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Abstract

The simultaneous modulation of joint torque and stiffness enables humans to
perform large repertoires of movements, while adapting to external mechanical
demands in a versatile way. Multi-muscle force control is key for joint torque and
stiffness modulation. However, the inability to directly measure muscle force in
the intact moving human prevents understanding how muscle force causally links
to joint torque and stiffness during movement. Joint stiffness is predominantly
estimated via joint perturbation-based experiments in combination with system
identification techniques. However, these techniques provide joint-level stiffness
estimations with no causal link to the underlying muscle forces. Moreover, the
need for joint perturbations limits the generalisability and applicability to study
natural movements. Here, we present an electromyography (EMG)-driven mus-
culoskeletal modeling framework that can be calibrated to match reference joint
torque and stiffness profiles simultaneously. EMG-driven models calibrated on
< 2 s of reference torque and stiffness data could blindly estimate reference
profiles across 100 s of data not used for calibration. Torque-and-stiffness cali-
brated models reduced the space of feasible muscle-tendon unit parameters with
respect to torque-only calibrated models, thereby addressing the model redun-
dancy problem. Results also showed the ability of the proposed framework to
estimate joint stiffness in unperturbed conditions, while capturing differences
against stiffness profiles derived during perturbed conditions. The proposed
framework may provide new ways for studying causal relationships between
muscle force and joint torque and stiffness during natural movements in in-
teraction with the environment, with broad implications across biomechanics,
rehabilitation and robotics.

Keywords: joint stiffness, musculoskeletal modeling, calibration,
electromyography
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1. Introduction

Human movement results from the interaction between the neuromuscu-
loskeletal system and the environment (Winter, 2009). The coordinated activity
of all muscles spanning a joint largely defines net joint torque and joint stiffness
(Cop et al., 2021), thereby enabling versatile navigation and adaptation to ex-5

ternal mechanical demands (Valero-Cuevas, 2016). The ability to determine the
muscle force profiles underlying a given movement is crucial to understand how
joint torque and stiffness are modulated to enable large repertoires of move-
ments. However, it is currently not possible to directly measure muscle force in
the intact moving human in vivo (Herzog, 2017).10

Electromyography (EMG)-driven musculoskeletal models (or EMG-driven
models) are valuable computational tools to study movement’s underlying mus-
culoskeletal forces (Lloyd and Besier, 2003). In this context, muscle-tendon
units (MTUs) are predominantly modeled using Hill-type muscle formulations,
based on parameters that vary non-linearly across individuals. However, for the15

same person, and for the same combination of joint angle and torque profiles,
different model parameters could potentially result in different muscle force and
joint stiffness solutions (Cop et al., 2021). Therefore, robust identification of
MTU parameters on a subject-specific basis is necessary to understand how
muscles contribute to modulate joint stiffness during movement.20

EMG-driven model parameters are commonly identified to best fit experi-
mental joint torques (Falisse et al., 2016). However, it is unclear to what extent
Hill-type muscle models with torque-only-identified parameters would enable es-
timation of joint stiffness (Perreault et al., 2003; Hu et al., 2011). Human joint
stiffness is predominantly studied via system identification methods, which re-25

quire the mechanical perturbation of biological joints (Kearney and Hunter,
1990). However, the required joint perturbation inherently alters normative
neuromuscular function and limits the repertoire of movements, as well as the
range of human populations, that can be studied in the first place (Klomp et al.,
2013). Moreover, joint-perturbation-based system identification methods pro-30

vide estimations of joint-level stiffness with no direct link to the underlying
muscle forces.

First, we propose a new EMG-driven model that can be calibrated at the
joint torque and stiffness levels simultaneously during dynamic ankle joint rota-
tions. We hypothesize this will improve joint stiffness estimation with respect to35

torque-only calibrated models. Moreover, we hypothesise torque-and-stiffness
calibrated models reduce the MTU parameter solution space with respect to
torque-only calibrated models, thereby leading to realistic MTU force solutions,
i.e., explaining joint stiffness and torque simultaneously. Second, we assess the
ability of the proposed modeling framework to estimate joint stiffness in unper-40

turbed conditions, while capturing differences against stiffness profiles derived
during conventional perturbed conditions.

This study provides a framework to study how muscle force results in torque
and stiffness modulation during dynamic movements in perturbed and unper-
turbed conditions. Removing the need for joint perturbation would enable, for45
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the first time, the ability to study the neural control of joint stiffness in natural,
unaffected biological systems, while facilitating translation to clinical settings,
where joint-perturbation requirements cannot always be met (Sartori et al.,
2015).

2. Methods50

2.1. Subjects

Five healthy volunteers (age range: 23–30 years, 1 woman) with no self-
reported history of neurological or ankle impairments participated in this study.
The Natural Sciences and Engineering Sciences Ethics Committee of the Uni-
versity of Twente approved the experimental procedures (reference number: RP55

2018-59) and all subjects provided written informed consent. The experiments
complied with the Declaration of Helsinki.

2.2. Protocol

The “Achilles” Rehabilitation Device (MOOG, Nieuw-Vennep, The Nether-
lands), a single axis dynamometer, was used to perturb and measure subjects’60

right ankle joint angle and torque at 2048 Hz. The right ankle’s axis of rota-
tion in the sagittal plane was visually aligned to the actuator’s axis of rotation
before the start of the experiment. The chair was adjusted to allow for a knee
flexion angle of 45◦. Subjects were instructed to follow a sinusoidal ankle an-
gle target (amplitude: 0.15 rad, frequency: 0.6 Hz) displayed on a monitor,65

while small pseudo-random angular perturbations (amplitude: 0.03 rad, switch-
ing time: 0.15 s) were applied. The dynamometer controller was set to render
a virtual environment: inertia: 1 kg·m2, damping: 2.5 N·m·s/rad, stiffness: 60
N·m/rad. Additionally, four subjects also performed the same tracking task, i.e.,
sinusoidal ankle angle target (amplitude: 0.15 rad, frequency: 0.6 Hz), without70

being applied any angular perturbations by the dynamometer, i.e., unperturbed
trial.

EMGs were recorded (2048 Hz) using a 32-channel amplifier (Porti, TMSi,
Oldenzaal, The Netherlands) and disc-shaped Ag / AgCl electrodes (inter-
electrode distance: 24 mm) in a bipolar configuration. Electrodes were placed75

following SENIAM guidelines (Hermens et al., 2000) on tibialis anterior, soleus,
gastrocnemius medialis, gastrocnemius lateralis, and peroneus longus. Three
maximum voluntary contraction (MVC) trials of approximately 5 s per muscle
group were performed at the start of the experiment to normalize the EMGs.

2.3. Data processing80

Data processing was performed using MATLAB R2021a (The Mathworks
Inc., Natick, MA, USA). EMG signals were band-pass filtered using a zero-lag
second-order Butterworth filter (cutoff frequencies: [20 300] Hz), full-wave recti-
fied, and low-pass filtered (cutoff frequency: 3 Hz) using a zero-lag second-order
Butterworth filter. The resulting envelopes were normalized and resampled at85

1024 Hz. In the remainder of the manuscript these normalized EMG envelopes
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will be referred to as “muscle excitations”. Measured joint torques and joint an-
gle were low-pass filtered using a zero-lag fourth order Butterworth filter (cutoff
frequency: 80 Hz) and resampled at 128 Hz. Processed joint torques and angles
will be referred to as reference joint torque and angle profiles.90

Reference joint stiffness profiles were obtained using the Short Data Seg-
ments system identification algorithm (Ludvig and Perreault, 2012; Esteban
et al., 2019). This method uses ensembles of input, i.e., joint angular displace-
ment due to perturbation, and output, i.e., measured response torque, data
across an ensemble of realizations to estimate joint stiffness at each time point95

(van de Ruit et al., 2021). Reference joint stiffness profiles were filtered using a
moving average window of 20 samples.

2.4. EMG-driven musculoskeletal modeling

This work extends the Calibrated EMG-Informed Neuromusculoskeletal Mod-
elling Toolbox (CEINMS) we previously developed (Pizzolato et al., 2015; Du-100

randau et al., 2017). We introduce a new algorithm to calibrate EMG-driven
model parameters both at the stiffness and torque levels simultaneously. More-
over, we extend previous Hill-type muscle model formulations (Sartori et al.,
2015) to allow for stiffness estimation accounting for MTUs’ pennation angle.
For an extensive description of the standard EMG-driven modeling formulation105

via Hill-type muscle models, the reader is referred to (Lloyd and Besier, 2003;
Sartori et al., 2015). The EMG-driven modeling pipeline (Fig. 1) is outlined
below.

Activation dynamics:. Muscle excitations are mapped into MTU activations
(a):110

a =
eAu − 1

eA − 1
(1)

where u is the experimental muscle excitation, and A ∈ (-3, 0) is the shape
factor.

MTU kinematics:. Joint angles are mapped into MTU length and moment arms
using a set of multi-dimensional B-splines (Sartori et al., 2012).115

MTU dynamics:. MTU force, Fmtu, is computed as a function of MTU length,
velocity, activation, and pennation angle:

Fmtu = Fmax
(
afa(l̃

m)fv(ṽ
m) + fp(l̃

m) + v̄md
)
cosϕ (2)

where Fmax is the muscle’s maximum isometric force, fa(l̃
m), fv(ṽ

m), and
fp(l̃

m) are generic dimensionless active force-length, force-velocity, and passive120

force-length relationships, respectively, l̃m and ṽm are the muscle fiber’s nor-
malized length and velocity, respectively, d = 0.1 is a damping factor to avoid
model singularities when muscles are inactive (Millard et al., 2013), and ϕ is
the muscle fiber’s pennation angle.
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MTU stiffness,Kmtu, is computed as the series arrangement of the equivalent125

muscle fiber’s stiffness in the tendon’s line of action, Km
eq , and the tendon’s

stiffness, Kt, (Cop et al., 2021):

Kmtu =
(
Km

eq
−1 +Kt−1)−1

(3)

where, based on the work of (Jenkins and Bryant, 2020), Km
eq is computed in a

generalised way, i.e., considering pennation angle, as:130

Km
eq =

∂Fm
eq (a, l̃

m, ṽm, ϕ)

∂lmeq

=
∂Fm(a, l̃m, ṽm)

∂lm
cos2 ϕ+

Fm(a, l̃m, ṽm)

lm
sin2 ϕ

(4)

where Fm
eq and lmeq are the force and length, respectively, of the muscle fiber

along the direction of the tendon’s line of action, Fm and lm are the force and
length, respectively, of the muscle fiber along its axis. Kt is computed as:

Kt =
dF t(ϵ)

dϵ
(5)135

where F t(ϵ) is the non-linear tendon force as a function of tendon strain ϵ (ϵ =
lt/lts − 1, where lt is the tendon length and lts is the tendon slack length).

Joint torque and stiffness computation:. MTU forces are projected into the joint
level to obtain joint torque τ :

τ =

#mtu∑
i=1

Fmtu
i ri (6)140

where ri is the moment arm of the ith MTU spanning the joint.
The net joint stiffness, KJ , is computed as:

KJ =

#mtu∑
i=1

(Kmtu
i r2i −

∂ri
∂θ

· Fmtu
i ) (7)

where Kmtu
i represents the stiffness of the ith MTU spanning the joint, and θ

is the joint angle.145

Model calibration at the joint torque and stiffness levels simultaneously:. The
optimal fiber length, tendon slack length, maximum isometric force, and shape
factor of each MTU included in the model are calibrated using a simulated
annealing optimization routine (Goffe et al., 1994) that minimizes the following
multi-term objective function:150

Fobj =
1

Nt

#Trials∑
t

1

Nd

#DOFs∑
d

1

Ns

#Samples∑
s

α

(
(τt,d,s − τt,d,s)

2

V ar(τt,d)

)
+

+ β

(
(Kt,d,s −Kt,d,s)

2

V ar(Kt,d)

)
+ ps (8)
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where Nt, Nd, and Ns are the number of trials, DOFs, and samples, respectively,155

used to calibrate the model, α and β are weights to the contributions to the
objective function of the estimated torques and stiffness, respectively, τt,d and
Kt,d are reference joint torque and stiffness values, respectively, τt,d and Kt,d

are modeled joint torque and stiffness values, respectively, and ps is a newly
introduced penalty factor that penalizes non-physiological normalized muscle160

lengths (l̃m < 0.5 or l̃m > 1.5) and negative tendon strains (lt < lts).

2.5. Data analysis

Simulations were performed using OpenSim 4.2 (Delp et al., 2007; Seth et al.,
2018), and the real-time version of CEINMS (Durandau et al., 2017).

For each subject, the generic gait2392 OpenSim model (Delp et al., 1990) was165

linearly scaled to match their anthropometry. A previously proposed optimization-
based method (Modenese et al., 2016) was used to identify initial values for
MTU’s optimal fiber length and tendon slack length in such a way that their
operating range was preserved, with respect to the generic gait2392 OpenSim
model, after the linear scaling. Lastly, optimal fiber length, tendon slack length,170

maximal isometric force and shape factor were further adjusted using our pro-
posed calibration procedure (Section 2.4) to best fit experimental joint torque
and stiffness simultaneously (Fig. 1).

For each calibration, only one cycle of the tracking task (≈1.6 s of data)
was used. For each subject, calibrations using 35 combinations of α and β175

(α and β values going from 0 to 1 with a step length of 0.2) were executed.
Due to the stochastic component of the simulated annealing algorithm (Goffe
et al., 1994), the calibrations using each combination of α and β were repeated
five times to assure convergence to the objective function’s global optimum (8).
Two calibrated EMG-driven models per subject were selected: the best fit to180

the torque and stiffness simultaneously, i.e. “Torque and stiffness”, and the
calibration with α = 1 and β = 0 that best matched the experimental joint
torque, i.e. the traditional “Torque only” calibration.

The two selected calibrated EMG-driven models were then used to estimate
joint torques and stiffness using 100 s (approximately 60 cycles) of new, unseen185

EMGs and joint angles that were not employed for calibration.

2.6. Validation procedures

The results of the simulations and the input data were segmented into cy-
cles and time-normalized between 0 and 100% of the cycle. Three tests were
performed.190

First test:. Validation of the estimated joint torque and stiffness against refer-
ence data for the two calibrated EMG-driven models. The root-mean-squared
error normalized by the root-mean sum (nRMSE) and the squared Pearson
correlation coefficient (r2) were computed.
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Second test:. Assessing parameter solution space dimensionality differences be-195

tween validating only at the torque level and validating at the torque and stiff-
ness levels simultaneously. We computed, for the best fitting calibration of
each of the 35 combinations of α and β, the fitting error at the joint torque level

(
(

(τ−τ)2

V ar(τ)

)
) and the total torque + stiffness fitting error (

(
(τ−τ)2

V ar(τ)

)
+
(

(K−K)2

V ar(K)

)
).

We compared how many calibrated EMG-driven models obtained acceptable200

torque fit (torque error ≤ min(Errorτ ) + 0.1) and how many calibrated EMG-
driven models obtained acceptable torque and stiffness fit (total torque + stiff-
ness fitting error ≤ min(Errorτ+K) + 0.1). Additionally, we checked that those
calibrated EMG-driven models that obtained a similar torque error underlay
different sets of parameters.205

Third test:. Estimation of joint stiffness via EMG-driven modeling using data
from an unperturbed trial and comparison to the results from perturbed coun-
terpart. Using the “Torque and stiffness” calibrated EMG-driven model, we
qualitatively compared measured joint torques and joint angles from perturbed
and unperturbed data. The corresponding joint stiffness estimations were com-210

pared via root-mean-squared error (RMSE) and r2 metrics, and a two-sample
t-test (α = 0.05) was performed to identify regions in which the joint stiffness
estimations were different with statistical significance.

3. Results

3.1. First test215

Fig 2 shows the averaged joint torque and stiffness profiles per subject, de-
rived from EMG-driven models calibrated via the “Torque only” and “Torque
and stiffness” conditions. The joint torque and joint stiffness nRMSEs across
all subjects for the “Torque only” model ranged between 0.17 and 0.78 (me-
dian: 0.38) and 0.19 and 0.92 (median: 0.64), respectively. The joint torque220

and joint stiffness nRMSEs across all subjects for the “Torque and stiffness”
model ranged between 0.23 and 0.94 (median: 0.48) and 0.14 and 0.64 (me-
dian: 0.32), respectively. The joint torque and joint stiffness r2 values across
all subjects for the “Torque only” EMG-driven model ranged between 0.56 and
0.97 (median: 0.88) and 3.5× 10−5 and 0.92 (median: 0.11), respectively. The225

joint torque and joint stiffness r2 values across all subjects for the “Torque and
stiffness” EMG-driven model ranged between 0.53 and 0.96 (median: 0.83) and
3.4 × 10−4 and 0.93 (median: 0.49), respectively. Table 1 summarizes nRMSE
and r2 values for each subject. Fig. 3 depicts the distribution of nRMSE and
r2 values across all subjects and cycles.230

3.2. Second test

For every subject, the set of α and β combinations that yielded a similar
torque error (i.e., red circles in Fig. 4) always had greater dimensionality than
the set of α and β combinations that yielded a similar total torque + stiffness
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Table 1: Normalized root-mean-squared error (nRMSE) and squared Pearson correlation coef-
ficient (r2) values between estimated and reference joint torques and stiffness for each subject.
Results expressed as median (interquartile range). Results of the “Torque only” calibrated
EMG-driven model in gray font, and results of the “Torque and stiffness” calibrated EMG-
driven model in black font.

Subject
nRMSE r2

Torque Stiffness Torque Stiffness

1
0.37 (0.08) 0.50 (0.10) 0.89 (0.05) 0.69 (0.26)
0.41 (0.10) 0.23 (0.08) 0.88 (0.05) 0.83 (0.10)

2
0.36 (0.06) 0.63 (0.09) 0.88 (0.03) 0.01 (0.04)
0.43 (0.08) 0.46 (0.08) 0.82 (0.07) 0.05 (0.09)

3
0.44 (0.11) 0.39 (0.16) 0.85 (0.09) 0.54 (0.41)
0.73 (0.16) 0.28 (0.10) 0.84 (0.10) 0.59 (0.30)

4
0.32 (0.08) 0.71 (0.06) 0.92 (0.03) 0.04 (0.09)
0.52 (0.14) 0.21 (0.06) 0.80 (0.09) 0.52 (0.21)

5
0.39 (0.06) 0.77 (0.07) 0.87 (0.05) 0.05 (0.13)
0.44 (0.06) 0.44 (0.10) 0.85 (0.06) 0.46 (0.21)

error (i.e., blue circles in Fig. 4). Results also showed that all the α and β com-235

binations that yielded a similar torque error underlay different parameter values
and therefore represented actual different model instances (Fig. 5)). Across all
subjects and modeled MTUs, the median interquartile ranges of the calibrated
values of optimal fiber length, tendon slack length, strength coefficient, and
shape factor spanned 47%, 42%, 38%, and 50%, respectively, of the permitted240

values.
From all α and β combinations with similar torque errors, only a sub-

set of combinations minimized the total torque + stiffness fitting error (≤
min(Errorτ+K) + 0.1), i.e. blue circles in Fig. 4. For subject 1, 24 combi-
nations of α and β resulted in similar torque fits, but only 8 minimized both245

torque and stiffness simultaneously. For subject 2, 28 combinations of α and
β resulted in similar torque fit, but only 1 minimized both torque and stiffness
simultaneously. For subject 3, 26 combinations of α and β resulted in similar
torque fit, but only 2 minimized both torque and stiffness simultaneously. For
subject 4, 30 combinations of α and β resulted in similar torque fit, but only250

1 minimized both torque and stiffness simultaneously. For subject 5, 28 com-
binations of α and β resulted in similar torque fit, but only 6 minimized both
torque and stiffness simultaneously.

3.3. Third test

Fig. 6 shows, for each subject individually and for the average across all sub-255

jects, average joint torque, angle, and stiffness profiles for both the perturbed
and unperturbed data. The joint stiffness RMSEs across all subjects between
perturbed and unperturbed data ranged between 2.4× 10−3 N·m/rad and 3.41
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N·m/rad (median: 0.77 N·m/rad). The joint stiffness r2 values across all sub-
jects between perturbed and unperturbed data ranged between 5.4× 10−4 and260

0.97 (median: 0.67). All subjects, in addition to the average across subjects,
showed statistically different joint stiffness profiles in portions of the task cycle:
27%, 69%, 78%, 39% of the whole cycle for subjects 1 – 4, respectively, and 35%
of the whole cycle for the average across all subjects.

4. Discussion265

We proposed an EMG-driven model-based stiffness estimation methodology,
which we validated against the joint perturbation-based Short Data Segments
system identification method using data from the same subject population and
movement. Differently from joint perturbation-based methods, our approach
provides a direct link between joint stiffness and the underlying EMG and muscle270

force profiles, something crucial to study causalities between neural, muscular
and articular dynamics.

Previous research highlighted the predominant contribution of short-range
stiffness to the model-based estimation of arm end-point stiffness during iso-
metric contractions only (Hu et al., 2011). However, it was never investigated275

to what extent EMG-driven Hill-type muscle models could estimate reference
joint stiffness profiles during dynamic tasks, during which short-range stiffness
components would play a less predominant role (Cop et al., 2021).

The first test showed that EMG-driven models calibrated under the “Torque
only” condition displayed only minimal improvements at estimating reference280

joint torque profiles, compared to models calibrated under the “Torque and
stiffness” condition (median nRMSE reduced by 0.1; median r2 increased by
0.05). However, EMG-driven models calibrated under the “Torque and stiff-
ness” condition outperformed the “Torque only” models at estimating reference
joint stiffness profiles (median nRMSE reduced by 0.32; median r2 increased285

by 0.38, Figs. 2–3). Our EMG-driven modeling formulation could estimate
reference joint stiffness and torque profiles in a robust way, i.e., EMG-driven
models calibrated using 1.6 s of data estimated 100 s of joint torques and stiff-
ness from unseen EMGs and ankle angle profiles (Table 1). Model-based joint
stiffness estimations were in line with literature. Recent work estimated ankle290

stiffness during dynamometry experiments where subjects tracked a sinusoidal
plantarflexion torque while the dynamometer imposed a sinusoidal ankle rota-
tion (Ludvig et al., 2022). Even though the protocol involved higher torque
levels, their lowest torque level (i.e., between 0 and 10 N·m), yielded a joint
stiffness of 25 N·m/rad, which matched the stiffness values we obtained at a295

plantar-flexion torque level of 10 N·m.
The second test showed there were always more EMG-driven model in-

stances, each of them characterized by different model parameters (Figs. 4–5),
that yielded a similar torque fitting error than EMG-driven model instances
that yielded a similar total torque + stiffness fitting error (Section 3.2). This300

provides evidence of the possibility of reducing the MTU parameter solution
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space and may facilitate the identification of realistic muscle force solutions
that would explain multiple mechanical variables simultaneously.

In the third test, joint stiffness profiles estimated from unperturbed con-
ditions underlay similar trends than stiffness profiles derived from perturbed305

conditions, with a median RMSE of 0.77 N·m/rad and a median r2 of 0.67 (Sec-
tion 3.3, Fig. 6). This indicates that our EMG-driven model, once calibrated
using reference data, was able to estimate realistic joint stiffness profiles without
needing to perturb the joint. However, despite similarity between the perturbed
and unperturbed conditions, our EMG-driven model was also able to capture310

subtle differences, enabling, for the first time, the study of joint stiffness in nat-
ural, unperturbed conditions. This represents a viable way for understanding
joint stiffness modulation during functional movements, e.g., locomotion, where
it is not possible to perturb the joints without affecting the underlying neu-
romechanical processes involved. Moreover, the ability to decode joint stiffness315

from EMGs and joint angles, without the need to apply external perturbations,
might radically change the way wearable assistive robots are myoelectrically
controlled.

Follow up studies should extend our proposed methodology to generalize
to functional movements. Future work should integrate short-range stiffness320

modules that dynamically engage across static and dynamic movements. Future
work should systematically investigate what MTU parameters are most sensitive
to stiffness (e.g., slopes of the passive force-length curve and the tendon force-
strain curve) and enable direct tuning within our proposed calibration method.
Previous work explored ankle joint stiffness estimation techniques by combining325

ultrasonography and system identification during isometric tasks (Jakubowski
et al., 2022). Future work will investigate the integration of ultrasonography
within our data-driven modelling framework to refine the estimation of MTU
states (e.g., activation, length, velocity) and the calibration of parameters at
muscle and tendon scales (e.g., tendon slack length) (Dick et al., 2017).330

Currently, a limitation of our EMG-driven model’s calibration is that it still
requires perturbation-based reference joint stiffness profiles for the initial cal-
ibration. Nevertheless, the ability of our EMG-driven modeling framework to
estimate joint stiffness without perturbing the joints provides a starting point
to relax joint-perturbation constraints post-calibration. Moreover, Fig. 2 and335

Table 1 provide evidence that EMG-driven models (e.g., subjects 1 and 3) could
be potentially calibrated in the “Torque only” condition, while matching refer-
ence joint stiffness profiles. Future work will investigate how to constrain MTU
parameters during a “Torque only” calibration to enable simultaneous estima-
tion of reference joint stiffness and torque, thereby facilitating our EMG-driven340

modeling framework’s full clinical translation.
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Figures460

Figure 1: Diagram of the EMG-driven model (A) and the model calibration (B). A) EMG-
driven model: the “Activation dynamics” block maps five leg muscle excitations (Section 2.2)
into seven muscle-tendon unit (MTU) activations, i.e., the EMG of the peroneus longus muscle
was used to drive the modeled peroneus longus and peroneus brevis MTUs, and the EMG of
the tibialis anterior was used to drive the modeled peroneus tertius (i.e., a dorsiflexor) MTU.
The “MTU kinematics” block maps ankle plantar-dorsi flexion angle into MTU length and
moment arms. The “MTU dynamics” block estimates MTU force and stiffness employing a
Hill-type muscle model driven by MTU activation and length with an elastic tendon that uses
a Wijngaarden–Dekker–Brent optimization (Brent, 1973) to find the roots of the equilibrium
equation between muscle fiber force and tendon force. The “Joint torque and stiffness compu-
tation” block projects MTU force and stiffness onto the the joint level via the MTU moment
arms to obtain estimates of joint torque and stiffness. B) Model calibration: Four parameters
per MTU, namely optimal fiber length, tendon slack length, maximum isometric force, and
shape factor, are adjusted to best track input reference joint torque and stiffness profiles using
the EMG-driven model described in (A). Optimal fiber length and tendon slack length were
limited to vary ± 5 % of their initial value, the maximum isometric force was scaled with a
strength coefficient ∈ (0.3, 2.5) (the MTUs of gastrocnemius lateralis and gastrocnemius me-
dialis, as well as peroneus longus and peroneus brevis, shared the same strength coefficient),
and the shape factor could take values ∈ (-3, 0). A simulated annealing optimization routine
is used to adjust MTU parameters until the difference between reference (plots in black) and
estimated (plots in blue) joint torque and joint stiffness profiles is minimized. The weights of
the contributions of joint torque and stiffness, α and β, respectively, can be tuned to obtain
a closer fit to the joint torque or joint stiffness profile.
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Figure 2: Average joint torque profiles (top row) and joint stiffness profiles (bottom row)
for each subject. Reference values, i.e., dynamometer measurements for the joint torque and
system identification estimations obtained from perturbation-based data for joint stiffness,
are depicted in gray, estimations from the model that was calibrated using the traditional
calibration, i.e. α = 1 and β = 0, are depicted in red, and estimations from the model that
best fitted reference data, i.e. α ∈ [0, 1] and β ∈ [0, 1], are depicted in green. Results expressed
as mean values (solid line) ± standard deviation (dashed lines).
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Figure 3: Histograms depicting the distributions, across all cycles of all subjects (n = 297),
of normalized root-mean-squared error (nRMSE) values of joint torque (A) and joint stiffness
(B) profiles, and squared Pearson correlation coefficient (r2) values of joint torque (C) and
joint stiffness (D) profiles. The dashed vertical lines indicate the median nRMSE and r2

values. Results of the “Torque only” calibration are shown in red and results of the “Torque
and stiffness” calibration are shown in green.
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Figure 4: Total torque + stiffness fitting error (light gray) and torque fitting error (dark gray)
for each calibrated EMG-driven model using all combinations of α and β for each subject.
Red circles indicate the solutions with a torque error ≤ min(Errorτ ) + 0.1, and blue circles
indicate the solutions with a total (i.e. torque + stiffness) error ≤ min(Errorτ+K) + 0.1.
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Figure 5: Box plots, for each modelled muscle-tendon unit (MTU) per subject, of the four
muscle parameters that are calibrated: optimal fiber length, tendon slack length, strength
coefficient, and shape factor. Optimal fiber length and tendon slack length are normalized
with their initial uncalibrated value.
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Figure 6: Average joint torque (top row), joint angle (middle row), and joint stiffness profiles
(bottom row) for each subject from perturbation-based (blue) and unperturbed (black) data.
Magenta dots on the x-axis represent cycle points in which the joint stiffness of the perturbed
and the unperturbed condition are different with statistical significance (p < 0.05).Results
expressed as mean values (solid line) ± standard deviation (dashed lines).
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