and OSW) radiation, 
all output from the model as snapshots at regular times. The model outputs shown in Figure 1 were used as the 
reference control simulation in this study.

2.2. Sampling of Stochastically Perturbed Parameters

The commonly used SP schemes for the global and regional ensemble models are based on the linear AR1 models. 
They differ however in the selection of the AR1 model class (Grunwald et al., 2000), the quantity to which the 
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model is applied and the underlying statistical parameter distribution used for sampling the innovations at every 
time step. For example, the SPP scheme first formulated by Ollinaho et al. (2017) and since applied in a number 
of other studies makes use of the Gaussian AR1 model applied to spectral coefficients of 2D horizontal Gaussian 
correlated noise with the innovations based on either the Log-Normal or Normal univariate distributions (Jankov 
et al., 2017, 2019; Ollinaho et al., 2017; Stanford et al., 2019; Thompson et al., 2021). Another widely used SP 
scheme referred to as the Random Parameters (RP) uses a non-Gaussian linear AR1 model applied directly to 
spatially invariant parameters, with the innovation term based on the bounded uniform distribution (Hermoso 
et al., 2021; McCabe et al., 2016). In this study the generalized formulation of the Gaussian linear AR1 model 

Figure 1. Control 1D column microphysics model simulation of column integral satellite observations and hydrometeor vertical profiles: (a) AP, (b) PR, (c) LWP, (d) 
IWP, (e) OLW, (f) OSW, (g) cloud droplets, (h) rain, (i) pristine ice (j) graupel, and (k) snow.
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is used (Grunwald et al., 2000) from which these commonly used schemes could be derived as special cases as 
shown in the Appendix A.

The Gaussian linear AR1 model is expressed

Φ(𝑡𝑡 + Δ𝑡𝑡) − Φ = 𝛼𝛼
[

Φ(𝑡𝑡) − Φ
]

+ 𝐶𝐶
1∕2

Φ
𝜀𝜀(𝑡𝑡) (1)

Here 𝐴𝐴 Φ is a vector stochastic quantity with mean 𝐴𝐴 Φ , 𝐴𝐴 𝐴𝐴 is the first order regression coefficient determined by 

the model time step 𝐴𝐴 𝐴𝐴𝐴𝐴 and decorrelation time scale 𝐴𝐴 Λ , 𝐴𝐴 𝐴𝐴
1∕2

Φ
𝜀𝜀(𝑡𝑡) is the innovation term where 𝐴𝐴 𝐴𝐴

1∕2

Φ
 is square root 

covariance matrix, and 𝐴𝐴 𝐴𝐴(𝑡𝑡) is a 𝐴𝐴 𝐴𝐴(0, 𝐼𝐼) random vector, with 𝐴𝐴 𝐴𝐴 being the identity matrix. This model constitutes 
the SP scheme whose configurations would depend on the underlying sampling distribution for the innovations, 
the associated first and second moment statistics, and the decorrelation time scale 𝐴𝐴 Λ .

The Log Normal (LN) and Normal (N) distributions are considered for representing the variability of microphys-
ics parameters within a range of permissible values (Table 1). Using the LN distribution the vector stochastic 

quantity in the model (Equation 1) would consist of elements 𝐴𝐴 𝐴𝐴 = 𝐿𝐿𝐿𝐿

(

𝑝𝑝
′

𝑝𝑝

)

 , where 𝐴𝐴 𝐴𝐴
′ and 𝐴𝐴 𝐴𝐴 are respectively the 

perturbed and unperturbed parameter values, the latter being the constant parameter value used in the determin-
istic microphysics model. Assuming for simplicity that the parameters are uncorrelated would make 𝐴𝐴 𝐴𝐴 a random 

𝐴𝐴 𝐴𝐴
(

𝜇𝜇𝜇 𝜇𝜇
2

𝜑𝜑

)

 quantity. Using the condition that the mean of the perturbed parameter is equal to the unperturbed value 

renders 𝐴𝐴 𝐴𝐴 = −
𝜎𝜎
2
𝜑𝜑

2
 and 𝐴𝐴 𝐴𝐴

2

𝜑𝜑 = 𝐿𝐿𝐿𝐿

(

𝐴𝐴
2
𝑝𝑝

𝑝𝑝2
+ 1

)

 , where 𝐴𝐴 𝐴𝐴
2

𝑝𝑝 is the assumed (i.e., the prescribed) parameter variance. Using 

the N distribution would give 𝐴𝐴 𝐴𝐴 = 𝑝𝑝
′ with the mean 𝐴𝐴 𝐴𝐴  = 𝐴𝐴 𝐴𝐴 and the variance 𝐴𝐴 𝐴𝐴

2

𝑝𝑝 . When the parameters are assumed 

correlated a non-diagonal 𝐴𝐴 𝐴𝐴
1∕2

Φ
 would need to be specified for either choice of the distribution. Concerning the 

influence of the decorrelation time scales in this study the relationship 𝐴𝐴 𝐴𝐴 = 𝑒𝑒
−

𝑑𝑑𝑑𝑑

Λ is used.

For the sensitivity experiments the second moment statistics for the LN and N parameter distributions were deter-
mined based on the data obtained in the prior study, where the uncertainty of microphysics parameters in the 1D 
column model was estimated by MCMC (Markov Chain Monte Carlo) inversions using simulated satellite-based 
observable quantities of PR, IWP, LWP, OSW and OLW radiation (Posselt & Vukicevic, 2010). In that study, the 
observations 30 min apart were derived from the 1D column model solution equal to the one shown in Figure 1 at 
30, 60, 90, 120, and 150 min. The MCMC inversions were performed for 10 microphysical parameters, resulting 
in a 10-dimensional joint empirical statistical distribution.

The data from the prior study (https://doi.org/10.5281/zenodo.5736940, Posselt et al., 2021) consisting of over 
1 million samples of valid parameter vectors (the parameter combinations that correspond to the model solution 
within the assumed error range for the simulated observations) were used to compute variances and square root 
covariance matrices via the Cholesky decomposition for subsets of the 7 and 8 parameters considered in this 
study for the sensitivity experiments. Initial sensitivity experiments using either the LN or N distribution showed 

Parameter description Symbol Units Mean Min Max 𝐴𝐴 𝝈𝝈 

Snow fall speed coefficient 𝐴𝐴 𝐴𝐴𝑠𝑠 𝐴𝐴 cm
1−𝑏𝑏𝑠𝑠 200.0 63.00 400.00 27.430

Snow fall speed exponent 𝐴𝐴 𝐴𝐴𝑠𝑠 None 0.3 0.10 0.60 0.042

Graupel fall speed coefficient 𝐴𝐴 𝐴𝐴𝑔𝑔 𝐴𝐴 cm
1−𝑏𝑏𝑔𝑔 400.0 85.00 800.00 39.494

Graupel fall speed exponent 𝐴𝐴 𝐴𝐴𝑔𝑔 None 0.4 0.10 0.80 0.018

Snow particle density 𝐴𝐴 𝐴𝐴𝑠𝑠 𝐴𝐴 g cm
−3 0.2 0.05 0.40 0.024

Graupel particle density 𝐴𝐴 𝐴𝐴𝑔𝑔 𝐴𝐴 g cm
−3 0.4 0.05 0.80 0.045

Threshold cloud mass mixing ratio for autoconversion to rain 𝐴𝐴 𝐴𝐴𝑐𝑐𝑜𝑜 𝐴𝐴 g kg−1 1.0 0.001 2.0 0.112

Slope intercept of the rain particle size distribution 𝐴𝐴 𝐴𝐴0𝑟𝑟 𝐴𝐴 cm
−4 0.5 0.1 1.00 0.024

Note. The standard deviations in the last column correspond to 20% of the values obtained using the inversion data from Posselt and Vukicevic (2010) study.

Table 1 
Microphysics Parameters Selected for Perturbations in the Sensitivity Experiments With the Corresponding Prescribed Mean Values, Range Boundaries and 
Standard Deviations Used for Sampling the Parameter Variations by Different Configurations of the SP Scheme

https://doi.org/10.5281/zenodo.5736940
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that the parameter variances based on the inversion data were too high for the application with these distributions 
in the SP scheme; they resulted in a high probability of perturbed parameter values that were close to the  theo-
retical boundaries of the parameter ranges. For this reason, the variances were reduced to 20% of the original 
values. The parameters selected for perturbation in this study together with the corresponding units, value ranges, 
mean and standard derivations are presented in Table 1. The mean values were set to the “true” model solution 
that was used to simulate the observations in the prior study. The inversion data were used also to randomly select 
vector parameter samples for ensemble simulations assuming time-invariant parameters. This configuration was 
used to compare the stochastic versus non-stochastic parameter perturbations. The non-stochastic configuration 
is equivalent to using the multi-parameter ensemble strategy (Yussouf & Stensrud, 2012).

2.3. Sensitivity Experiments

The sensitivity experiments with the SP scheme involved 100-member ensemble simulations, in which each 
member was evolved with a different stochastic sequence of parameter perturbations. Additionally, the same size 
ensemble simulations with randomly sampled constant-in-time parameters described in the prior section were 
performed, referred to as non-SP configuration. The SP experiments explored impacts of using different statisti-
cal distributions (LN and N) for sampling the innovations, uncorrelated and correlated parameter perturbations, 
and different decorrelation time scales. The comparison of correlated versus uncorrelated perturbations was 
performed using only the N distribution. All configurations were applied to 7 and 8 parameter sets and decorre-
lation times of 1, 3, 6 and 12 hr (Table 2).

Two sets of sensitivity experiments were performed using the correlated parameter sampling: one with 
time-invariant and other with time-varying covariance. The time-invariant covariance was computed using the 
prior study data as discussed in the previous section. The data for the time-varying covariance were gener-
ated in this study motivated by the initial sensitivity experiments, which showed significant variability of the 
degree of model sensitivity to the SP scheme depending on the storm phase. The results from the sensitiv-
ity experiments are discussed in the following section. Here, we present the approach taken to estimate the 
storm-phase-dependent covariances. New MCMC inversions were performed using the same algorithm as in 
Posselt and Vukicevic (2010) for three different observing periods instead of the five observation instances (30, 
60, 90, 120, and 150 min) within one three-hour model integration as was done in the prior study. The observing 
periods were set based on the phases of the simulated storm evolution identified as: convective (30, 60, 90 min), 
transition to stratiform (90, 120 min) and stratiform (120, 150, 180 min). The new inversions used the same 
observable quantities as in the prior study (PR, LWP, IWP, OSW and OLW), but three separate observing time 
periods. This resulted in three different empirical joint parameter distributions. Each corresponding covariance 
matrix was then applied sequentially in the SP scheme configuration with the time-varying covariance (labeled 
SP-NCovV in Table 2).

Comparison of correlation matrices corresponding to the prior and new inversion data (Figure 2) indicated signif-
icant differences in the relationships between the two representations of the covariance parameter variations for 
certain parameters. For example, the correlation based on the entire storm evolution (the prior study) between 

Stochastic Innovation distribution Covariance Cov time dependence
Number of 
parameters

Decorrelation 
time (hours)

SP-LN Yes Log Normal Variance only based on inversions PV10 No 7 and 8 1, 3, 6 and 12

SP-N Yes Normal Variance only based on inversions PV10 No 7 and 8 1, 3, 6 and 12

SP-NCov Yes Normal Full covariance based on inversions PV10 No 7 and 8 1, 3, 6 and 12

SP-NCovV Yes Normal Full covariance based on storm-phase 
dependent inversions

Yes 7 and 8 1, 3, 6 and 12

non-SP No Empirical based on 
inversionsPV10

Samples from empirical distribution Time invariant samples 7 and 8 N/A

Note. PV10 refers to the origin of the inversion data obtained in the prior study (Posselt & Vukicevic, 2010). Experiments with 7 and 8 perturbed parameters included, 
respectively, the first 7 and all parameters shown in Table 1.

Table 2 
Parameter Sampling Configurations Used for the Sensitivity Experiments
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the coefficients involved in the fall-speed parametrization for the snow and graupel (respectively 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑔𝑔 ) has 
significantly higher amplitude (+0.47) and is of the opposite sign than the correlations computed from the new 
data for either phase of the storm (respectively Figures 2a–2d). Positive correlation between snow and graupel 
fall speed coefficients results from the constraint that 𝐴𝐴 𝐴𝐴𝑠𝑠  < 𝐴𝐴 𝐴𝐴𝑔𝑔 in the MCMC experiments. As 𝐴𝐴 𝐴𝐴𝑠𝑠 increases, 𝐴𝐴 𝐴𝐴𝑔𝑔 must 
necessarily increase as well. The correlations corresponding to the different storm phases are all of small ampli-
tude and negative (Figures 2b–2d) with the smallest amplitude during the convective phase (−0.06; Figure 2b) 
and a gradual increase toward the stratiform phase (Figures 2c and 2d). While the parameter value constraint 
was also enforced for subset time intervals, the snow and graupel parameters had more limited influence rela-
tive to the entire simulation. Also for the parameters involved in the rain processes, the threshold mass mixing 
ratio for auto-conversion to rain (𝐴𝐴 𝐴𝐴𝑐𝑐0 ) and the slope intercept of the rain particle size distribution (𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜 ), the prior 
study correlation shows near independence between these parameters (Figure 2a), whereas the new data indicate 

Figure 2. Parameter correlation matrices based on the Bayesian nonlinear inversions using simulated integral satellite observations for: (a) entire storm evolution 
(the inversions performed by Posselt and Vukicevic (2010) study), and (b) convective, (c) transition and (d) stratiform phases of the storm evolution (the inversions 
performed in this study).
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significant negative correlation (−0.44) during the convective phase (Figure 2b), when the warm rain processes 
were dominant, and near independence for the remaining phases (Figures 2c and 2d). This is consistent with 
the findings presented in Posselt and Bishop (2012), who found that parameter distributions change with time, 
and points to the need to account for the time-dependent joint parameter distributions in stochastic parameter 
perturbation schemes. Additionally the parameter variances using the phase-dependent inversions were found to 
be about one order of magnitude smaller than the variances based on the entire storm evolution (not shown). This 
provided additional justification for reducing the latter variances to 20% of the original values for the application 
in this study, as discussed in Section 2.2.

The configurations of the SP scheme considered for the sensitivity experiments are summarized in Table 2. For 
all configurations the updates of the perturbed parameter values at every time step during the 1D microphysics 
model simulations were constrained by the boundary conditions for each parameter and the physical relation 

𝐴𝐴 𝐴𝐴𝑔𝑔 > 𝐴𝐴𝑠𝑠 . These were imposed by the method of rejection and resampling: invalid samples were rejected and 
random resampling was applied till the constraints were satisfied. For the configurations using the correlated 
innovations the resampling involved drawing the vector samples.

3. Results
The impacts of different configurations of the SP scheme were assessed in terms of the ensemble properties in the 
observation space and for the state quantities of the 1D column model. The output observable quantities included 
Accumulated Precipitation (AP), PR, LWP, IWP, OSW and OLW. Note that the AP was not used as an observa-
ble in MCMC, but we include it here as it is an outcome of interest for applications; convective storm impact is 
often as much a function of accumulated precipitation as precipitation rate. The model state quantities included 
vertical profiles of cloud droplets, rain, pristine ice, snow, and graupel. The impacts in the observation space were 
measured in terms of time dependent root mean squared error (RMSE) and bias relative to the control simulation 
and ensemble standard deviation (the spread). The analysis of impacts on the model state quantities was focused 
on the bias. For all quantities the bias diagnostic was defined as the ensemble mean minus the control (Figure 1).

We note that within the idealized ensemble modeling framework in this study the bias relative to the control 
simulation represents a mean nonlinear response by the microphysics model, including the transformations into 
the observations space, to the unbiased stochastic scheme configurations as presented in Section 2.2. This bias 
measure was used to estimate impacts of the parameter variability represented by the different sampling distribu-
tions on the ensemble mean errors in the absence of other factors influencing the errors. The results pertaining to 
the experiments with 7 perturbed parameters and the decorrelation time scale of 3 hr were selected for the pres-
entation, because the equivalent for the 8-parameter configurations and other decorrelation times were similar. 
The few notable differences are mentioned in the summary.

3.1. Ensemble Performance in Observation Space

The ensemble diagnostics in the observation space exhibited significant time variability for all SP configurations 
and high sensitivity to the configurations (Figure 3). The time variability was dependent on storm evolution 
phases and was most pronounced for the PR and radiation observations (Figures 3b, 3e and 3f). For all configu-
rations the bias and spread for the PR exhibited peaks during the early convective phase and then remained high 
throughout the stratiform phase. The largest PR bias was associated with the SP-LN configuration. For the OLW 
the bias and spread were small during the early convective phase, large during the transition phase and moder-
ate after (Figure 3e). The highest bias of 𝐴𝐴 8Wm

2 was produced by the SP-LN configuration. Most storm-phase 
dependent variability in the ensemble diagnostics was found for the OSW with prominent peaks in the bias and 
spread during the convective, mid-transition and end-stratiform phases (Figure 3f). The maximum in negative 
bias during the convective phase was associated with a negative bias in liquid water path, while the peak in 
negative bias during the transition phase was associated with a negative bias in the IWP (Figure 3c). As for the 
OLW the highest bias amplitudes were produced by the SP-LN configurations (reaching a minimum of −𝐴𝐴 41Wm

2 
during the early convective phase, Figure 3f). For the IWP, LWP and AP the ensemble spread exhibited steady 
growth throughout the integration period for all SP configurations, unlike the bias which peaked during the tran-
sition phase.
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The sensitivity of the ensemble performance to SP configurations was found to be high for all ensemble perfor-
mance measures and observation quantities. The ensemble bias was overall highest for the SP-LN and SP-N 
configurations and smallest for the SP-NCovV, while the SP-NCov configuration performance was in between 
for all observations. The results for the ensemble spread were more dependent on the observation quantity. The 
SP-NCov and SP-NCovV configurations showed the highest spread values for the AP and IWP, whereas the SP-N 
and SP-LN configurations were compatible or slightly better for the other observations.

In contrast to the SP configurations the non-SP experiment showed little dependence of the ensemble perfor-
mance measures on the storm evolution phases (Figure 3, gray curves). As would be expected by the design 
of this configuration, the ensemble bias was very small and nearly constant throughout the simulation period, 
with the exception of the last 30 min where it exhibited a slight growth. The RMSE and spread, which were 
consequently nearly identical, exhibited steady growth throughout the entire period. The spread was significantly 
smaller than for the SP experiments until about 125 min, after which it reached compatible values and even 
exceeded the SP-LN and SP-N configurations for the accumulated precipitation. The results point to the fact that 
the influence of one or more parameters on the model changes with time during the model evolution as various 
processes related to those parameters are more or less active, leading to a small sensitivity to storm evolution 
phases when the parameter perturbations are time invariant. The results also suggest that a higher frequency 
evaluation (e.g., minutes to hourly) of convective scale ensemble prediction is desirable to achieve better under-
standing of the differences between the microphysics parameter uncertainty representations.

To better understand the relationships between the ensemble properties and the SP configurations the probabil-
ity density distributions of perturbed parameter values generated in the course of each experiment were exam-
ined. The samples consisted of 100 × 2161 realizations based on all ensemble members (100) and all 5-s time 
steps (2161) for each experiment. For easier comparison between different experiments the marginal probability 
densities shown in Figure 4 were estimated using the Gaussian KDE (Kernel Density Estimation) with standard 
deviation value of 4. The primary difference between these exit distributions was in the densities near one or 
both boundary values. The configurations with the high densities at the extremes of the range such as the SP-LN, 
SP-N tended to produce a highly biased model response (Figure 3). The exit distributions associated with the 
SP-NCov configuration exhibited similar properties to the SP-N for most parameters, except 𝐴𝐴 𝐴𝐴𝑔𝑔 and 𝐴𝐴 𝐴𝐴𝑔𝑔 for which 

Figure 3. Time dependent ensemble root mean squared error (solid), bias (dotted) and spread (dashed) for different simulated observations: (a) AP, (b) PR, (c) IWP, (d) 
LWP, (e) OLW and (f) OSW, associated with different configurations of the SP scheme. The configurations (Table 2) are represented by different colors as shown in the 
legend. The displayed results are for the experiments using the decorrelation time of 3 hr and 7 perturbed parameters.
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the SP-NCov distributions were more symmetrical and with lower densities near the boundaries (Figure 4 blue 
curves).

In contrast the exit marginal distributions associated with the SP-NCovV configuration which led to the least 
biased model response had low densities near the range boundaries for all parameters (Figure 4 orange curves). 
The results suggest that sampling strategies without an imposed covariance structure may lead to more frequent 
sampling near the extremes, and as a consequence may tend toward a stronger nonlinear biased response. The use 
of process-level covariance estimates may mitigate this behavior and reduce the incidence of bias.

The results also suggest an inverse relationship for the ensemble spread: high densities near the extremes and 
mutual independence of parameter perturbations (SP-LN and SP-N configurations) may produce less spread than 
using the process-dependent co-varied parameters for the same choice of the prescribed entry statistics (the mean 
and variance values). Stated another way, a restricted range of parameter values produced by the imposition of 
inter-parameter covariance structures in our experiments led to a larger ensemble spread. We note that the most 
influential parameters are those that are associated with the snow and graupel fall speeds, and that the coeffi-
cients and exponents are strongly correlated (Figure 2). We suspect that ignoring these correlations allows the 
coefficients and exponents to vary in such a way as to lead to compensating effects, reducing the spread of the 
ensemble.

The exit distributions also point to the differences between the configurations regarding the impact of the physical 
constraint 𝐴𝐴 𝐴𝐴𝑠𝑠 < 𝐴𝐴𝑔𝑔 on the sampling. For example, it is clearly evident that using this constraint caused pronounced 
left and right skewness, respectively, for 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑔𝑔 distributions for the SP-N configuration (respectively panels 
a and c in Figure 4, red curves) relative to the Normal distribution that would result from sampling by the linear 
Gaussian stochastic model according to the expression (Equation 1). As a consequence the parameter perturba-
tions for 𝐴𝐴 𝐴𝐴𝑔𝑔 had a notable bias (shown in Figure 4c by a displacement of red diamond and circle symbols from 
the control/theoretical-mean marked by black star symbol). Similar but less pronounced tendency for skewed 
sampling of these parameters was exhibited by the SP-NCov configuration and also SP-NCovV to a lesser degree 
(Figures 4a and 4c, respectively blue and orange curves and the corresponding mean values). For the SP-LN 
configuration the impact of the physical constraint was reflected in enhanced skewness for 𝐴𝐴 𝐴𝐴𝑠𝑠 and reduced for 𝐴𝐴 𝐴𝐴𝑔𝑔 . 
The former was associated with a significant negative bias (Figure 4a, displacement of green diamond and circle 
from the control). Considering that applying known physical constraints to parameter perturbations is desirable 

Figure 4. Probability densities of perturbed microphysical parameters based on all ensemble members (100) and 5-s time steps (2161) for experiments using different 
configurations of the SP scheme. The parameter symbols are shown in the title of each panel and are described in Table 1. The SP scheme configurations (Table 2) 
are represented by different colors as shown in the legend. The displayed densities are for the experiments where 7 (solid curves) and 8 (dashed curves) parameters 
were perturbed using decorrelation time of 3 hr. The theoretical and sample mean values for each parameter are marked by colored symbols along the horizontal axis 
as follows: theoretical mean (black star), 7 perturbed parameters (filled circles), 8 perturbed parameters (filled diamonds). The symbols are staggered in the vertical to 
avoid overlapping.
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the results point to a potential for mitigating their undesirable impacts on the SP sampling (e.g., introducing or 
enhancing skewness and bias) by using the process-level covariance estimates with built-in constraints.

3.2. Microphysics Response to SP Configurations

In this section the sensitivity of the various cloud hydrometeor species to the SP configurations is analyzed in 
terms of the differences between the ensemble mean and the control simulation (i.e., the bias). In contrast to 
the vertically integrated quantities shown in Figure 3, the cloud droplet, rain, pristine ice, snow, and graupel 
concentrations are more directly related to changes in microphysical parameters. Significant sensitivity to the 
various parameter perturbation configurations was found for all cloud species outputs. Unlike for the observ-
able (column integral) quantities, the sensitivity for each cloud mixing ratio variable had relatively low time 
variability, and was associated primarily with the prevalence or not of the specific hydrometeor type in each 
phase of the simulated storm. For all outputs, with the exception of snow, the biases associated with the differ-
ent configurations had the same sign and similar spatio-temporal patterns but different amplitudes. Since the 
microphysical parameters have the most significant and direct effect on the precipitating hydrometeors (rain, 
snow, and graupel), we analyze these first, followed by the non-precipitating cloud species (cloud droplets and 
pristine ice crystals).

The bias for the precipitating hydrometeors exhibited the highest variability among the configurations 
(Figures 5–7). For the rain (Figure 5) the positive bias (more rain than control) during the transition phase from 
convective to stratiform (90–120 min) was high for the SP-LN and SP-N configurations (respectively Figures 5a 
and  5b), moderate for the SP-NCov (Figure  5c) and negligible for the SP-NCovV and non-SP (respectively 
Figures 5d and 5e). This positive bias in SP-LN and SP-N configurations is consistent with the high bias in 
precipitation rate and liquid water path for these two experiments during this time period (respectively Figures 3b 
and 3d). The negative rain bias during the stratiform phase had the highest values associated with the SP-LN and 
lowest for the SP-NCovV, again consistent with the biases (or lack thereof) in PR and LWP in the last hour of the 
simulation (Figures 3b and 3d). The impact of all SP configurations on the graupel was mass reduction at heights 
between 6 and 8 km during the transition phase (Figure 6), where the control had the highest load (Figure 1b). The 

Figure 5. Difference between the ensemble mean and control simulation for rain vertical profiles as function of time for different configurations of the SP scheme 
(Table 2): (a) SP-LN, (b) SP-N, (c) SP-NCov, (d) SP-NCovV and (e) non-SP.
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loss of graupel was coupled with the rain increase for the SP-LN, SP-N and SP-NCov configurations (comparing 
Figures 6a–6c and 5a–5c) but not for the SP-NCovV (Figures 6 and 5d). The result indicates that the differ-
ent microphysics processes were affected by the parameter perturbations between the different configurations. 
This was corroborated by the inspection of the differences between impacts of the configurations on the snow 

Figure 6. As in Figure 5 for graupel.

Figure 7. As in Figure 5 for snow.
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bias (Figure 7). As for the other hydrometeors the largest bias was associated with the SP-LN configuration 
(Figure  7a), however the smallest was exhibited by the SP-N configuration which also produced a different 
spatio-temporal pattern than the other configurations. While the bias for SP-LN, SP-Ncov, SP-NCovV and also 
non-SP experiments was characterized by a systematic vertical shift in the snow mass profile resulting in the 
dipole pattern (Figures 7a, 7c–7f), the SP-N experiment produced only a small systematic reduction of the snow 
mass at approximately the same height during the stratiform phase of the simulated storm (Figure 7b).

The variability of bias amplitudes for the non-precipitating ice and liquid between the SP configurations was 
smaller than for the precipitating hydrometeors. For the pristine ice the largest impacts were found during the 
convective phase where the associated microphysical processes were most active (Figure 8). For all configura-
tions the bias was negative for the ice aloft, above about 8 km, and mostly positive below that. This is consistent 
with the high biases in precipitating hydrometeor contents below; less water vapor mass was available to be 
transported vertically and converted to pristine ice. Similarly, the impacts of the SP scheme on the cloud droplets 
for all configurations were significant only during the convective phase (Figure 9). The bias for cloud droplets 
was uniformly negative and of smaller relative amplitude than for other hydrometeors. Negative bias for cloud 
droplets was also consistent with the positive bias in precipitating hydrometeors. As for the precipitating hydro-
meteors the largest bias for the pristine ice and cloud droplets was found for the SP-LN configuration.

As would be expected the impacts of the SP configurations on the ensemble mean microphysics states had a 
close relationship to the ensemble biases in the observable states. For example, the negative peaks in the OSW 
bias (Figure 2f) during the convective and transition phases were directly related to the negative biases in the 
pristine ice and then graupel. Also, the mean loss of graupel mass was reflected in the high negative bias in the 
IWP (Figure 2d) and the positive in the OLW (Figure 2e). Similarly, the elevation of the snow mass (exhibited 
as the dipole pattern bias in Figure 7) caused the change of sign for the biases in the IWP and OLW (respectively 
Figures 2c and 2f) for the SP-LN and SP-NCov configurations which exhibited the significant bias amplitudes 
for that hydrometeor (Figures 8a and 8c). On the other hand the effect of the non-dipole and low amplitude snow 
bias for the SP-N configuration during the stratiform phase (Figure 8b) resulted in the low bias for the OSW 
(Figure 2f, red curves). Overall the results point to the complexity of understanding and ranking the configura-
tions by the mean ensemble properties in the observable quantities alone. Similar to the results in the previous 
section they recommend using higher frequency evaluations (e.g., minutes to hourly) and also more diverse 

Figure 8. As in Figure 5 for pristine ice.
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microphysics-sensitive observations (e.g., space and ground based radar observations) to enable a more accurate 
capture of different phases of the microphysics in order to better evaluate and understand the differences between 
the parameter uncertainty representations.

4. Summary and Conclusions
This study investigates sensitivity of the microphysics parameterization to configurations of the Stochastic 
Parameters (SP) schemes at the process level. For this purpose we use the generalized linear Gaussian autore-
gressive order-one stochastic model to represent the stochastic variability in the SP schemes. This formulation 
allows for exploration of the different configurations of the scheme, including: different parameter distributions, 
uncorrelated and correlated parameter perturbations, and different decorrelation times within the same algo-
rithm. It is shown that the stochastic process models that are employed in the SPP (Ollinaho et al., 2017) and RP 
(McCabe et al., 2016) schemes commonly used in the global and regional ensemble systems in prior studies could 
be represented as special cases of the formulation used in this study. In the current study the stochastic model 
constitutes the SP scheme.

We apply the scheme to multiple microphysical parameters within the Lagrangian single column version (Posselt 
& Vukicevic, 2010) of the NASA Goddard Cumulus Ensemble (GCE) model (Tao et al., 2014) for an idealized 
representation of mid-latitude squall-line convection. This modeling framework was selected because it enables 
an investigation of the effect of changes in the microphysics parameters on the model output in isolation from 
any feedback to the cloud-scale dynamics. Also we were able to make use of the prior study results where the 
same model and test case were used to quantify multi-parameter uncertainty by means of multivariate MCMC 
inversions using simulated satellite observations of PR, LWP, IWP, OSW and OLW (Posselt & Vukicevic, 2010). 
This enabled using the estimates of multi-parameter distributions from the prior inversions as the basis for setting 
the statistical properties of parameter distributions used in the SP scheme. Additionally, the impacts of the 
non-stochastic and stochastic multi-parameter perturbations on the microphysics model solution and the related 
satellite-based observable quantities could be directly compared.

The sensitivity to the SP configurations using the 1D column model was carried out through ensemble sensitivity 
experiments described in Section 2.2 and summarized in Table 2. The experiments explored impacts of using 

Figure 9. As in Figure 5 for cloud droplets.
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Log-Normal and Normal distributions, uncorrelated and correlated parameter perturbations, number of perturbed 
parameters, and different decorrelation time scales. The comparison of correlated versus uncorrelated pertur-
bations was performed using only the Normal distribution. The experiments using the correlated perturbations 
included time-invariant and time-varying covariance estimates. The constant in time covariance was computed 
using the prior study inversion results, which considered the entire storm evolution. The time-varying covariance 
was estimated in this study by performing new MCMC inversions separately for the convective, transitional and 
stratiform phases of the simulated storm. For all experiments the theoretical mean value for each parameter was 
set to the constant parameter value used in the control version of the deterministic microphysics parameteriza-
tion, the version that was used to simulate the observations for the inversions with the satellite observations. 
All configurations were applied to sets of 7 and 8 microphysical parameters and decorrelation times of 1, 3, 
6 and 12 hr (Table 2). For all SP configurations the experiments involved 100-member ensemble simulations 
where each member was evolved with a different stochastic sequence of parameter perturbations. Additionally 
the same size ensemble simulations with randomly sampled constant-in-time parameters based on the empirical 
multi-parameter distribution from the prior study inversion were performed.

The impacts of different configurations of the SP scheme were measured with respect to the control simulation in 
terms of the ensemble RMSE, bias, and spread in the observation space, and in terms of ensemble mean bias for 
the the time evolving vertical profiles of rain, graupel, snow, pristine ice and cloud droplets.

The main findings are as follows:

•  The ensemble diagnostics in the observation space exhibited high storm-phase-dependent time variability for 
all SP configurations and strong sensitivity to the choice of configuration.

•  For all SP configurations, the temporal variability was most pronounced for the PR, OSW and OLW observa-
tion variables. The peaks in the bias (with respect to the control simulation) and spread for these observables 
were prominent during different phases of the storm depending on what microphysics processes were most 
impactful on the particular observable. For example, the bias and spread for OLW exhibited strong increases 
during the convective phase and then declined through the transition phase. For the IWP, LWP and AP the bias 
showed pronounced peaks during the convective-to-stratiform transition and stratiform phases, influenced by 
the changes in the ice microphysics. The ensemble spread for these observables, however, was characterized 
by low temporal variability and growth throughout the integration period.

•  Concerning the sensitivity of the ensemble performance to the choice of SP configuration, the most influ-
ential factors were found to be the choice of the parameter distribution (normal vs. lognormal) and whether 
or not the parameter perturbations were correlated. Choice of temporal decorrelation time had little effect 
on the results of our experiments. For all observables the biases were overall largest for the configurations 
that used the univariate Log-Normal and Normal distributions (SP-LN and SP-N experiments) and smallest 
for the configurations with the storm-phase-dependent covariances (the SP-NCovV experiments). For the 
ensemble spread, the degree of sensitivity to configurations exhibited more dependence on the observable. 
The SP-NCov and SP-NCovV configurations exhibited the highest spread for the AP and IWP, whereas the 
SP-N and SP-LN configurations produced compatible or slightly higher spreads for the other observables.

•  In terms of the RMSE-to-spread performance measure, the SP-NCovV experiments produced the most favora-
ble ensemble response due to least bias and considerable spread. By the same measure the SP-LN configura-
tions provided the least favorable ensembles.

•  The experiments using constant in time parameters (the non-SP configurations) exhibited very different 
behavior from the SP experiments: for all observables the ensemble spread had slow growth throughout the 
simulations and was significantly smaller than for the SP experiments for the first 2 hr. The ensemble bias 
was small by design because the parameter samples were drawn from a joint empirical parameter distribution 
constrained by the simulated observations over the entire storm evolution and centered on the parameter mean 
values. The results suggest that time-invariant parameter perturbations do not support the variability of model 
responses due to different microphysics processes during the storm evolution.

•  Significant sensitivity to the configurations was found for all microphysics state outputs. Unlike for the 
column integral observable quantities, the sensitivity for each cloud microphysical mass mixing ratio variable 
had relatively low time variability, and was associated primarily with the prevalence or not of the specific 
hydrometeor type in each phase of the simulated storm. For all outputs with the exception of the snow, the 
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biases (with respect to the control simulation) associated with the different configurations had the same sign 
and similar spatio-temporal patterns but different amplitudes.

•  Overall, the bias in the microphysical states was highest for the SP-LN and SP-N configurations and lowest for 
SP-NCov and SP-NCovV. Most significant biases were exhibited for the rain, graupel and snow.

•  The sensitivity to changing the number of parameters from 7 to 8 by adding the slope intercept for the rain 
particle size distribution was negligible overall except it caused higher time variability of the ensemble spread 
and RMSE for the precipitation rate.

These findings lead to the following main conclusions and recommendations.

•  The impact of the stochastic parameter perturbations on the microphysics model ensemble solution is highly 
storm-phase dependent

•  The correlated parameter perturbations informed by the process-level covariance estimates may reduce biased 
response by the microphysics parameterization and introduce more variability than the uncorrelated sampling 
using the univariate distributions

•  Using the Log-Normal distribution or other skewed sampling may lead to undesirable biased response by the 
microphysics parameterization

•  Using the appropriate mean and covariance estimates for the stochastic parameter sampling for the different 
phases of the microphysics dependent on the storm morphology is highly desirable

•  This calls for the parameter estimation capabilities using the microphysics-sensitive observations preferably 
with hourly or less temporal frequency such as geostationary satellite and ground-based radar remote sensing. 
Such capability could be enabled by convective scale data assimilation systems

The primary caveat to this study, and the factor limiting its applicability in real-world prediction scenarios, is the 
use of a single column model framework. While this has enabled us to conduct a wide range of experiments and 
has enabled a more straightforward interpretation of the results, there is no feedback from parameter perturba-
tions to the three-dimensional dynamics and thermodynamic state. This is also likely the reason there was little 
to no sensitivity of our results to changes in the decorrelation time scale; the 1D model evolution is controlled 
by the imposed water vapor source and vertical velocity profile. In previous parameter estimation studies, we 
have shown that the parameters that are most influential, the time during which they have an effect, and the 
inter-parameter covariances are quite similar between 1D and 3D models (compare results reported by Posselt 
and Vukicevic (2010) with Posselt (2016)). However, these studies considered only non-stochastic perturbation 
methods. The natural next step for our study is to employ the various SP methodologies in a three dimensional 
simulation framework and perhaps also to examine the ensemble spread due to initial conditions versus parameter 
perturbations as was done for static parameter perturbations by Posselt et al. (2019). We expect that the temporal 
autocorrelation length scale will have a much more substantial effect in a model that allows feedback from the 
parameterization to the thermodynamic and dynamic environment.

In addition, we have examined microphysical parameter perturbations in one particular type of weather system 
(deep convection). It would be useful to explore the influence of choices in SP scheme for other weather systems 
(e.g., extratropical cyclones and/or orographic precipitation). We also are aware that cloud microphysical schemes 
are not the only parameterizations with uncertainty. Other parts of the model (e.g., the planetary boundary layer 
parameterization; Aksoy et al., 2006) contain uncertain parameters and also would benefit from study of various 
SP scheme configurations. We plan to pursue these and other studies in the near future.

Appendix A: Relationship Between Generalized Linear Gaussian AR1 Formulation 
and the SPP and PR Schemes
In this appendix the correspondence between the SPP and RP schemes and the generalized linear Gaussian AR1 
formulation used in this study is presented. By the generalized formulation the stochastic parameter perturbations 
are evolved according to the expression (Equation 1), repeated here for convenience

Φ(𝑡𝑡 + ∆𝑡𝑡) − Φ = 𝛼𝛼
[

Φ(𝑡𝑡) − Φ
]

+ 𝐶𝐶
1∕2

Φ
𝜀𝜀(𝑡𝑡) (A1)
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where 𝐴𝐴 Φ is a vector stochastic quantity with mean 𝐴𝐴 Φ , 𝐴𝐴 𝐴𝐴 is the first order regression coefficient determined by 

the model time step 𝐴𝐴 𝐴𝐴𝐴𝐴 and decorrelation time scale 𝐴𝐴 Λ , 𝐴𝐴 𝐴𝐴
1∕2

Φ
𝜀𝜀(𝑡𝑡) is the innovation term where 𝐴𝐴 𝐴𝐴

1∕2

Φ
 is square root 

covariance matrix, and 𝐴𝐴 𝐴𝐴(𝑡𝑡) is a 𝐴𝐴 𝐴𝐴(0, I) random vector, with 𝐴𝐴 𝐴𝐴 being the identity matrix. Assuming no spatial 
variability for the parameter perturbations the SPP scheme formulation would derive directly from the expression 

(Equation A1) by using a diagonal variance matrix 𝐴𝐴 𝐴𝐴Φ and 𝐴𝐴 𝐴𝐴 = 𝑒𝑒
−

𝑑𝑑𝑑𝑑

Λ . As discussed in Section 2.2, the definition of 
the stochastic quantity would depend on the choice of statistical distribution for the parameter variability within 
a range of permissible values. For the scheme application in the ECMWF medium-range ensemble forecasting 
system Ollinaho et al. (2017) used the Long Normal distribution. For this distribution as is shown in Section 2.2 
the vector 𝐴𝐴 Φ consists of the quantities 𝐴𝐴 𝐴𝐴 = 𝐿𝐿𝐿𝐿(

𝑝𝑝
′

𝑝𝑝
) , where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴

′ are, respectively, the unperturbed and perturbed 
parameter values for each parameter to be perturbed. Ollinaho et al. (2017) considered two options for 𝐴𝐴 𝐴𝐴 based on 
the following two criteria: 𝐴𝐴 𝐴𝐴

′ = 𝐴𝐴 and 𝐴𝐴 𝐴𝐴
′
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= 𝐴𝐴 . The first criterion corresponds to the SP-LN configuration in 

this study with 𝐴𝐴 𝐴𝐴 = −
𝜎𝜎
2
𝐴𝐴

2
 and 𝐴𝐴 𝐴𝐴

2

𝜑𝜑 = 𝐿𝐿𝐿𝐿

(

𝐴𝐴
2
𝑝𝑝

𝑝𝑝2
+ 1

)

 , where 𝐴𝐴 𝐴𝐴
2

𝑝𝑝 is predefined parameter variance, whereas the second 

criterion corresponds to 𝐴𝐴 𝐴𝐴 = 0 .

The recent applications of the SPP scheme with the regional models (Jankov et al., 2019; Stanford et al., 2019; 
Thompson et al., 2021; Wang et al., 2019) considered the Normal distribution for the SPP using the multiplica-
tive stochastic noise formulation for the relationship between the perturbed and unperturbed parameter values 
according to 𝐴𝐴 𝐴𝐴

′ = (1 + 𝜑𝜑)𝐴𝐴 . For this formulation the expression (Equation A1) would apply to 𝐴𝐴 𝐴𝐴 =
𝑝𝑝
′

𝑝𝑝
− 1 , 𝐴𝐴 𝐴𝐴 = 0 

and 𝐴𝐴 𝐴𝐴𝜑𝜑 =
𝐴𝐴𝑝𝑝

𝑝𝑝
 , equivalent to the SP-N configuration used in this study. When the spatial variability of parameter 

perturbations is considered and represented by the Gaussian correlated noise pattern in 2D horizontal space of 
the prediction model, as was done for all prior applications of the SPP scheme, the stochastic quantity 𝐴𝐴 𝐴𝐴 would 
involve spectral coefficients of the spatial noise pattern.

The PR scheme (Hermoso et al., 2021; McCabe et al., 2016) assumes no spatial variability of the parameters and 
makes use of the uniform distribution for the stochastic variability according to

𝑃𝑃 (𝑡𝑡 + 1) = 𝛼𝛼𝑃𝑃 (𝑡𝑡) + 2𝜂𝜂
√

1 − 𝛼𝛼2 

where 𝐴𝐴 𝐴𝐴 = 1 −
𝑑𝑑𝑑𝑑

Λ
 and 𝐴𝐴 𝐴𝐴 is a random quantity with uniform distribution in the interval [−1,1], could be represented 

by the model (Equation A1) using 𝐴𝐴 𝐴𝐴 =
𝑝𝑝
′

𝑝𝑝
− 1 with mean 𝐴𝐴 𝐴𝐴 = 0  . To represent the sampling equivalent to using 

the bounded uniform distribution the variance may be set to 𝐴𝐴 𝐴𝐴𝜑𝜑 = 2𝐴𝐴∗
√

1 − 𝛼𝛼2 , where 𝐴𝐴 𝐴𝐴
∗ would be a large value 

applicable to all parameters. The RP scheme and this configuration are not exact equivalents due to approximat-
ing the uniform distribution by the Normal with a large variance, but the correspondence would be close for all 
practical purposes assuming application of the appropriate boundary conditions (the range of parameter values). 
The RP configuration was not explicitly considered in the sensitivity experiments in this study because it is simi-
lar to the SP-N configuration (Table 2).

Data Availability Statement
The data used in creation of this manuscript include: simulations by the 1D column microphysics model used 
in this study, diagnostics derived from the model simulations and results from Bayesian inversions performed 
in Posselt and Vukicevic (2010) and in this study using the same model and simulated column integral satellite 
observations. The data are available at https://doi.org/10.5281/zenodo.5736940. A guide to content and format 
of the archived data is provided in the Supporting information. The graphics were generated using Matplotlib 
(https://matplotlib.org) and Seaborn (https://seaborn.pydata.org) software libraries. The 1D column microphysics 
model used in this study is a single column version of the NASA Goddard Cumulus Ensemble (GCE) model 
(Tao et al., 2014), described in Posselt and Vukicevic (2010). The Bayesian inversion model used in this study is 
presented in Posselt and Vukicevic (2010).

https://doi.org/10.5281/zenodo.5736940
https://matplotlib.org/
https://seaborn.pydata.org/
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